Thermal Hydrolysis of Sewage Sludge: A Case Study of a WWTP in Burgos, Spain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Burgos WWTP
2.2. Description of Scenarios
2.3. Parameters for the Different Scenarios
2.4. Mass and Energy Balance of the Thermal Hydrolysis Unit
2.5. Consumption of Biogas by the Recovery Boiler and Engines
2.6. Electric Power Generation
2.7. Energy Balance of the Total Process
2.8. Economic Balance and Feasibility Analysis
3. Results and Discussion
3.1. Mass and Energy Balances for the Sludge and Biogas Line
3.2. Total Self-Consumption, Electric Power Balance and Specific Energy Parameters
3.3. Economic Balance and Feasibility Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
< > | average value |
%SC | percentage of self-consumption |
η | efficiency (%) |
Cp | specific heat (kJ/kg K) |
COD | chemical oxygen demand (g/L) |
DL | degree of loading (%) |
EP | electric power (kW) |
F | net annual cash flow (€) |
h | specific enthalpy (kJ/kg) |
HRT | hydraulic retention time (h) |
HSE | hydrolysed sludge exchanger |
ki | injection coefficient |
Io | initial capital investment (€) |
IRR | internal rate of return (%) |
ITHP | intermediate thermal hydrolysis process |
m | mass amount in batch cycle (kg) |
M | mass (kg) |
n | number of periods in economic analysis |
N | number |
NPV | net present value (€) |
r | discount rate (%) |
Rg | gas universal constant (J/mol k) |
SBP | specific biogas production (m3/t) |
SCOD | soluble chemical oxygen demand (mg/L) |
SRE | sludge recirculation exchanger |
t | time (h) |
T | temperature (°C, K) |
T0 | ambient temperature |
THP | thermal hydrolysis process |
TP | thermal power |
TS | total solid (kg) |
V | volume (m3) |
VS | volatile solid (kg) |
VSR | volatile solid removal (%) |
WWTP | wastewater treatment plant |
Subscript | |
biogas-eng | biogas consumption of engines |
biogas-rb | biogas consumption of the recovery boiler |
biogas-st-gasom | biogas stored by gasometers |
biogas-st | biogas stored |
biogas-su-gasom | biogas supplied from gasometers |
eg-useful | exhaust gases useful power recovered |
eng | engine |
eng-gross | gross energy |
eng-net | engine net energy |
fs | flash steam |
eng-nom | engine at full load |
fw | feeding water |
in | inlet stream |
inj | injection |
ls | live steam |
pg | process gases |
pt | post-thickening section |
rb | recovery boiler |
out | outlet stream |
thick | thickened sludge |
total-losses | total losses of energy |
Appendix A. Mass and Energy Balance of the Thermal Hydrolysis Unit
Appendix B. Technical Characteristics of the Different Units Considered in the WWTP
Parameter | Units | References |
---|---|---|
Post-thickening | ||
TS concentration (%) | 16.5 | |
Polyelectrolyte (kg/t TS) | 4 | |
Dilution water (m3/kg polyelectrolyte) | 0.200 | |
Efficiency of centrifugal pumps (%) | 97 | |
Raw sludge temperature (˚C) | 15 | |
Digesters * | ||
Digesters (m3) | 3 × 6000 | |
Biogas agitation electric power (kW/m3) | 0.005 | [37] |
Low heating value of biogas (kJ/m3) | 21,240 | |
Biogas specific heat capacity (kJ/kg°C) | 1.56 | |
Density of biogas (kg/m3) | 1.11 | |
Concentration of CH4 in biogas (%) | 62.4 | |
Average outside temperature of Burgos city (°C) | 10.7 | |
Engines | ||
Number of engines installed (unit) | 4 | |
Nominal electric power (kW/unit) | 598 | |
Recovery mixed boiler | ||
Number of recovery mixed boiler (unit) | 1 | |
Thermal power (kW) | 2867 | |
Steam nominal flow (kg/h) | 4200 | |
Feed water temperature (°C) | 80 | |
Live steam temperature (°C) | 190.2 | |
Live steam pressure (kPa) | 1260 | |
Outlet exhaust gases temperature (°C) | 142 | |
Burner efficiency (%) | 88.5 | [60] |
Recovery mixed boiler efficiency (%) | 85, maximum Efficiency 98% | [44] |
Dewatering | ||
Dilution water (m3/kg polyelectrolyte) | 0.200 | |
Efficiency of centrifugal pumps (%) | 97 |
References
- Anukam, A.; Mohammadi, A.; Naqvi, M.; Granström, K. A Review of the Chemistry of Anaerobic Digestion: Methods of Accelerating and Optimizing Process Efficiency. Processes 2019, 7, 504. [Google Scholar] [CrossRef] [Green Version]
- Abelleira, J.; Pérez-Elvira, S.I.; Sánchez-Oneto, J.; Portela, J.R.; Nebot, E. Advanced Thermal Hydrolysis of Secondary Sewage Sludge: A Novel Process Combining Thermal Hydrolysis and Hydrogen Peroxide Addition. Resour. Conserv. Recycl. 2012, 59, 52–57. [Google Scholar] [CrossRef]
- Peña Muñoz, K.; Steinmetz, H. Evaluation of Pre-Treatment on the First Stage of an Anaerobic Digester for Enhancing Bio-Hydrogen Production and Its Associated Energy Balance. Energy Procedia 2012, 29, 469–479. [Google Scholar] [CrossRef] [Green Version]
- Devos, P.; Haddad, M.; Carrère, H. Thermal Hydrolysis of Municipal Sludge: Finding the Temperature Sweet Spot: A Review. Waste Biomass Valorization 2020, 1–19. [Google Scholar] [CrossRef]
- Martínez, E.J.; Gil, M.V.; Rosas, J.G.; Moreno, R.; Mateos, R.; Morán, A.; Gómez, X. Application of Thermal Analysis for Evaluating the Digestion of Microwave Pre-Treated Sewage Sludge. J. Therm. Anal. Calorim. 2017, 127, 1209–1219. [Google Scholar] [CrossRef]
- Li, B.; Romero, A.; Wadhawan, T.; Tobin, M.; Manning, E.; Higgins, M.; Al-Omari, A.; Murthy, S.; Riffat, R.; De Clippeleir, H. Recuperative Thickening for Sludge Retention Time and Throughput Management in Anaerobic Digestion with Thermal Hydrolysis Pretreatment. Water Environ. Res. 2020, 92, 465–477. [Google Scholar] [CrossRef]
- Barber, W.P.F. Thermal Hydrolysis for Sewage Treatment: A Critical Review. Water Res. 2016, 104, 53–71. [Google Scholar] [CrossRef]
- Li, X.; Xiong, N.; Wang, X.; Dai, X.; Guo, Y.; Dong, B. New Insight into Volatile Sulfur Compounds Conversion in Anaerobic Digestion of Excess Sludge: Influence of Free Ammonia Nitrogen and Thermal Hydrolysis Pretreatment. J. Clean. Prod. 2020, 277, 123366. [Google Scholar] [CrossRef]
- Kepp, U.; Machenbach, I.; Weisz, N.; Solheim, O.E. Enhanced Stabilisation of Sewage Sludge through Thermal Hydrolysis—Three Years of Experience with Full Scale Plant. Water Sci. Technol. 2000, 42, 89–96. [Google Scholar] [CrossRef]
- Pérez-Elvira, S.I.; Fernández-Polanco, F.; Fernández-Polanco, M.; Rodríguez, P.; Rouge, P. Hydrothermal Multivariable Approach. Full-Scale Feasibility Study. Electron. J. Biotechnol. 2008, 11, 7–8. [Google Scholar] [CrossRef]
- Hong, E.H.; Park, J.G.; Lee, B.; Shi, W.Q.; Jun, H.B. Improvement of Waste Dehydrated Sludge for Anaerobic Digestion through High-Temperature and High-Pressure Solubilization. Energies 2019, 13, 88. [Google Scholar] [CrossRef] [Green Version]
- Xue, Y.; Liu, H.; Chen, S.; Dichtl, N.; Dai, X.; Li, N. Effects of Thermal Hydrolysis on Organic Matter Solubilization and Anaerobic Digestion of High Solid Sludge. Chem. Eng. J. 2015, 264, 174–180. [Google Scholar] [CrossRef]
- Valo, A.; Carrère, H.; Delgenès, J.P. Thermal, Chemical and Thermo-Chemical Pre-Treatment of Waste Activated Sludge for Anaerobic Digestion. J. Chem. Technol. Biotechnol. 2004, 79, 1197–1203. [Google Scholar] [CrossRef]
- Barber, W.P.F. Cambi Thermal Hydrolysis. Theory, Market and the Future. Available online: https://www.wef.org/globalassets/assets-wef/3---resources/online-education/eshowcases/handouts/presentation-handouts---cambi-eshowcase-2.pdf (accessed on 18 December 2020).
- Ruffino, B.; Campo, G.; Cerutti, A.; Zanetti, M.; Lorenzi, E.; Scibilia, G.; Genon, G. Preliminary Technical and Economic Analysis of Alkali and Low Temperature Thermo-Alkali Pretreatments for the Anaerobic Digestion of Waste Activated Sludge. Waste Biomass Valorization 2016, 7, 667–675. [Google Scholar] [CrossRef]
- Li, C.; Liu, F.; Gong, Y.; Wang, Y.; Xu, H.; Yuan, F.; Gao, Y. Investigation into the Maillard Reaction between ε-Polylysine and Dextran in Subcritical Water and Evaluation of the Functional Properties of the Conjugates. Lwt Food Sci. Technol. 2014, 57, 612–617. [Google Scholar] [CrossRef]
- Kakar, F.L.; Koupaie, E.H.; Razavi, A.S.; Hafez, H.; Elbeshbishy, E. Effect of Hydrothermal Pretreatment on Volatile Fatty Acids Production from Thickened Waste Activated Sludge. Bioenergy Res. 2020, 13, 591–604. [Google Scholar] [CrossRef]
- Li, N.; Etzel, M.R. Hydrolysis of Whey Protein-Dextran Glycates Made Using the Maillard Reaction. Foods 2019, 8, 686. [Google Scholar] [CrossRef] [Green Version]
- Kakar, F.L.; El Sayed, A.; Purohit, N.; Elbeshbishy, E. Volatile Fatty Acids and Biomethane Recovery from Thickened Waste Activated Sludge: Hydrothermal Pretreatment’s Retention Time Impact. Processes 2020, 8, 1580. [Google Scholar] [CrossRef]
- Svennevik, O.K.; Nilsen, P.J.; Solheim, O.E.; Westereng, B.; Horn, S.J. Quantification of Soluble Recalcitrant Compounds in Commercial Thermal Hydrolysis Digestates. Water Environ. Res. 2020. [Google Scholar] [CrossRef]
- How Does Thermal Hydrolysis Work?—Cambi—World Leader in Thermal Hydrolysis. Available online: https://www.cambi.com/what-we-do/thermal-hydrolysis/how-does-thermal-hydrolysis-work/ (accessed on 18 December 2020).
- Thermal Hydrolysis Process. Available online: https://haarslev.com/industries/environmental/municipal/thermal-hydrolysis-process/ (accessed on 18 December 2020).
- TeCH4+|Thermal Hydrolysis. Available online: http://tech4plus.com/ (accessed on 18 December 2020).
- Available online: http://technomaps.veoliawatertechnologies.com/processes/lib/municipal/3472-EN_Brochure_Exelys_0516.pdf (accessed on 18 December 2020).
- Available online: https://sustec.nl/wp-content/uploads/2017/02/16086_TurbotecTHP_LeafletA4_GB_lr.pdf (accessed on 18 December 2020).
- DMT|TurboTec Thermal Hydrolosis|DMT Environmental Technology. Available online: https://www.dmt-et.com/products/turbotec/ (accessed on 18 December 2020).
- Geraats, B. Lysotherm ® Sludge Hydrolysis Five Year Experience with a Novel Approach for Operational Savings. In Proceedings of the 19th European Biosolids & Organic Resources Conference & Exhibition, Manchester, UK, 17–19 November 2014. [Google Scholar]
- Chang, S.; Filer, J. Thermal Hydrolysis to Enhance Anaerobic Digestion Performance of Wastewater Sludge. Curr. Pollut. Rep. 2020, 6, 1–16. [Google Scholar] [CrossRef]
- Rus, E.; Mills, N.; Shana, A.; Perrault, A.; Fountain, P.; Thorpe, R.B.; Ouki, S.; Nilsen, P.J. The Intermediate Thermal Hydrolysis Process: Results from Pilot Testing and Techno-Economic Assessment. Water Pract. Technol. 2017, 12, 406–422. [Google Scholar] [CrossRef]
- Svensson, K.; Kjørlaug, O.; Higgins, M.J.; Linjordet, R.; Horn, S.J. Post-Anaerobic Digestion Thermal Hydrolysis of Sewage Sludge and Food Waste: Effect on Methane Yields, Dewaterability and Solids Reduction. Water Res. 2018, 132, 158–166. [Google Scholar] [CrossRef] [PubMed]
- Thorpe, R.; Farrow, J.; Pearce, P. Unlocking the Full Energy Potential of Sewage Sludge. Ph.D. Thesis, University of Surrey, Guildford, UK, 2016. [Google Scholar]
- Veolia-Water ExelysTM Package|Veolia. Available online: https://www.veoliawatertechnologies.com/en/solutions/technologies/exelys-package (accessed on 18 December 2020).
- Barber, B.; Nilsen, P.J.; Christy, P. Cambi SolidStream®: Thermal Hydrolysis as a Pre-Treatment for Dewatering to Further Reduce Operating Costs. In Proceedings of the Water Environment Federation, Chicago, IL, USA, 30 September–4 October 2017. [Google Scholar]
- Kjorlaug, O.; Janka, E.; Bakke, R.; Nielsen, P.J. Methane Production From The Cambi SolidStream Centrate In An Upflow Anaerobic Sludge Blanket Reactor. In Proceedings of the IWA Specialist Conference on Sludge Management Sludge Tech, London, UK, 10–11 May 2017. [Google Scholar]
- Kjorlaug, O.; Nilsen, P.J.; Solheim, O.E.; Petter Traa, L.; Kruchen, H. Cambi SolidStream® High Dry Solids Technology Development of Test Procedures and Report from the First Full-Scale Installation in Germany; Water Environmental Federation: Virginia, VA, USA, 2015. [Google Scholar]
- Cambi SolidStream—High Dry Solids Technology the Versatile Solution to Cake Reduction Pål Jahre Nilsen—PDF Free Download. Available online: https://docplayer.net/74782065-Cambi-solidstream-high-dry-solids-technology-the-versatile-solution-to-cake-reduction-pal-jahre-nilsen.html (accessed on 18 December 2020).
- Metcalf, L.; Eddy, H.P.; Tchobanoglous, G. Wastewater Engineering: Treatment, Disposal, and Reuse; McGraw-Hill: New York, NY, USA, 1979; Volume 4. [Google Scholar]
- Panter, K.; Holte, H.; Walley, P. Challenges of Developing Small Scale Thermal Hydrolysis and Digestion Projects. In Proceedings of the 18th European Biosolids & Organic Resources Conference & Exhibition, Manchester, UK, 18–20 November 2013. [Google Scholar]
- Kleiven, H.; Soler, L.; Sanz, M. Thermal Hydrolysis as a Pre-Treatment of Sewage Sludge Digestion. A Mature Alternative; III Technical Conferences on the Management of Wastewater Treatment Systems. Available online: https://aca-web.gencat.cat/aca/documents/.../jornadatecnica003/volum_ponencies_es.p (accessed on 20 May 2020).
- Shana, A.; Ouki, S.; Asaadi, M.; Pearce, P.; Mancini, G. The Impact of Intermediate Thermal Hydrolysis on the Degradation Kinetics of Carbohydrates in Sewage Sludge. Bioresour. Technol. 2013, 137, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Astbury, B. Cambi, Because It Matters, Since 1969. Available online: http://nesowea.org/wp-content/uploads/2015/08/09a-Astbury-OWEA-Cambi-Presentation.pdf (accessed on 21 December 2020).
- Abu-Nada, E.; Al-Hinti, I.; Al-Sarkhi, A.; Akash, B. Thermodynamic Modeling of Spark-Ignition Engine: Effect of Temperature Dependent Specific Heats. Int. Commun. Heat Mass Transf. 2006, 33, 1264–1272. [Google Scholar] [CrossRef]
- Roubaud, A.; Favrat, D. Improving Performances of a Lean Burn Cogeneration Biogas Engine Equipped with Combustion Prechambers. Fuel 2005, 84, 2001–2007. [Google Scholar] [CrossRef]
- UMISA Mixed Type Steam Boiler CMS-CR. Available online: https://valtec-umisa.es/en/mixed-type-steam-boiler-cms-cr/ (accessed on 18 December 2020).
- García-Cascallana, J.; Borge-Díez, D.; Gómez, X. Enhancing the Efficiency of Thermal Hydrolysis Process in Wastewater Treatment Plants by the Use of Steam Accumulation. Int. J. Environ. Sci. Technol. 2019, 16, 3403–3418. [Google Scholar] [CrossRef]
- García-Garrido, S. Common Failures in Cogeneration Plants and in Alternative Gas Engines. Available online: http://plantasdecogeneracion.com/editorial/averiasmotoresgas.pdf (accessed on 21 December 2020).
- EUROSTAT Electricity Prices for Non-Household Consumers—Bi-Annual Data (from 2007 Onwards)—Datasets. Available online: https://data.europa.eu/euodp/es/data/dataset/XXs4NqKaSM5cMhhCuozwA (accessed on 21 December 2020).
- Aguas de Burgos Tender to Contract the Service for the Removal and Treatment of Sludge from and/or Collected from the WWTP and the DWTP of Burgos.- Servicio de Retirada y Tratamientos de Lodos Procedentes y/o Recogidos En La EDAR y En La ETAP de Burgos|Aguas de Burgos. Available online: https://aguasdeburgos.com/-servicio-de-retirada-y-tratamientos-de-lodos-procedentes-yo-recogidos-en-la-edar-y-en-la-etap-de-burgos/ (accessed on 21 December 2020).
- Jafarinejad, S. Cost Estimation and Economical Evaluation of Three Configurations of Activated Sludge Process for a Wastewater Treatment Plant (WWTP) Using Simulation. Appl. Water Sci. 2017, 7, 2513–2521. [Google Scholar] [CrossRef] [Green Version]
- Bank of Spain Interest Rate Table. Available online: https://clientebancario.bde.es/pcb/es/menu-horizontal/productosservici/relacionados/tiposinteres/ (accessed on 21 December 2020).
- Molinos-Senante, M.; Hernández-Sancho, F.; Sala-Garrido, R. Cost-Benefit Analysis of Water-Reuse Projects for Environmental Purposes: A Case Study for Spanish Wastewater Treatment Plants. J. Environ. Manag. 2011, 92, 3091–3097. [Google Scholar] [CrossRef]
- Hadidi, L.A.; Omer, M.M. A Financial Feasibility Model of Gasification and Anaerobic Digestion Waste-to-Energy (WTE) Plants in Saudi Arabia. Waste Manag. 2017, 59, 90–101. [Google Scholar] [CrossRef]
- Kleiven, H. Presentation to Delegation from Poland. Available online: https://docplayer.net/20745602-Presentation-to-delegation-from-poland.html (accessed on 21 December 2020).
- Salgado-Somoza, J. EDAR de Ourense: Mejora Del Saneamiento de Ourense—FuturENVIRO—Revista Técnica Bilingüe de Medio Ambiente. Available online: https://futurenviro.es/edar-de-ourense-mejora-del-saneamiento-de-ourense/ (accessed on 20 January 2021).
- Wacławek, S.; Grübel, K.; Silvestri, D.; Padil, V.V.; Wacławek, M.; Černík, M.; Varma, S.R. Disintegration of Wastewater Activated Sludge (WAS) for Improved Biogas Production. Energies 2018, 12, 21. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.; Hu, C.; Dai, L.; Liu, Z.; Dong, B.; Dai, X. Post-Thermal Hydrolysis and Centrate Recirculation for Enhancing Anaerobic Digestion of Sewage Sludge. Waste Manag. 2019, 92, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Phothilangka, P.; Schoen, M.A.; Wett, B. Benefits and Drawbacks of Thermal Pre-Hydrolysis for Operational Performance of Wastewater Treatment Plants. Water Sci. Technol. 2008, 58, 1547–1553. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Smith, S.R. A Multi-Level Biogas Model to Optimise the Energy Balance of Full-Scale Sewage Sludge Conventional and THP Anaerobic Digestion. Renew. Energy 2020. [Google Scholar] [CrossRef]
- García Cascallana, J. Evaluación Energética Del Pretratamiento Térmico de Fangos de Una EDAR = Energy Evaluation of the Sludge Thermal Pretreatment of a WWTP. Univ. León 2019. [Google Scholar] [CrossRef]
- Tekener Tekener, S.A. Customized Combustion Systems-Fabricación de Quemadores de Combustión. Available online: http://www.tekener.es/ (accessed on 18 December 2020).
Process | Characteristics | Results | References |
---|---|---|---|
Advanced thermal hydrolysis process | Secondary sludge Direct live steam injection Temperature range: 86–164 °C Maximum pressure: 8.3 bar Time: 21–34 min H2O2 | Better dewaterability when H2O2 is added to the thermal hydrolysis process Sludge solubilisation: 10–70% Organic removal: 40–60% | [2] |
Thermal hydrolysis | Mixed sludge (33% primary–67% secondary) Temperature range: 110–187 °C Time: 20–40 min | Increase in methane yield: 70% Increase in biodegradability: 70% | [11] |
Thermal hydrolysis (review of several studies) | Sewage sludge Temperature range: 100–200 °C | VS removal: 38–49.5% Increase in methane production: 29–57% | [4] |
Low and high temperature hydrolysis | Secondary sludge Low temperature: 60–90 °C Time: 1–72 h High temperature: 120–180 °C Time: 15–180 min | COD solubilisation: 9 times increase Ammonia: 2–3 times increase Biogas: 0–16.5% increase | [12] |
Thermal hydrolysis (microwave pretreatment) | Sewage sludge Energy applied: 488–2700 kJ/L | Methane yield: 43% increase | [5] |
Thermal hydrolysis with recuperative thickening | Sewage sludge Temperature: 165 °C Pressure: 6 bar Time: 30 min Thickening of digested sludge and recycling solids back to digestion | Reported no increase in methane yield 100% increase in throughput rates HRT: reduced to a half | [13] |
Characteristics | Commercial Name and Company | Heating System | References |
---|---|---|---|
Batch process | Cambi™—Cambi | Steam injection | [21] |
BioThelys™—Veolia Water Technologies | [21] | ||
Continuous process | HaarslevTM—Haarslev | [22] | |
tH4+ (Prototype scale)—teCH4+ | [23] | ||
Exelys™—Veolia Water Technologies | Heat exchangers and steam injection | [24] | |
Turbotec®—DMT Environmental Technology, Sustec | [25,26] | ||
Lysotherm®—Eliquo Water and Energy BV | Heat exchangers with thermal oil | [27] |
Thermal Hydrolysis Parameters | Units | References |
---|---|---|
Nominal treatment capacity of THP-B6.2 (t TS/d) | 35 | |
Maximum treatment capacity of THP-B6.2 (t TS/d) | 42 | |
Outlet sludge stream from the hydrolysis reactor (kg/batch) | 6300 | |
Outlet flash steam from the hydrolysis reactor (kg/batch) | 30 | |
Outlet process gases from the hydrolysis reactor (kg/batch) | 8 | |
TS concentration in inlet sludge stream in the hydrolysis reactor (%) | 12.7 | |
Relative density of dry sludge (w.u) | 1.4 | [37] |
Specific heat capacity (kJ/kg °C) | 1.5 | [38] |
Volume of pulper (m3) | 1 × 15.2 | |
Volume of reactor (m3) | 2 × 6.9 | |
Volume of flash-tank (m3) | 1 × 15.2 | |
Emptying time of reactor to the flash-tank (min) | 10 | |
Reaction time (min) | 20–30 | |
Reactor temperature (°C) | 165 | |
Reactor pressure (kPa) | 700 | |
Flash-tank temperature (°C) | 107 | |
Flash-tank pressure (kPa) | 128 | |
TS concentration of inlet sludge stream to the digester (%) | 10 | [39] |
Parameter | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | Scenario 5 |
---|---|---|---|---|---|
Digestion | |||||
Temperature (°C) | 37 | 41 | 41 | 37/41a | 37 a |
VSR of primary sludge (%) | 50 | 50 | … | … | … |
VSR of WAS (%) | 40 | … | … | … | … |
VSR of primary hydrolysed sludge (%) | … | … | 60 | … | … |
VSR of WAS hydrolysed sludge (%) | … | 64 a | 64 a | 68b | 70 a |
Dewatering | |||||
Concentration (%) | 20.3 | 30 | 30 | 41 a | 45a |
Polyelectrolyte (kg/t TS) | 7.5 | 9 | 9 | 11c | 0 a |
Temperature (°C) | 37 | 41 | 41 | 41a | 100 a |
Temperature (°C) | Cp (kJ/kg K) | h (kJ/kg) |
---|---|---|
Recovery boiler oulet stream | ||
142 | 1.016 | 118.1 |
Recovery boiler intlet stream | ||
Scenario 1, 482.7 | 1.087 | 478.6 |
Scenario 2, 483.3 | 1.087 | 479.2 |
Scenario 3, 504.2 | 1.092 | 502.2 |
Scenario 4, 498.8 | 1.091 | 496.2 |
Scenario 5, 486.6 | 1.088 | 482.8 |
Parameter | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | Scenario 5 |
---|---|---|---|---|---|
Post-thickening | |||||
Concentration of mixed sludge (%) | … | 5.4 | 6.7 | 3.8 | 2.3 |
Mass flow of mixed sludge TS (kg/h) | … | 1499 | 674 | 1042 | 713 |
Mass flow of mixed sludge (kg/h) | … | 28,138 | 10,305 | 27,682 | 30,690 |
Mass flow of post-thickening polyelectrolyte (kg/h) | … | 6 | 2.7 | 4.2 | 2.9 |
Mass flow of post-thickening sludge TS (kg/h) | … | 1454 | 653 | 1012 | 692 |
Mass flow of post-thickening sludge (kg/h) | … | 9247 | 4156 | 6429 | 4399 |
Concentration of post-thickening centrates (%) | … | 0.22 | 0.30 | 0.14 | 0.09 |
Mass flow of post-thickening centrates (kg/h) | … | 20,096 | 6690 | 22,090 | 23,527 |
* Thermal hydrolysis | |||||
mTS-reactor, mass of TS outlet reactor (kg/batch) | … | 768 | 768 | 768 | 768 |
Mpg, flow mass of process gases of pulper outlet (kg/h) | 15 | 6 | 10 | 7 | |
Mfs-reactor, flow mass of reactor flash steam (kg/h) | … | 56 | 25 | 39 | 27 |
MTS-reactor, flow mass of reactor TS (kg/h) | … | 1439 | 647 | 1002 | 685 |
Msludge-pt, flow mass of reactor sludge (kg/h) | … | 11,796 | 5302 | 8203 | 5612 |
Mls, average consumption of live steam (kg/h) | … | 1385 | 623 | 964 | 660 |
Mls-specific, average specific consumption of live steam (kg/t TS) | … | 952 | 952 | 952 | 952 |
Dilution water | |||||
Msludge-dilution water, mass flow of sludge dilution water (kg/h) | … | 14,813 | 6659 | 10,301 | … |
TPdiluted-sludge, thermal power of diluted sludge (kW) | … | 1279 | 575 | 890 | … |
HSE | |||||
THSE, temperature of HSE sludge (°C) | … | 50 | 51 | 50 | … |
TPHSE, thermal power of HSE sludge (kW) | … | 807 | 575 | 559 | … |
Cooling thermal power of HSE (kW) | … | -472 | 0 | -331 | … |
Mixing ring | |||||
Temperature of the sludge ring (°C) | 15 | 50 | 32 | 28/50 | 25 |
Mass flow of sludge ring (kg/h) | 28,138 | 14,813 | 24,493 | 28,138/10,301 | 31,496 |
Thermal power of the sludge ring (kW) | 474 | 807 | 882 | 474/559 | 889 |
Solid concentration in sludge ring (%) | 5.4 | 10.0 | 6.1 | 5.4/10 | 4.9 |
Digesters | |||||
Number of digesters operating (unit) | 3 | 1 | 2 | 2/1 | 3 |
Volume of digesters operating (m3) | 18,000 | 6000 | 12,000 | 12,000/6000 | 18,000 |
Total VSR (%) | 45.2 | 61.9 | 56.5 | 68 | 70 |
HRT, hydraulic retention time (d) | 27.1 | 17.4 | 20.8 | 18/25 | 27.1 |
OLR, organic loading rate (kg VS/d m3) | 1.5 | 4.4 | 2.2 | 2.3/2.6 | 1.5 |
Concentration of digested sludge (%) | 3.6 | 5.5 | 3.6 | 3.8/7.5 | 2.3 |
Thermal power of digested sludge (kW) | 1161 | 651 | 1112 | 1162/456 | 1441 |
Dewatering | |||||
Concentration of dewatered sludge (%) | 20.3 | 30 | 30 | 41 | 45 |
Mass flow of dewatered sludge (kg/h) | 4977 | 2696 | 2970 | 1968 | 1694 |
Reduction rate of dewatered sludge (%) | … | −45.8 | −40.3 | −60.5 | −66.0 |
Mass flow of polyelectrolyte (kg/h) | 7.4 | 6.9 | 7.6 | 8.1 | 2.9 |
Balance of NH4+ | |||||
Mass flow of NH4+ (kg/h) | 19.3 | 35.3 | 33.9 | 44.4 | 41.7 |
Total increment rate of NH4+ (%) | … | 82.9 | 75.6 | 30.1 | 116 |
Total polyelectrolyte | |||||
Total mass flow of polyelectrolyte (kg/h) | 7.4 | 12.9 | 10.3 | 12.3 | 2.9 |
Total increment rate of polyelectrolyte (%) | … | 74.3 | 39.2 | 66.2 | −60.8 |
Parameter | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | Scenario 5 |
---|---|---|---|---|---|
Digesters | |||||
Production of biogas (kg/h) | 516 | 677 | 632 | 457/266 | 806 |
Vbiogas, production of biogas (m3/h) | 465 | 609 | 569 | 411/240 | 726 |
TPbiogas, thermal power of biogas (kW) | 2741 | 3590 | 3355 | 3837 | 4279 |
Thermal power of SRE (kW) | 1037 | 0 | 528 | 966 | 970 |
Thermal power of biogas flow (kW) | 9 | 12 | 11 | 7/5 | 13 |
Transmission losses (kW) | 190 | 73 | 146 | 127/73 | 219 |
Pipes and exchangers losses (kW) | 151 | 82 | 141 | 144/59 | 186 |
Engines | |||||
TPbiogas-eng, biogas consumption (kW) | 2741 | 2720 | 2977 | 3266 | 3907 |
TPeg-useful, useful thermal power from exhaust gases (kW) | 526 | 523 | 603 | 653 | 758 |
Neng, number of engines operating (units) | 2 | 2 | 3 | 3 | 3 |
DL, degree of loading (%) | 87.7 | 86.9 | 58.5 | 65.9 | 82.4 |
TPmain-circuit-fw, thermal power of the main circuit (kW) | 531 | 528 | 577 | 640 | 759 |
<TP>main-circuit-fw, average thermal power of the boiler’s main circuit (kW) | … | 105 | 47 | 73 | 50 |
Recovery mixed boiler | |||||
<TP>biogas-rb, biogas consumption (kW) | … | 870 | 378 | 571 | 372 |
Useful average thermal power of exhaust gases (kW) | … | 173 | 89 | 150 | 119 |
ki, injection coefficient of live steam (%) | … | 33 | 14.8 | 23 | 15.7 |
Gasometers | |||||
TPbiogas-su, thermal power supplied (kW) | … | 1767 | 2170 | 1919 | 2000 |
TPbiogas-st, thermal power stored (kW) | … | 870 | 378 | 571 | 372 |
Total process | |||||
TPdigester, thermal power required for digesters (kW) | 1037 | 576 | 999 | 392 | 999 |
TPtotal-losses, total losses of thermal power (kW) | 656 | 1912 | 1242 | 2159 | 1700 |
ηthermal-process, thermal efficiency (%) | 37.8 | 16 | 29.8 | 10.2 | 23.3 |
ηelectric-process, electric efficiency (%) | 38.2 | 27.1 | 29.4 | 27.6 | 31.9 |
ηenergy-process, energy efficiency (%) | 76 | 43.1 | 59.2 | 37.8 | 55.2 |
Parameter | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | Scenario 5 |
---|---|---|---|---|---|
Total self-consumption of electric power | |||||
EPadditional, additional self-consumption (kW) | … | 197.3 | 139.4 | 189.2 | 177.2 |
EPsaved, consumption saving (kW) | … | 129.8 | 75.1 | 72.2 | 66.1 |
Total self-consumption (kW) | … | 67.5 | 64.3 | 125 | 111.1 |
Electric power balance | |||||
Electric efficiency of engines (%) | 38.3 | 38.2 | 35.3 | 36.2 | 37.8 |
EPeng-gross, gross electric power (kW) | 1048 | 1039 | 1050 | 1183 | 1478 |
%SC, percentage of self-consumption (%) | 0 | 6.5 | 6.1 | 10.6 | 7.5 |
EPeng-net, net electric power (kW) | 1048.0 | 971.5 | 985.7 | 1058.0 | 1366.9 |
Specific energy parameters | |||||
SBP, specific production of biogas (m3/t ST) a | 310 | 406 | 380 | 434 | 484 |
TPbiogas-specific, specific biogas production (MWh/t ST) | 1829 | 2395 | 2238 | 2560 | 2855 |
EPgross-specific, gross specific electric power (MWh/t ST) | 699 | 693 | 700 | 766 | 986 |
EPnet-specific, net specific electric power (MWh/t ST) | 699 | 648 | 657 | 705 | 911 |
SPVVS, specific production of biogas by VS removed (m3/t VS) | 900 | 900 | 900 | 900 | 900 |
Increment of gross biogas production (%) | .. | 31 | 22.4 | 40 | 56.1 |
Increment of net biogas production (%) | … | −0.8 | 8.6 | 19.2 | 42.5 |
Increment of gross electric power production (%) | … | −0.9 | 0.2 | 12.9 | 41 |
Increment of net electric power production (%) | … | −7.3 | −6 | 0.9 | 30.3 |
Parameter | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | Scenario 5 |
---|---|---|---|---|---|
Biogas production (MWh/year) | 24,020 | 31,458 | 29,443 | 35,022 | 37,192 |
… | 7438 | 5423 | 11,002 | 13,172 | |
Net electric power (MWh/year) | 9180 | 8510 | 8635 | 9268 | 11,974 |
… | −670 | −545 | 88 | 2794 | |
Dewatered sludge (t/year) | 40,445 | 23,617 | 26,026 | 16,250 | 14,550 |
… | −16,828 | −14,419 | −24,195 | −25,895 | |
Polyelectrolyte (t/year) | 64.8 | 113 | 90.2 | 100.7 | 24.5 |
… | 48.2 | 25.4 | 35.9 | −40.3 |
Parameter | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | Scenario 5 |
---|---|---|---|---|---|
Economic balance and feasibility analysis (Case I) | |||||
Electric power (€/year) | 844,604 | 782,920 | 794,420 | 852,656 | 1,101,608 |
… | −61,684 | −50,184 | 8052 | 257,004 | |
Dewatered sludge (€/year) | 465,622 | 271,831 | 299,458 | 198,429 | 170,802 |
… | 193,791 | 166,164 | 267,193 | 294,820 | |
Polyelectrolyte (€/year) | 149,095 | 259,009 | 207,524 | 247,820 | 58,429 |
… | −110,814 | −58,429 | −98,725 | 90,666 | |
Operation costs (€/year) | … | 119,584 | 119,584 | 132,267 | 135,321 |
… | −119,584 | −119,584 | −132,267 | −135,321 | |
Economic balance and feasibility analysis ( Case II) | |||||
Electric power (€/year) | 844,604 | 782,920 | 905,280 | 942,172 | 1160,488 |
… | −61,684 | 60,676 | 97,568 | 315,884 | |
Dewatered sludge (€/year) | 465,622 | 271,831 | 299,458 | 198,429 | 170,802 |
… | 193,791 | 166,164 | 267,193 | 294,820 | |
Polyelectrolyte (€/year) | 149,095 | 259,909 | 207,524 | 247,820 | 116,858 |
… | −110,804 | −58,429 | −98,725 | 32,237 | |
Operation costs (€/year) | … | 67,584 | 50,371 | 90,915 | 91,978 |
… | −67,584 | −50,371 | −90,915 | −91,978 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Cascallana, J.; Barrios, X.G.; Martinez, E.J. Thermal Hydrolysis of Sewage Sludge: A Case Study of a WWTP in Burgos, Spain. Appl. Sci. 2021, 11, 964. https://doi.org/10.3390/app11030964
García-Cascallana J, Barrios XG, Martinez EJ. Thermal Hydrolysis of Sewage Sludge: A Case Study of a WWTP in Burgos, Spain. Applied Sciences. 2021; 11(3):964. https://doi.org/10.3390/app11030964
Chicago/Turabian StyleGarcía-Cascallana, José, Xiomar Gómez Barrios, and E. Judith Martinez. 2021. "Thermal Hydrolysis of Sewage Sludge: A Case Study of a WWTP in Burgos, Spain" Applied Sciences 11, no. 3: 964. https://doi.org/10.3390/app11030964
APA StyleGarcía-Cascallana, J., Barrios, X. G., & Martinez, E. J. (2021). Thermal Hydrolysis of Sewage Sludge: A Case Study of a WWTP in Burgos, Spain. Applied Sciences, 11(3), 964. https://doi.org/10.3390/app11030964