Deep Learning Sensor Fusion in Plant Water Stress Assessment: A Comprehensive Review
Abstract
:Featured Application
Abstract
1. Introduction
2. Review Methodology
2.1. Literature Review Planning Protocol
- Research questions
- Q1. What type of sensors and input data were used?
- Q2. What DL model was proposed in the study?
- Q3. Did the authors compare the DL approach with other machine learning approaches?
- Q4. How was the performance of the DL model compared to conventional models?
- Exclusion criteria
- E1. Works not related to water stress assessment and DL/ML.
- E2. Works that do not present any type of experimentation or comparison results, and make only propositions.
- Quality criterion
- QC1. Papers that compare recent assessment results using different DL techniques.
2.2. Execution
3. Background on Deep Learning Network Architecture
3.1. Deep Belief Network
3.2. Convolutional Neural Network
3.3. Long-Short Term Memory Network
4. Deep Learning in Plant Water Stress Assessment
4.1. Soil Moisture Estimation
4.2. Soil Water Modelling
4.3. Evapotranspiration Estimation
4.4. Evapotranspiration Forecasting
4.5. Plant Water Status Estimation
4.6. Plant Water Stress Identification
5. Discussion and Future Perspectives
5.1. Deep Learning for 3-Dimensional Data
5.2. Plant Varieties Challenge
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Osakabe, Y.; Osakabe, K.; Shinozaki, K.; Tran, L.-S. Response of plants to water stress. Front. Plant Sci. 2014, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kashyap, P.; Panda, R. Effect of irrigation scheduling on potato crop parameters under water stressed conditions. Agric. Water Manag. 2003, 59, 49–66. [Google Scholar] [CrossRef]
- Lisar, S.Y.; Motafakkerazad, R.; Hossain, M.M.; Rahman, I.M. Water stress in plants: Causes, effects and responses. In Water Stress; InTech: London, UK, 2012. [Google Scholar]
- Byrareddy, V.; Kouadio, L.; Kath, J.; Mushtaq, S.; Rafiei, V.; Scobie, M.; Stone, R. Win-win: Improved irrigation management saves water and increases yield for robusta coffee farms in Vietnam. Agric. Water Manag. 2020, 241, 106350. [Google Scholar] [CrossRef]
- Kriston-Vizi, J.; Umeda, M.; Miyamoto, K. Assessment of the water status of mandarin and peach canopies using visible multispectral imagery. Biosyst. Eng. 2008, 100, 338–345. [Google Scholar] [CrossRef] [Green Version]
- Chai, Q.; Gan, Y.; Zhao, C.; Xu, H.-L.; Waskom, R.M.; Niu, Y.; Siddique, K.H. Regulated deficit irrigation for crop production under drought stress. A review. Agron. Sustain. Dev. 2016, 36, 3. [Google Scholar] [CrossRef] [Green Version]
- Stagakis, S.; González-Dugo, V.; Cid, P.; Guillén-Climent, M.L.; Zarco-Tejada, P.J. Monitoring water stress and fruit quality in an orange orchard under regulated deficit irrigation using narrow-band structural and physiological remote sensing indices. ISPRS J. Photogramm. Remote Sens. 2012, 71, 47–61. [Google Scholar] [CrossRef] [Green Version]
- Chuvieco, E.; Cocero, D.; Riano, D.; Martin, P.; Martınez-Vega, J.; de la Riva, J.; Perez, F. Combining NDVI and surface temperature for the estimation of live fuel moisture content in forest fire danger rating. Remote Sens. Environ. 2004, 92, 322–331. [Google Scholar] [CrossRef]
- Oumar, Z.; Mutanga, O. Predicting water stress induced by Thaumastocoris peregrinus infestations in plantation forests using field spectroscopy and neural networks. J. Spat. Sci. 2014, 59, 79–90. [Google Scholar] [CrossRef]
- Munns, R.; James, R.A.; Sirault, X.R.; Furbank, R.T.; Jones, H.G. New phenotyping methods for screening wheat and barley for beneficial responses to water deficit. J. Exp. Bot. 2010, 61, 3499–3507. [Google Scholar] [CrossRef] [Green Version]
- Bolten, J.D.; Crow, W.T.; Zhan, X.; Jackson, T.J.; Reynolds, C.A. Evaluating the utility of remotely sensed soil moisture retrievals for operational agricultural drought monitoring. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2009, 3, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Padhee, S.K.; Nikam, B.R.; Dutta, S.; Aggarwal, S.P. Using satellite-based soil moisture to detect and monitor spatiotemporal traces of agricultural drought over Bundelkhand region of India. Giscience Remote Sens. 2017, 54, 144–166. [Google Scholar] [CrossRef]
- Brillante, L.; Mathieu, O.; Lévêque, J.; Bois, B. Ecophysiological modeling of grapevine water stress in burgundy terroirs by a machine-learning approach. Front. Plant Sci. 2016, 7, 796. [Google Scholar] [CrossRef]
- Ihuoma, S.O.; Madramootoo, C.A. Recent advances in crop water stress detection. Comput. Electron. Agric. 2017, 141, 267–275. [Google Scholar] [CrossRef]
- Kramer, P.J. Water Stress and Plant Growth 1. Agron. J. 1963, 55, 31–35. [Google Scholar] [CrossRef]
- Lee, W.; Alchanatis, V.; Yang, C.; Hirafuji, M.; Moshou, D.; Li, C. Sensing technologies for precision specialty crop production. Comput. Electron. Agric. 2010, 74, 2–33. [Google Scholar] [CrossRef]
- Gerhards, M.; Schlerf, M.; Mallick, K.; Udelhoven, T. Challenges and Future Perspectives of Multi-/Hyperspectral Thermal Infrared Remote Sensing for Crop Water-Stress Detection: A Review. Remote Sens. 2019, 11, 1240. [Google Scholar] [CrossRef] [Green Version]
- Alvino, A.; Marino, S. Remote sensing for irrigation of horticultural crops. Horticulturae 2017, 3, 40. [Google Scholar] [CrossRef] [Green Version]
- Virnodkar, S.S.; Pachghare, V.K.; Patil, V.; Jha, S.K. Remote sensing and machine learning for crop water stress determination in various crops: A critical review. Precis. Agric. 2020, 21, 1121–1155. [Google Scholar] [CrossRef]
- Liakos, K.G.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine Learning in Agriculture: A Review. Sensors 2018, 18, 2674. [Google Scholar] [CrossRef] [Green Version]
- Chlingaryan, A.; Sukkarieh, S.; Whelan, B. Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review. Comput. Electron. Agric. 2018, 151, 61–69. [Google Scholar] [CrossRef]
- Ma, L.; Liu, Y.; Zhang, X.; Ye, Y.; Yin, G.; Johnson, B.A. Deep learning in remote sensing applications: A meta-analysis and review. ISPRS J. Photogramm. Remote Sens. 2019, 152, 166–177. [Google Scholar] [CrossRef]
- Kussul, N.; Lavreniuk, M.; Skakun, S.; Shelestov, A. Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data. IEEE Geosci. Remote Sens. Lett. 2017, 14, 778–782. [Google Scholar] [CrossRef]
- Yuan, Q.; Shen, H.; Li, T.; Li, Z.; Li, S.; Jiang, Y.; Xu, H.; Tan, W.; Yang, Q.; Wang, J. Deep learning in environmental remote sensing: Achievements and challenges. Remote Sens. Environ. 2020, 241, 111716. [Google Scholar] [CrossRef]
- Mochida, K.; Koda, S.; Inoue, K.; Hirayama, T.; Tanaka, S.; Nishii, R.; Melgani, F. Computer vision-based phenotyping for improvement of plant productivity: A machine learning perspective. GigaScience 2018, 8, giy153. [Google Scholar] [CrossRef] [Green Version]
- Kamilaris, A.; Prenafeta-Boldú, F.X. Deep learning in agriculture: A survey. Comput. Electron. Agric. 2018, 147, 70–90. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z.; Luo, Z.; Zhang, W.; Lv, Z.; Xu, Y. Deep Learning Application in Plant Stress Imaging: A Review. AgriEngineering 2020, 2, 29. [Google Scholar] [CrossRef]
- Singh, A.K.; Ganapathysubramanian, B.; Sarkar, S.; Singh, A. Deep learning for plant stress phenotyping: Trends and future perspectives. Trends Plant Sci. 2018, 23, 883–898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noon, S.K.; Amjad, M.; Qureshi, M.A.; Mannan, A. Use of Deep Learning Techniques for Identification of Plant Leaf Stresses: A Review. Sustain. Comput. Inform. Syst. 2020, 28, 100443. [Google Scholar]
- Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science 2006, 313, 504–507. [Google Scholar] [CrossRef] [Green Version]
- Deng, L.; Yu, D. Deep learning: Methods and applications. Found. Trends Signal Process. 2014, 7, 197–387. [Google Scholar] [CrossRef] [Green Version]
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef] [Green Version]
- Geng, L.; Dong, T. An agricultural monitoring system based on wireless sensor and depth learning algorithm. Int. J. Online Eng. 2017, 13, 127–137. [Google Scholar] [CrossRef] [Green Version]
- García-Mateos, G.; Hernández-Hernández, J.L.; Escarabajal-Henarejos, D.; Jaén-Terrones, S.; Molina-Martínez, J.M. Study and comparison of color models for automatic image analysis in irrigation management applications. Agric. Water Manag. 2015, 151, 158–166. [Google Scholar] [CrossRef]
- Hendrawan, Y.; Murase, H. Neural-intelligent water drops algorithm to select relevant textural features for developing precision irrigation system using machine vision. Comput. Electron. Agric. 2011, 77, 214–228. [Google Scholar] [CrossRef]
- Kim, Y.; Glenn, D.M.; Park, J.; Ngugi, H.K.; Lehman, B.L. Hyperspectral image analysis for water stress detection of apple trees. Comput. Electron. Agric. 2011, 77, 155–160. [Google Scholar] [CrossRef]
- Gutiérrez, S.; Diago, M.P.; Fernández-Novales, J.; Tardaguila, J. Vineyard water status assessment using on-the-go thermal imaging and machine learning. PLoS ONE 2018, 13, e0192037. [Google Scholar] [CrossRef] [PubMed]
- Boxel, D.V. Hands-On Deep Learning with TensorFlow; Packt Publishing: Birmingham, UK, 2017. [Google Scholar]
- Ketkar, N.; Santana, E. Deep Learning with Python; Springer: Berlin/Heidelberg, Germany, 2017; Volume 1. [Google Scholar]
- Bisong, E. Google Colaboratory. In Building Machine Learning and Deep Learning Models on Google Cloud Platform: A Comprehensive Guide for Beginners; Apress: Berkeley, CA, USA, 2019; pp. 59–64. [Google Scholar] [CrossRef]
- Carneiro, T.; Da Nóbrega, R.V.M.; Nepomuceno, T.; Bian, G.-B.; De Albuquerque, V.H.C.; Reboucas Filho, P.P. Performance analysis of google colaboratory as a tool for accelerating deep learning applications. IEEE Access 2018, 6, 61677–61685. [Google Scholar] [CrossRef]
- Ubbens, J.R.; Stavness, I. Deep plant phenomics: A deep learning platform for complex plant phenotyping tasks. Front. Plant Sci. 2017, 8, 1190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosal, S.; Blystone, D.; Singh, A.K.; Ganapathysubramanian, B.; Singh, A.; Sarkar, S. An explainable deep machine vision framework for plant stress phenotyping. Proc. Natl. Acad. Sci. USA 2018, 115, 4613–4618. [Google Scholar] [CrossRef] [Green Version]
- Fahlgren, N.; Feldman, M.; Gehan, M.A.; Wilson, M.S.; Shyu, C.; Bryant, D.W.; Hill, S.T.; McEntee, C.J.; Warnasooriya, S.N.; Kumar, I. A versatile phenotyping system and analytics platform reveals diverse temporal responses to water availability in Setaria. Mol. Plant 2015, 8, 1520–1535. [Google Scholar] [CrossRef] [Green Version]
- Feldman, M.J.; Paul, R.E.; Banan, D.; Barrett, J.F.; Sebastian, J.; Yee, M.-C.; Jiang, H.; Lipka, A.E.; Brutnell, T.P.; Dinneny, J.R. Time dependent genetic analysis links field and controlled environment phenotypes in the model C4 grass Setaria. PLoS Genet. 2017, 13, e1006841. [Google Scholar] [CrossRef] [Green Version]
- Hinton, G.E.; Osindero, S.; Teh, Y.-W. A fast learning algorithm for deep belief nets. Neural Comput. 2006, 18, 1527–1554. [Google Scholar] [CrossRef]
- Kamilaris, A.; Prenafeta-Boldú, F. A review of the use of convolutional neural networks in agriculture. J. Agric. Sci. 2018, 156, 312–322. [Google Scholar] [CrossRef] [Green Version]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 25, 1097–1105. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Tran, D.; Bourdev, L.; Fergus, R.; Torresani, L.; Paluri, M. Learning spatiotemporal features with 3d convolutional networks. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 4489–4497. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Werbos, P.J. Backpropagation through time: What it does and how to do it. Proc. IEEE 1990, 78, 1550–1560. [Google Scholar] [CrossRef] [Green Version]
- Mikolov, T.; Kombrink, S.; Burget, L.; Černocký, J.; Khudanpur, S. Extensions of recurrent neural network language model. In Proceedings of the 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, 22–27 May 2011; pp. 5528–5531. [Google Scholar]
- Graves, A.; Mohamed, A.-R.; Hinton, G. Speech recognition with deep recurrent neural networks. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 6645–6649. [Google Scholar]
- Steppe, K.; De Pauw, D.J.W.; Lemeur, R. A step towards new irrigation scheduling strategies using plant-based measurements and mathematical modelling. Irrig. Sci. 2008, 26, 505. [Google Scholar] [CrossRef]
- Yamaç, S.S.; Şeker, C.; Negiş, H. Evaluation of machine learning methods to predict soil moisture constants with different combinations of soil input data for calcareous soils in a semi arid area. Agric. Water Manag. 2020, 234, 106121. [Google Scholar] [CrossRef]
- Sobayo, R.; Wu, H.; Ray, R.; Qian, L. Integration of Convolutional Neural Network and Thermal Images into Soil Moisture Estimation. In Proceedings of the 2018 1st International Conference on Data Intelligence and Security (ICDIS), South Padre Island, TX, USA, 8–10 April 2018; pp. 207–210. [Google Scholar]
- Tseng, D.; Wang, D.; Chen, C.; Miller, L.; Song, W.; Viers, J.; Vougioukas, S.; Carpin, S.; Ojea, J.A.; Goldberg, K. Towards Automating Precision Irrigation: Deep Learning to Infer Local Soil Moisture Conditions from Synthetic Aerial Agricultural Images. In Proceedings of the 2018 IEEE 14th International Conference on Automation Science and Engineering (CASE), Munich, Germany, 20–24 August 2018; pp. 284–291. [Google Scholar]
- Zhang, D.; Zhang, W.; Huang, W.; Hong, Z.; Meng, L. Upscaling of surface soil moisture using a deep learning model with VIIRS RDR. ISPRS Int. J. Geo-Inf. 2017, 6, 130. [Google Scholar] [CrossRef]
- Lee, C.S.; Sohn, E.; Park, J.D.; Jang, J.-D. Estimation of soil moisture using deep learning based on satellite data: A case study of South Korea. Giscience Remote Sens. 2019, 56, 43–67. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, C.; Li, F.; Song, J.; Li, P.; Zhang, Y. Extracting Soil Moisture from Fengyun-3D Medium Resolution Spectral Imager-II Imagery by Using a Deep Belief Network. J. Meteorol. Res. 2020, 34, 748–759. [Google Scholar] [CrossRef]
- Ge, L.; Hang, R.; Liu, Y.; Liu, Q. Comparing the performance of neural network and deep convolutional neural network in estimating soil moisture from satellite observations. Remote Sens. 2018, 10, 1327. [Google Scholar] [CrossRef] [Green Version]
- Adeyemi, T.; Grove, I.; Peets, S.; Domun, Y.; Norton, T. Dynamic Neural Network Modelling of Soil Moisture Content for Predictive Irrigation Scheduling. Sensors 2018, 18, 3408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, X.; Zhang, G.; Liu, F.; Li, D.; Zhao, Y.; Yang, J. Modeling spatio-temporal distribution of soil moisture by deep learning-based cellular automata model. J. Arid Land 2016, 8, 734–748. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.; Zheng, W.; Zhang, X.; Zhangzhong, L.; Xue, X. Research on soil moisture prediction model based on deep learning. PLoS ONE 2019, 14, e0214508. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Zhang, X.; Xu, L.; Dong, J.; Zhangzhong, L. A hybrid CNN-GRU model for predicting soil moisture in maize root zone. Agric. Water Manag. 2020, 245, 106649. [Google Scholar] [CrossRef]
- Yu, J.; Tang, S.; Zhangzhong, L.; Zheng, W.; Wang, L.; Wong, A.; Xu, L. A Deep Learning Approach for Multi-Depth Soil Water Content Prediction in Summer Maize Growth Period. IEEE Access 2020, 8, 199097–199110. [Google Scholar] [CrossRef]
- Fang, K.; Shen, C.; Kifer, D.; Yang, X. Prolongation of SMAP to spatiotemporally seamless coverage of continental US using a deep learning neural network. Geophys. Res. Lett. 2017, 44, 11030–11039. [Google Scholar] [CrossRef] [Green Version]
- Fang, K.; Shen, C. Near-real-time forecast of satellite-based soil moisture using long short-term memory with an adaptive data integration kernel. J. Hydrometeorol. 2020, 21, 399–413. [Google Scholar] [CrossRef]
- Verstraeten, W.W.; Veroustraete, F.; Feyen, J. Assessment of evapotranspiration and soil moisture content across different scales of observation. Sensors 2008, 8, 70–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ünlü, M.; Kanber, R.; Kapur, B. Comparison of soybean evapotranspirations measured by weighing lysimeter and Bowen ratio-energy balance methods. Afr. J. Biotechnol. 2010, 9, 4700–4713. [Google Scholar]
- Allen, R.G. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Kullberg, E.G.; DeJonge, K.C.; Chávez, J.L. Evaluation of thermal remote sensing indices to estimate crop evapotranspiration coefficients. Agric. Water Manag. 2017, 179, 64–73. [Google Scholar] [CrossRef] [Green Version]
- Saggi, M.K.; Jain, S. Reference evapotranspiration estimation and modeling of the Punjab Northern India using deep learning. Comput. Electron. Agric. 2019, 156, 387–398. [Google Scholar] [CrossRef]
- Ferreira, L.B.; da Cunha, F.F. New approach to estimate daily reference evapotranspiration based on hourly temperature and relative humidity using machine learning and deep learning. Agric. Water Manag. 2020, 234, 106113. [Google Scholar] [CrossRef]
- Afzaal, H.; Farooque, A.A.; Abbas, F.; Acharya, B.; Esau, T. Computation of evapotranspiration with artificial intelligence for precision water resource management. Appl. Sci. 2020, 10, 1621. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Zhu, Z.; Jiang, H.; Sun, S. Estimating daily reference evapotranspiration based on limited meteorological data using deep learning and classical machine learning methods. J. Hydrol. 2020, 591, 125286. [Google Scholar] [CrossRef]
- Bai, S.; Kolter, J.Z.; Koltun, V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv 2018, arXiv:1803.01271. [Google Scholar]
- Niu, H.; Hollenbeck, D.; Zhao, T.; Wang, D.; Chen, Y. Evapotranspiration Estimation with Small UAVs in Precision Agriculture. Sensors 2020, 20, 6427. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Ma, S.; Yao, Z.; Chen, X.; Luo, Z.; Fan, W.; Hong, Y. Developing a Gap-Filling Algorithm Using DNN for the Ts-VI Triangle Model to Obtain Temporally Continuous Daily Actual Evapotranspiration in an Arid Area of China. Remote Sens. 2020, 12, 1121. [Google Scholar] [CrossRef] [Green Version]
- García-Pedrero, A.M.; Gonzalo-Martín, C.; Lillo-Saavedra, M.F.; Rodriguéz-Esparragón, D.; Menasalvas, E. Convolutional neural networks for estimating spatially distributed evapotranspiration. In Image and Signal Processing for Remote Sensing XXIII; International Society for Optics and Photonics: Washington, DC, USA, 2017; p. 104270P. [Google Scholar]
- Li, S.; Li, L.; Chen, S.; Meng, F.; Wang, H.; Su, Z.; Sigrimis, N.A. Prediction Model of Transpiration Rate of Strawberry in Closed Cultivation Based on DBN-LSSVM Algorithm. IFAC-PapersOnLine 2018, 51, 460–465. [Google Scholar] [CrossRef]
- Fan, J.; Zheng, J.; Wu, L.; Zhang, F. Estimation of daily maize transpiration using support vector machines, extreme gradient boosting, artificial and deep neural networks models. Agric. Water Manag. 2020, 245, 106547. [Google Scholar] [CrossRef]
- Ferreira, L.B.; da Cunha, F.F. Multi-step ahead forecasting of daily reference evapotranspiration using deep learning. Comput. Electron. Agric. 2020, 178, 105728. [Google Scholar] [CrossRef]
- e Lucas, P.d.O.; Alves, M.A.; e Silva, P.C.d.L.; Guimarães, F.G. Reference evapotranspiration time series forecasting with ensemble of convolutional neural networks. Comput. Electron. Agric. 2020, 177, 105700. [Google Scholar] [CrossRef]
- Yin, J.; Deng, Z.; Ines, A.V.; Wu, J.; Rasu, E. Forecast of short-term daily reference evapotranspiration under limited meteorological variables using a hybrid bi-directional long short-term memory model (Bi-LSTM). Agric. Water Manag. 2020, 242, 106386. [Google Scholar] [CrossRef]
- Chen, Z.; Sun, S.; Wang, Y.; Wang, Q.; Zhang, X. Temporal convolution-network-based models for modeling maize evapotranspiration under mulched drip irrigation. Comput. Electron. Agric. 2020, 169, 105206. [Google Scholar] [CrossRef]
- Elbeltagi, A.; Deng, J.; Wang, K.; Malik, A.; Maroufpoor, S. Modeling long-term dynamics of crop evapotranspiration using deep learning in a semi-arid environment. Agric. Water Manag. 2020, 241, 106334. [Google Scholar] [CrossRef]
- Barrs, H. Determination of water deficits in plant tissues. Water Deficit Plant Growth 1968, 1, 235–368. [Google Scholar]
- Neinavaz, E.; Skidmore, A.K.; Darvishzadeh, R.; Groen, T.A. Retrieving vegetation canopy water content from hyperspectral thermal measurements. Agric. For. Meteorol. 2017, 247, 365–375. [Google Scholar] [CrossRef]
- Wang, X.; Meng, Z.; Chang, X.; Deng, Z.; Li, Y.; Lv, M. Determination of a suitable indicator of tomato water content based on stem diameter variation. Sci. Hortic. 2017, 215, 142–148. [Google Scholar] [CrossRef]
- Meng, Z.; Duan, A.; Chen, D.; Dassanayake, K.B.; Wang, X.; Liu, Z.; Liu, H.; Gao, S. Suitable indicators using stem diameter variation-derived indices to monitor the water status of greenhouse tomato plants. PLoS ONE 2017, 12, e0171423. [Google Scholar] [CrossRef] [Green Version]
- Jones, H.G. Irrigation scheduling: Advantages and pitfalls of plant-based methods. J. Exp. Bot. 2004, 55, 2427–2436. [Google Scholar] [CrossRef] [Green Version]
- Romero, M.; Luo, Y.; Su, B.; Fuentes, S. Vineyard water status estimation using multispectral imagery from an UAV platform and machine learning algorithms for irrigation scheduling management. Comput. Electron. Agric. 2018, 147, 109–117. [Google Scholar] [CrossRef]
- Loggenberg, K.; Strever, A.; Greyling, B.; Poona, N. Modelling water stress in a shiraz vineyard using hyperspectral imaging and machine learning. Remote Sens. 2018, 10, 202. [Google Scholar] [CrossRef] [Green Version]
- Poblete, T.; Ortega-Farías, S.; Moreno, M.; Bardeen, M. Artificial neural network to predict vine water status spatial variability using multispectral information obtained from an unmanned aerial vehicle (UAV). Sensors 2017, 17, 2488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fariñas, M.D.; Jimenez-Carretero, D.; Sancho-Knapik, D.; Peguero-Pina, J.J.; Gil-Pelegrín, E.; Álvarez-Arenas, T.G. Instantaneous and non-destructive relative water content estimation from deep learning applied to resonant ultrasonic spectra of plant leaves. Plant Methods 2019, 15, 1–10. [Google Scholar] [CrossRef]
- Kaneda, Y.; Shibata, S.; Mineno, H. Multi-modal sliding window-based support vector regression for predicting plant water stress. Knowl. Based Syst. 2017, 134, 135–148. [Google Scholar] [CrossRef]
- Wakamori, K.; Mizuno, R.; Nakanishi, G.; Mineno, H. Multimodal neural network with clustering-based drop for estimating plant water stress. Comput. Electron. Agric. 2019, 168, 105118. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Rueda, C.; Ustin, S. Water content estimation in vegetation with MODIS reflectance data and model inversion methods. Remote Sens. Environ. 2003, 85, 109–124. [Google Scholar] [CrossRef]
- Mirzaie, M.; Darvishzadeh, R.; Shakiba, A.; Matkan, A.A.; Atzberger, C.; Skidmore, A. Comparative analysis of different uni-and multi-variate methods for estimation of vegetation water content using hyper-spectral measurements. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 1–11. [Google Scholar] [CrossRef]
- Das, B.; Sahoo, R.N.; Pargal, S.; Krishna, G.; Verma, R.; Chinnusamy, V.; Sehgal, V.K.; Gupta, V.K. Comparison of different uni-and multi-variate techniques for monitoring leaf water status as an indicator of water-deficit stress in wheat through spectroscopy. Biosyst. Eng. 2017, 160, 69–83. [Google Scholar] [CrossRef]
- Krishna, G.; Sahoo, R.N.; Singh, P.; Bajpai, V.; Patra, H.; Kumar, S.; Dandapani, R.; Gupta, V.K.; Viswanathan, C.; Ahmad, T. Comparison of various modelling approaches for water deficit stress monitoring in rice crop through hyperspectral remote sensing. Agric. Water Manag. 2019, 213, 231–244. [Google Scholar] [CrossRef]
- Chemura, A.; Mutanga, O.; Dube, T. Remote sensing leaf water stress in coffee (Coffea arabica) using secondary effects of water absorption and random forests. Phys. Chem. Earth Parts A/B/C 2017, 100, 317–324. [Google Scholar] [CrossRef]
- Rehman, T.U.; Ma, D.; Wang, L.; Zhang, L.; Jin, J. Predictive spectral analysis using an end-to-end deep model from hyperspectral images for high-throughput plant phenotyping. Comput. Electron. Agric. 2020, 177, 105713. [Google Scholar] [CrossRef]
- Rao, K.; Williams, A.P.; Flefil, J.F.; Konings, A.G. SAR-enhanced mapping of live fuel moisture content. Remote Sens. Environ. 2020, 245, 111797. [Google Scholar] [CrossRef]
- Nadafzadeh, M.; Mehdizadeh, S.A. Design and fabrication of an intelligent control system for determination of watering time for turfgrass plant using computer vision system and artificial neural network. Precis. Agric. 2018, 20, 857–879. [Google Scholar] [CrossRef]
- Biabi, H.; Mehdizadeh, S.A.; Salmi, M.S. Design and implementation of a smart system for water management of lilium flower using image processing. Comput. Electron. Agric. 2019, 160, 131–143. [Google Scholar] [CrossRef]
- Zhuang, S.; Wang, P.; Jiang, B.; Li, M.; Gong, Z. Early detection of water stress in maize based on digital images. Comput. Electron. Agric. 2017, 140, 461–468. [Google Scholar] [CrossRef]
- An, J.; Li, W.; Li, M.; Cui, S.; Yue, H. Identification and Classification of Maize Drought Stress Using Deep Convolutional Neural Network. Symmetry 2019, 11, 256. [Google Scholar] [CrossRef] [Green Version]
- Jiang, B.; Wang, P.; Zhuang, S.; Li, M.; Gong, Z. Drought Stress Detection in the Middle Growth Stage Of Maize Based On Gabor Filter and Deep Learning. In Proceedings of the 2019 Chinese Control Conference (CCC), Guangzhou, China, 27–30 July 2019; pp. 7751–7756. [Google Scholar]
- Zhuang, S.; Wang, P.; Jiang, B.; Li, M. Learned features of leaf phenotype to monitor maize water status in the fields. Comput. Electron. Agric. 2020, 172, 105347. [Google Scholar] [CrossRef]
- Chandel, N.S.; Chakraborty, S.K.; Rajwade, Y.A.; Dubey, K.; Tiwari, M.K.; Jat, D. Identifying crop water stress using deep learning models. Neural Comput. Appl. 2020, 1–15. [Google Scholar] [CrossRef]
- Soffer, M.; Lazarovitch, N.; Hadar, O. Real-Time Detection of Water Stress in Corn Using Image Processing and Deep Learning. In EGU General Assembly 2020 Abstracts; EGU2020-11370; European Geosciences Union: Munich, Germany, 2020. [Google Scholar]
- Freeman, D.; Gupta, S.; Smith, D.H.; Maja, J.M.; Robbins, J.; Owen, J.S.; Peña, J.M.; de Castro, A.I. Watson on the Farm: Using Cloud-Based Artificial Intelligence to Identify Early Indicators of Water Stress. Remote Sens. 2019, 11, 2645. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Yin, Z.; Manley, P.; Burken, J.G.; Fahlgren, N.S.N.; Mockler, T. Early Drought Plant Stress Detection with Bi-Directional Long-Term Memory Networks. Photogramm. Eng. Remote Sens. 2018, 84, 459–468. [Google Scholar] [CrossRef]
- Chen, J.; Dafflon, B.; Tran, A.P.; Falco, N.; Hubbard, S.S. A Deep-Learning Hybrid-Predictive-Modeling Approach for Estimating Evapotranspiration and Ecosystem Respiration. Hydrol. Earth Syst. Sci. Discuss. 2020, 1–38. [Google Scholar] [CrossRef]
- Kacira, M.; Ling, P.P.; Short, T.H. Machine vision extracted plant movement for early detection of plant water stress. Trans. ASAE 2002, 45, 1147. [Google Scholar] [CrossRef]
- Takayama, K.; Nishina, H. Early detection of water stress in tomato plants based on projected plant area. Environ. Control Biol. 2007, 45, 241–249. [Google Scholar] [CrossRef] [Green Version]
- Briglia, N.; Montanaro, G.; Petrozza, A.; Summerer, S.; Cellini, F.; Nuzzo, V. Drought phenotyping in Vitis vinifera using RGB and NIR imaging. Sci. Hortic. 2019, 256, 108555. [Google Scholar] [CrossRef]
- Giménez-Gallego, J.; González-Teruel, J.D.; Jiménez-Buendía, M.; Toledo-Moreo, A.B.; Soto-Valles, F.; Torres-Sánchez, R. Segmentation of Multiple Tree Leaves Pictures with Natural Backgrounds using Deep Learning for Image-Based Agriculture Applications. Appl. Sci. 2020, 10, 202. [Google Scholar] [CrossRef] [Green Version]
- Tavakoli, H.; Gebbers, R. Assessing Nitrogen and water status of winter wheat using a digital camera. Comput. Electron. Agric. 2019, 157, 558–567. [Google Scholar] [CrossRef]
- Khan, Z.; Rahimi-Eichi, V.; Haefele, S.; Garnett, T.; Miklavcic, S.J. Estimation of vegetation indices for high-throughput phenotyping of wheat using aerial imaging. Plant Methods 2018, 14, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.; Kumar, D.N. Spectral-spatial classification of hyperspectral data with mutual information based segmented stacked autoencoder approach. ISPRS J. Photogramm. Remote Sens. 2018, 138, 265–280. [Google Scholar] [CrossRef]
- Das, M.; Ghosh, S.K. Deep-STEP: A deep learning approach for spatiotemporal prediction of remote sensing data. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1984–1988. [Google Scholar] [CrossRef]
- Khaki, S.; Khalilzadeh, Z.; Wang, L. Classification of Crop Tolerance to Heat and Drought—A Deep Convolutional Neural Networks Approach. Agronomy 2019, 9, 833. [Google Scholar] [CrossRef] [Green Version]
- Limpus, S. Isotropic and Anisotropic Characterisation of Vegetable Crops; Project Report; The Department of Primary Industries and Fisheries: Brisbane, Australia, 2009.
- Cortes, E. Plant Disease Classification using Convolutional Networks and Generative Adverserial Networks; Stanford University: Stanford, CA, USA, 2017. [Google Scholar]
Deep Learning (DL) Applications | Reference | Input Data | DL Model | Comparison Models | Results |
---|---|---|---|---|---|
Soil moisture estimation | [57] | Thermal images | Convolutional Neural Network (CNN) | Deep Neural Network (DNN) | CNN-based model gives better prediction with R2 ranges between 0.95–0.99 |
[58] | Synthetic aerial images | CNN | Random Forest (RF), Support Vector Machine (SVM) | CNN performed best compared to other models with normalized mean absolute error of 3.4% | |
[59] | Satellite data | DNN | Physical model | DNN shows improved accuracy compared to physical model with R2 = 0.9875 and RMSE = 0.0084 | |
[60] | Satellite data | DNN | Physical model | DNN shows improved accuracy compared to physical model with R = 0.89 and RMSE = 0.0383 | |
[61] | Satellite data | Deep Belief Network (DBN) | Linear Regression (LR), Artificial Neural Networks (ANN) | RMSE of SM-DBN is 0.032 compared to 0.101 and 0.083 for LR and ANN respectively | |
[62] | Satellite data | CNN | ANN | CNN performed better than ANN by 6.25% increase in temporal correlation with in-situ measurement. | |
Soil water modelling | [64] | Environmental and soil moisture data | DBN | Multilayer Perceptron (MLP) | DBN based model led to decrease in RMSE by 18% in comparison with MLP based model |
[65] | Meteorological and soil water content data | DNN | SVM, ANN | DNN shows improved accuracy compared to physical model with R2 = 0.98 and RMSE = 0.78 | |
[66] | Meteorological and soil water content data | CNN-Gated Recurrent Unit (GRU) | CNN and GRU alone | MSE of CNN-GRU is 0.032 compared to 0.101 and 0.083 for LR and ANN respectively | |
[67] | Meteorological and soil water content data | Resnet + Bidirectional Long Short-Term Memory (BiLSTM) | Support Vector Regression (SVR_, MLP and RF | ResBiLSTM model showed good prediction with R2: 0.82–0.99 and MAE: 0.8–2.0% | |
[68] | Satellite SMAP data | LSTM | MLR, Advanced Microwave (AM), one-layer ANN | LSTM shows improved accuracy compared to physical model with R2 > 0.87 and RMSE < 0.035 | |
[69] | Satellite SMAP data | DI-LSTM | LSTM | DI-LSTM performed better through reduced error | |
Evapotranspiration estimation | [74] | Meteorological data | DNN | Generalized Linear Model (GLM), RF, Gradient-Boosting Machine (GBM) | DNN gives high performance compared to conventional models with R2 = 0.95–0.99 and RMSE = 0.1921–0.2691 |
[75] | Meteorological data | CNN | RF, Extreme Gradient Boosting (XGBoost), ANN | CNN outperformed other conventional models with R2 = 0.69–0.84 and RMSE = 0.71–0.51 | |
[76] | Meteorological data | BiLSTM | LSTM | BiLSTM can achieve higher accuracy than LSTM with R2 > 0.9 and RMSE = 0.38–0.58 | |
[77] | Meteorological data | DNN, Temporal Convolution Network (TCN), LSTM | SVM, RF, physical models | TCN and RF performed better with R2 between 0.048 and 0.035 and RMSE = 0.096 and 0.079 respectively | |
[80] | Satellite data | Temperature Surface-Vegetation Index (TSVI), DNN | Temperature-Vegetation Index Model (Ts-VI) | TSVI-DNN model improved the performance of Ts-VI with increase in temporal coverage of 51% | |
[81] | Satellite data | CNN | Physical model | CNN gives good results with R2 between 0.523 and 0.713 and RMSE between 1.612 and 3.293 | |
[82] | Meteorological data | DBN | DNN | DBN model gives higher regression fitting degree compared to traditional model with R2 = 0.972 and RMSE = 0.623 | |
[83] | Meteorological data | DNN | SVM, XGBoost, ANN | DNN performed better compared to other ML models with R2 between 0.816 and 0.954 | |
Evapotranspiration forecasting | [84] | ET and meteorological data | CNN-LSTM | LSTM, 1D CNN, ANN, RF | CNN-LSTM performed the best than other models with RMSE between 0.87 and 0.88 |
[85] | Meteorological data | CNN | Ensemble models | Ensemble CNN model gives better performance with RMSE between 0.8 and 1.3 | |
[86] | Meteorological data | Hybrid BiLSTM | General models | Hybrid BiLSTM gives good performance compared to general model with R = 0.972–0.992 and RMSE = 0.159–0.232 | |
[87] | Environmental and plant morphological data | TCN | LSTM, DNN | TCN improved R2 by 0.13 and 0.06 in comparison with LSTM and DNN model respectively | |
[88] | Environmental data | DNN | Physical model | DL gives high prediction accuracy compared to physical model with R2 ranges between 0.94–0.97 | |
Plant water status estimation | [97] | NC-RUS data | CNN | RF | CNN performance is higher compared to RF with correlations between 0.92 and 0.84 |
[98] | Plant image and environmental data | CNN | Decision Tree (DT), k-NN, SVR, GB, RF | The proposed method reduced the prediction error by 20% compared to other models | |
[99] | Plant image and environmental data | LSTM | SW-SVR, Extreme Gradient Boosting (XGBoost) | LSTM performance increased by up to 21% for MAE and RMSE results compared to the models | |
[105] | Plant spectral data | Deep Relative Water Content (RWC) | PLSR, SVM | DeepRWC outperformed other models with R2 = 0.872 compared to SVR (0.824) and PLSR (0.814) | |
[106] | Satellite data | Recurrent Neural Network (RNN) | NA | High prediction accuracy of RNN model with R2 = 0.63, RMSE = 25% and bias = 1.9% | |
Plant water stress identification | [110] | Maize images | Resnet50 Resnet120 | Gradient Boosting Decision Tree (GBDT) | 2 classes water stress identification: 98% accuracy 3 classes treatments classification: 96% accuracy |
[111] | Maize images | Alexnet + Gabor filter | Alex-sppnet, Resnet50, Resnet101 | 5 classes stress classification: 98.8% accuracy | |
[112] | Maize images | Own CNN + SVM | VGG16, ResNet50, Xception, xPLNet | 2 classes water stress identification: 94% accuracy 3 classes water treatment classification: 88.4% accuracy | |
[113] | Maize images Okra images Soybean images | Alexnet, GoogLeNet, Inception V3 | NA | 2 classes stress identification of maize, okra and soybean: 98.3%, 97.5%, and 94.1% accuracy respectively | |
[114] | Corn images | VGG16 | NA | 3 classes water treatment classification: 98% accuracy 5 classes stress severity classification: 85% accuracy | |
[115] | Ornamental plants images | CNN | NA | 3 classes water treatment classification: Area under curve (AUC) = 0.9884 | |
[116] | Maize images Sorghum images | BiLSTM | CNN, LSTM, RNN | 2 classes water stress identification: Precision = 80% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamarudin, M.H.; Ismail, Z.H.; Saidi, N.B. Deep Learning Sensor Fusion in Plant Water Stress Assessment: A Comprehensive Review. Appl. Sci. 2021, 11, 1403. https://doi.org/10.3390/app11041403
Kamarudin MH, Ismail ZH, Saidi NB. Deep Learning Sensor Fusion in Plant Water Stress Assessment: A Comprehensive Review. Applied Sciences. 2021; 11(4):1403. https://doi.org/10.3390/app11041403
Chicago/Turabian StyleKamarudin, Mohd Hider, Zool Hilmi Ismail, and Noor Baity Saidi. 2021. "Deep Learning Sensor Fusion in Plant Water Stress Assessment: A Comprehensive Review" Applied Sciences 11, no. 4: 1403. https://doi.org/10.3390/app11041403
APA StyleKamarudin, M. H., Ismail, Z. H., & Saidi, N. B. (2021). Deep Learning Sensor Fusion in Plant Water Stress Assessment: A Comprehensive Review. Applied Sciences, 11(4), 1403. https://doi.org/10.3390/app11041403