Source-Based Size-Resolved Optical Properties of Carbonaceous Aerosols
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Receptor Modeling
2.3. Size-Resolved Aerosol Optical Properties
2.4. Source-Based Aerosol Optical Properties of Polydisperse Carbonaceous Aerosols
3. Results and Discussion
4. Summary and Discussions
Author Contributions
Funding
Conflicts of Interest
Appendix A
dg (Geometric Mean Diameter, μm) | Composition | MEE (m2/g) | MAE (m2/g) | SSA |
---|---|---|---|---|
dg0 = 0.1 | EC | 8.93 | 6.14 | 0.31 |
WSOC | 1.82 | 0.11 | 0.94 | |
WISOC | 1.82 | 0.11 | 0.94 | |
HULIS (IRI = 0.006) | 2.26 | 0.11 | 0.95 | |
HULIS (IRI = 0.3) | 6.12 | 4.33 | 0.29 | |
dg0 = 0.5 | EC | 3.17 | 1.64 | 0.48 |
WSOC | 4.66 | 0.19 | 0.96 | |
WISOC | 4.66 | 0.19 | 0.96 | |
HULIS (IRI = 0.006) | 4.68 | 0.20 | 0.96 | |
HULIS (IRI = 0.3) | 3.85 | 1.96 | 0.49 |
References
- Contini, D.; Vecchi, R.; Viana, M. Carbonaceous aerosols in the atmosphere. Atmosphere 2018, 9, 181. [Google Scholar] [CrossRef] [Green Version]
- Saxena, P.; Hildemann, L.M. Water-Soluble organics in atmospheric particles: A critical review of the literature and application of thermodynamics to identify candidate compounds. J. Atmos. Chem. 1996, 24, 57–109. [Google Scholar] [CrossRef]
- Putaud, J.-P.; Raes, F.; Van Dingenen, R.; Brüggemann, E.; Facchini, M.-C.; Decesari, S.; Fuzzi, S.; Gehrig, R.; Hüglin, C.; Laj, P. A European aerosol phenomenology—2: Chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe. Atmos. Environ. 2004, 38, 2579–2595. [Google Scholar] [CrossRef]
- Kanakidou, M.; Seinfeld, J.; Pandis, S.; Barnes, I.; Dentener, F.; Facchini, M.; Dingenen, R.V.; Ervens, B.; Nenes, A.; Nielsen, C. Organic aerosol and global climate modelling: A review. Atmos. Chem. Phys. 2005, 5, 1053–1123. [Google Scholar] [CrossRef] [Green Version]
- Bond, T.C. Spectral dependence of visible light absorption by carbonaceous particles emitted from coal combustion. Geophys. Res. Lett. 2001, 28, 4075–4078. [Google Scholar] [CrossRef] [Green Version]
- Jung, C.H.; Lee, J.Y.; Kim, Y.P. Estimation of aerosol optical properties considering hygroscopicity and light absorption. Atmos. Environ. 2015, 105, 191–201. [Google Scholar] [CrossRef]
- Jung, C.H.; Shin, H.J.; Lee, J.Y.; Kim, Y.P. Sensitivity and contribution of organic aerosols to aerosol optical properties based on their refractive index and hygroscopicity. Atmosphere 2016, 7, 65. [Google Scholar] [CrossRef] [Green Version]
- Graber, E.R.; Rudich, Y. Atmospheric HULIS: How humic like are they? A comprehensive and critical review. Atmos. Chem. Phys. 2006, 6, 729–753. [Google Scholar] [CrossRef] [Green Version]
- Limbeck, A.; Kulmala, M.; Puxbaum, H. Secondary organic aerosol formation in the atmosphere via heterogeneous reaction of gaseous isoprene on acidic particles. Geophys. Res. Lett. 2003, 30, 1996–1999. [Google Scholar] [CrossRef]
- Andreae, M.O.; Gelencser, A. Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos. Chem. Phys. 2006, 6, 3131–3148. [Google Scholar] [CrossRef] [Green Version]
- Watson, J.G. Overview of receptor model principles. J. Air Pollut. Control Assoc. 1984, 34, 619–623. [Google Scholar] [CrossRef] [Green Version]
- Holben, B.N.; Tanré, D.; Smirnov, A.; Eck, T.; Slutsker, I.; Abuhassan, N.; Newcomb, W.; Schafer, J.; Chatenet, B.; Lavenu, F.; et al. An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET. J. Geophys. Res. 2001, 106, 12067–12097. [Google Scholar] [CrossRef]
- Subba, T.; Gogoi, M.M.; Pathak, B.; Bhuyan, P.; Babu, S. Recent trend in the global distribution of aerosol direct radiative forcing from satellite measurements. Atmos. Sci. Lett. 2020, 21, e975. [Google Scholar] [CrossRef]
- Lee, J.Y.; Jung, C.H.; Kim, Y.P. Estimation of optical properties for HULIS aerosols at Anmyeon Island, Korea. Atmosphere 2017, 8, 120. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Shen, L.; Xiao, S.; Ma, J.; Lü, R.; Zhu, B.; Hu, J.; Chen, K.; Zhu, J. Chemical and optical properties of atmospheric aerosols during the polluted periods in a megacity in the Yangtze River Delta, China. Aerosol Air Qual. Res. 2019, 19, 103–117. [Google Scholar] [CrossRef] [Green Version]
- Jung, C.H.; Lee, J.Y.; Um, J.; Lee, S.S.; Yoon, Y.J.; Kim, Y.P. Estimation of source-based aerosol optical properties for polydisperse aerosols from receptor models. Appl. Sci. 2019, 9, 1443. [Google Scholar] [CrossRef] [Green Version]
- Han, S.; Lee, J.Y.; Lee, J.; Heo, J.; Jung, C.H.; Kim, E.S.; Kim, Y.P. Estimation of the source contributions for carbonaceous aerosols at a background site in Korea. Asian J. Atmos. Environ. 2018, 12, 311–325. [Google Scholar] [CrossRef]
- Norris, G.; Duvall, R.; Brown, S.; Bai, S. EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide Prepared for the US Environmental Protection Agency Office of Research and Development; EPA/600/R-14/108; United States Environmental Protection Agency (EPA): Washington, DC, USA, 2014.
- Paatero, P.; Tapper, U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 1994, 5, 111–126. [Google Scholar] [CrossRef]
- Kocifaj, M.; Gangl, M.; Kundracik, F.; Horvath, H.; Videen, G. Simulation of the optical properties of single composite aerosols. J. Aerosol Sci. 2006, 37, 1683–1695. [Google Scholar] [CrossRef]
- Kocifaj, M.; Videen, G. Optical behavior of composite carbonaceous aerosols: DDA and EMT approaches. J. Quant. Spectrosc. Radiat. Transf. 2008, 109, 1404–1416. [Google Scholar] [CrossRef]
- Malm, W.C.; Day, D.; Kreidenweis, S. Light scattering characteristics of aerosols as a function of relative humidity: Part I—A comparison of measured scattering and aerosol concentrations using the theoretical models. J. Air Waste Manag. Assoc. 2000, 50, 686–700. [Google Scholar] [CrossRef] [Green Version]
- Hand, J.L.; Malm, W.C. Review of aerosol mass scattering efficiencies from ground-based measurements since 1990. J. Geophys. Res. 2007, 112, D16203. [Google Scholar] [CrossRef]
- Fox, J. Applied Regression Analysis, Linear Models and Related Methods; Sage Publication, Inc.: Thousand Oaks, CA, USA, 1997. [Google Scholar]
- Farias, T.L.; Köylü, Ü.Ö.; Carvalho, M.G. Range of validity of the Rayleigh-Debye-Gans theory for optics of fractal aggregates. Appl. Opt. 1996, 35, 6560–6567. [Google Scholar] [CrossRef]
- Mishchenko, M.I. Electromagnetic scattering by nonspherical particles: A tutorial review. J. Quant. Spectrosc. Radiat. Transf. 2009, 110, 808–832. [Google Scholar] [CrossRef]
- Olmo, F.; Quirantes, A.; Alcántara, A.; Lyamani, H.; Arboledas, L. Preliminary results of a non-spherical aerosol method for the retrieval of the atmospheric aerosol optical properties. J. Quant. Spectrosc. Radiat. Transf. 2006, 100, 305–314. [Google Scholar] [CrossRef]
- Cheng, Y.F.; Wiedensohler, A.; Eichler, H.; Su, H.; Gnauk, T.; Brüggemann, E.; Herrmann, H.; Heintzenberg, J.; Slanina, J.; Tuch, T. Aerosol optical properties and related chemical apportionment at Xinken in Pearl River Delta of China. Atmos. Environ. 2008, 42, 6351–6372. [Google Scholar] [CrossRef]
- Zhu, W.; Cheng, Z.; Lou, S.; Hu, W.; Zheng, J.; Qiao, L.; Yan, N. Reconstructed algorithm for scattering coefficient of ambient submicron particles. Environ. Pollut. 2019, 253, 439–448. [Google Scholar] [CrossRef]
dg0 (Geometric Mean Diameter, μm) | Sources | MEE | MAE | SSA |
---|---|---|---|---|
dg0 = 0.1, IRI(HULIS) = 0.006 | LBB | 2.50 | 0.56 | 0.78 |
Local BB | 2.60 | 0.65 | 0.75 | |
SOA | 2.53 | 0.55 | 0.78 | |
Biogenic | 2.93 | 0.89 | 0.69 | |
Mixed | 2.53 | 0.56 | 0.78 | |
dg0 = 0.5, IRI(HULIS) = 0.00 | LBB | 4.56 | 0.30 | 0.93 |
Local BB | 4.55 | 0.32 | 0.93 | |
SOA | 4.56 | 0.30 | 0.93 | |
Biogenic | 4.47 | 0.38 | 0.91 | |
Mixed | 4.56 | 0.30 | 0.93 | |
dg0 = 0.1, IRI(HULIS) = 0.3 | LBB | 3.85 | 2.03 | 0.47 |
Local BB | 3.88 | 2.03 | 0.48 | |
SOA | 4.31 | 2.48 | 0.43 | |
Biogenic | 4.53 | 2.64 | 0.42 | |
Mixed | 4.03 | 2.21 | 0.45 | |
dg0 = 0.5, IRI(HULIS) = 0.3 | LBB | 4.27 | 0.91 | 0.79 |
Local BB | 4.27 | 0.90 | 0.79 | |
SOA | 4.19 | 1.11 | 0.74 | |
Biogenic | 4.13 | 1.11 | 0.73 | |
Mixed | 4.23 | 0.99 | 0.77 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, C.H.; Han, S.H.; Lee, J.Y.; Kim, Y.P. Source-Based Size-Resolved Optical Properties of Carbonaceous Aerosols. Appl. Sci. 2021, 11, 1434. https://doi.org/10.3390/app11041434
Jung CH, Han SH, Lee JY, Kim YP. Source-Based Size-Resolved Optical Properties of Carbonaceous Aerosols. Applied Sciences. 2021; 11(4):1434. https://doi.org/10.3390/app11041434
Chicago/Turabian StyleJung, Chang Hoon, Sang Hee Han, Ji Yi Lee, and Yong Pyo Kim. 2021. "Source-Based Size-Resolved Optical Properties of Carbonaceous Aerosols" Applied Sciences 11, no. 4: 1434. https://doi.org/10.3390/app11041434
APA StyleJung, C. H., Han, S. H., Lee, J. Y., & Kim, Y. P. (2021). Source-Based Size-Resolved Optical Properties of Carbonaceous Aerosols. Applied Sciences, 11(4), 1434. https://doi.org/10.3390/app11041434