A Study of Multilayer Perceptron Networks Applied to Classification of Ceramic Insulators Using Ultrasound
Abstract
:1. Introduction
2. Material and Methods
2.1. Case Definition
2.2. Equipment and Measurements
2.3. Signal Adjustment
Database Adjustments
2.4. Neural Network Structure
2.4.1. Model, Activation and Training Function
2.4.2. ANN Objectives
2.4.3. Physical Application
2.4.4. Double Check Technique
3. Results
3.1. Data Acquisition and Feature Extraction
3.2. Network Training
- Training/Test Ratio: Proportion of the available samples from the database to be used for training and testing, in this case, the samples that will be used for training will not be used for testing.
- Intermediate Neurons: Number of intermediate neurons in the neural network.
- Base Multiplier: Number of times that samples from the database will be trained, the repetition of training can lead to better results, at the expense of a longer processing time.
Double Check
3.3. Discussion
3.3.1. Condition Out of Scope
3.3.2. Case Study 4
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ANEEL | National Electric Energy Agency |
ANN | Artifical neural network |
CNN | Convolutional neural network |
ELM | Machine neural network |
ESDD | Equivalent salt deposit density |
IDC | Interruption duration per consumer |
IFC | Interruption frequency per consumer |
MLP | Multilayer perceptron |
NSDD | Non-soluble deposity density |
PD | Partial discharge |
References
- de Andrade, G.N.; Alves, L.A.; da Silva, C.E.R.F.; de Mello, J.C.C.S. Evaluating Electricity Distributors Efficiency Using Self-Organizing Map and Data Envelopment Analysis. IEEE Lat. Am. Trans. 2014, 12, 1464–1472. [Google Scholar] [CrossRef]
- Galli, F.P.; Stefenon, S.F.; Américo, J.P. Analysis of Transient Short Circuits in Transmission Lines Using UDW Software. Espacios (Caracas) 2017, 38, 34. [Google Scholar]
- Tao, X.; Zhang, D.; Wang, Z.; Liu, X.; Zhang, H.; Xu, D. Detection of Power Line Insulator Defects Using Aerial Images Analyzed With Convolutional Neural Networks. IEEE Trans. Syst. Man. Cybern. Syst. 2020, 50, 1486–1498. [Google Scholar] [CrossRef]
- Dong, B.; Zhang, Z.; Xiang, N.; Yang, H.; Xu, S.; Cheng, T. AC Flashover Voltage Model for Polluted Suspension Insulators and an Experimental Investigation in Salt Fog. IEEE Access 2020, 8, 187411–187418. [Google Scholar] [CrossRef]
- Stefenon, S.F.; Ribeiro, M.H.D.M.; Nied, A.; Mariani, V.C.; dos Santos Coelho, L.; da Rocha, D.F.M.; Grebogi, R.B.; de Barros Ruano, A.E. Wavelet group method of data handling for fault prediction in electrical power insulators. Int. J. Electr. Power Energy Syst. 2020, 123, 106269. [Google Scholar] [CrossRef]
- Wang, B.; Dong, M.; Ren, M.; Wu, Z.; Guo, C.; Zhuang, T.; Pischler, O.; Xie, J. Automatic Fault Diagnosis of Infrared Insulator Images Based on Image Instance Segmentation and Temperature Analysis. IEEE Trans. Instrum. Meas. 2020, 69, 5345–5355. [Google Scholar] [CrossRef]
- Stefenon, S.F.; Americo, J.P.; Meyer, L.; Grebogi, R.; Nied, A. Analysis of the Electric Field in Porcelain Pin-Type Insulators via Finite Elements Software. IEEE Lat. Am. Trans. 2018, 16, 2505–2512. [Google Scholar] [CrossRef]
- de Barros Bezerra, J.M.; Lima, A.M.N.; Deep, G.S.; da Costa, E.G. An Evaluation of Alternative Techniques for Monitoring Insulator Pollution. IEEE Trans. Power Deliv. 2009, 24, 1773–1780. [Google Scholar] [CrossRef]
- Vazquez, L.; Blanco, J.M.; Ramis, R.; Peña, F.; Diaz, D. Robust methodology for steady state measurements estimation based framework for a reliable long term thermal power plant operation performance monitoring. Energy 2015, 93, 923–944. [Google Scholar] [CrossRef]
- Meyer, L.H.; Pintarelli, R. Inclined Plane Test for Erosion of Polymeric Insulators under AC and DC Voltages. IEEE Lat. Am. Trans. 2020, 18, 1455–1461. [Google Scholar] [CrossRef]
- Pereira Braz, C.; Piantini, A. Analysis of the dielectric behavior of distribution insulators under non-standard lightning impulse voltages. IEEE Lat. Am. Trans. 2011, 9, 732–739. [Google Scholar] [CrossRef]
- Deb, S.; Ray Choudhury, N.; Ghosh, R.; Chatterjee, B.; Dalai, S. Short Time Modified Hilbert Transform-Aided Sparse Representation for Sensing of Overhead Line Insulator Contamination. IEEE Sens. J. 2018, 18, 8125–8132. [Google Scholar] [CrossRef]
- Ibrahim, A.; Dalbah, A.; Abualsaud, A.; Tariq, U.; El-Hag, A. Application of Machine Learning to Evaluate Insulator Surface Erosion. IEEE Trans. Instrum. Meas. 2020, 69, 314–316. [Google Scholar] [CrossRef]
- Stefenon, S.F.; Silva, M.C.; Bertol, D.W.; Meyer, L.H.; Nied, A. Fault diagnosis of insulators from ultrasound detection using neural networks. J. Intell. Fuzzy Syst. 2019, 37, 6655–6664. [Google Scholar] [CrossRef]
- Stefenon, S.F.; Freire, R.Z.; Coelho, L.S.; Meyer, L.H.; Grebogi, R.B.; Buratto, W.G.; Nied, A. Electrical Insulator Fault Forecasting Based on a Wavelet Neuro-Fuzzy System. Energies 2020, 13, 484. [Google Scholar] [CrossRef] [Green Version]
- Shnaiderman, R.; Wissmeyer, G.; Ülgen, O.; Mustafa, Q.; Chmyrov, A.; Ntziachristos, V. A submicrometre silicon-on-insulator resonator for ultrasound detection. Nature 2020, 585, 372–378. [Google Scholar] [CrossRef]
- Stefenon, S.F.; Branco, N.W.; Nied, A.; Bertol, D.W.; Finardi, E.C.; Sartori, A.; Meyer, L.H.; Grebogi, R.B. Analysis of training techniques of ANN for classification of insulators in electrical power systems. IET Gener. Transm. Distrib. 2020, 14, 1591–1597. [Google Scholar] [CrossRef]
- Jin, X.B.; Wang, H.X.; Wang, X.Y.; Bai, Y.T.; Su, T.L.; Kong, J.L. Deep-Learning Prediction Model with Serial Two-Level Decomposition Based on Bayesian Optimization. Complexity 2020, 2020, 1–14. [Google Scholar] [CrossRef]
- Kasburg, C.; Stefenon, S.F. Deep Learning for Photovoltaic Generation Forecast in Active Solar Trackers. IEEE Lat. Am. Trans. 2019, 17, 2013–2019. [Google Scholar] [CrossRef]
- Stefenon, S.F.; Seman, L.O.; Schutel Furtado Neto, C.; Nied, A.; Seganfredo, D.M.; da Garcia, L.F.; Sabino, P.H.; Torreblanca González, J.; Quietinho Leithardt, V.R. Electric Field Evaluation Using the Finite Element Method and Proxy Models for the Design of Stator Slots in a Permanent Magnet Synchronous Motor. Electronics 2020, 9, 1975. [Google Scholar] [CrossRef]
- Dong, M.; Wang, B.; Ren, M.; Zhang, C.; Zhao, W.; Albarracín, R. Joint Visualization Diagnosis of Outdoor Insulation Status with Optical and Acoustical Detections. IEEE Trans. Power Deliv. 2019, 34, 1221–1229. [Google Scholar] [CrossRef]
- Stefenon, S.F.; Kasburg, C.; Nied, A.; Klaar, A.C.R.; Ferreira, F.C.S.; Branco, N.W. Hybrid deep learning for power generation forecasting in active solar trackers. IET Gener. Transm. Distrib. 2020, 14, 5667–5674. [Google Scholar] [CrossRef]
- Corso, M.P.; Stefenon, S.F.; Couto, V.F.; Cabral, S.H.L.; Nied, A. Evaluation of Methods for Electric Field Calculation in Transmission Lines. IEEE Lat. Am. Trans. 2018, 16, 2970–2976. [Google Scholar] [CrossRef]
- Ribeiro, M.H.D.M.; Stefenon, S.F.; de Lima, J.D.; Nied, A.; Marini, V.C.; Coelho, L.d.S. Electricity Price Forecasting Based on Self-Adaptive Decomposition and Heterogeneous Ensemble Learning. Energies 2020, 13, 5190. [Google Scholar] [CrossRef]
- Robles, G.; Fresno, J.M.; Martínez-Tarifa, J.M.; Ardila-Rey, J.; Parrado-Hernandez, E. Partial Discharge Spectral Characterization in HF, VHF and UHF Bands Using Particle Swarm Optimization. Sensors 2018, 18, 746. [Google Scholar] [CrossRef] [Green Version]
- Sampedro, C.; Rodriguez-Vazquez, J.; Rodriguez-Ramos, A.; Carrio, A.; Campoy, P. Deep Learning-Based System for Automatic Recognition and Diagnosis of Electrical Insulator Strings. IEEE Access 2019, 7, 101283–101308. [Google Scholar] [CrossRef]
- Qiu, Y.; Wu, G.; Xiao, Z.; Guo, Y.; Zhang, X.; Liu, K. An Extreme-Learning-Machine-Based Hyperspectral Detection Method of Insulator Pollution Degree. IEEE Access 2019, 7, 121156–121164. [Google Scholar] [CrossRef]
- Polisetty, S.; El-Hag, A.; Jayram, S. Classification of common discharges in outdoor insulation using acoustic signals and artificial neural network. High Volt. 2019, 4, 333–338. [Google Scholar] [CrossRef]
- De La Calle, M.G.; Martinez-Tarifa, J.M.; Gómez Solanilla, A.M.; Robles, G. Uncertainty Sources in the Estimation of the Partial Discharge Inception Voltage in Turn-to-Turn Insulation Systems. IEEE Access 2020, 8, 157510–157519. [Google Scholar] [CrossRef]
- Bruns, R. Evaluation of Electrical Insulators Using Ultrasound and Machine Learning. In Computer Furthermore, Computer Seminar; SEMINCO: Blumenau, Brazil, 2019; pp. 1–8. [Google Scholar]
- Stefenon, S.F.; Grebogi, R.B.; Freire, R.Z.; Nied, A.; Meyer, L.H. Optimized Ensemble Extreme Learning Machine for Classification of Electrical Insulators Conditions. IEEE Trans. Ind. Electron. 2020, 67, 5170–5178. [Google Scholar] [CrossRef]
- Stefenon, S.F.; Oliveira, J.R.; Coelho, A.S.; Meyer, L.H. Diagnostic of Insulators of Conventional Grid Through LabVIEW Analysis of FFT Signal Generated from Ultrasound Detector. IEEE Lat. Am. Trans. 2017, 15, 884–889. [Google Scholar] [CrossRef]
- da Silva Júnior, E.T.; de Aquino, F.J.A.; Silva, D.A.; Rocha Neto, A.R.; Gurgel, K.J.A.; de Oliveira, A.E.R.M.; de Araújo, A.L.C. Corona Effect Detection in Energized Polymeric Insulators Using Machine Learning and Ultrasonic Emissions. IEEE Lat. Am. Trans. 2018, 16, 1587–1594. [Google Scholar] [CrossRef]
- Maraaba, L.S.; Soufi, K.Y.A.; Alhems, L.M.; Hassan, M.A. Performance Evaluation of 230 kV Polymer Insulators in the Coastal Area of Saudi Arabia. IEEE Access 2020, 8, 164292–164303. [Google Scholar] [CrossRef]
- Salem, A.A.; Abd-Rahman, R.; Al-Gailani, S.A.; Salam, Z.; Kamarudin, M.S.; Zainuddin, H.; Yousof, M.F.M. Risk Assessment of Polluted Glass Insulator Using Leakage Current Index Under Different Operating Conditions. IEEE Access 2020, 8, 175827–175839. [Google Scholar] [CrossRef]
- Verma, A.R.; Subba, R.B. Understanding surface degradation on polymeric insulators using rotating wheel and dip test under DC stress. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 2029–2037. [Google Scholar] [CrossRef]
- Salem, A.A.; Abd-Rahman, R.; Al-Gailani, S.A.; Kamarudin, M.S.; Ahmad, H.; Salam, Z. The Leakage Current Components as a Diagnostic Tool to Estimate Contamination Level on High Voltage Insulators. IEEE Access 2020, 8, 92514–92528. [Google Scholar] [CrossRef]
- Lan, L.; Mu, L.; Yuan, X.; Yan, J.; Wang, Y.; Wang, W.; Shen, Y.; Hao, L. Studies on metallurgical contamination accumulation characteristics on ceramic insulator of 500 kV AC transmission line. IET Sci. Meas. Technol. 2019, 13, 722–728. [Google Scholar] [CrossRef]
- Cao, B.; Wang, L.; Yin, F. Measurement of Saturated Water Absorption of the Contamination Layer Deposited on Insulator Surface. IEEE Sens. J. 2019, 19, 10804–10811. [Google Scholar] [CrossRef]
- Verma, A.R.; Reddy, B.S. Tracking and erosion resistance of LSR and HTV silicon rubber samples under acid rain conditions. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 46–52. [Google Scholar] [CrossRef]
- Yang, L.; Bi, J.; Zhang, F.; Hao, Y.; Li, L.; Liao, Y.; Zhang, F. Effects of structure and material of polluted insulators on the wetting characteristics. IET Sci. Meas. Technol. 2019, 13, 131–138. [Google Scholar] [CrossRef]
- Bi, J.; Hao, Y.; Yang, L.; Zheng, Y.; Li, L. Impact of Hydrophobicity on Wetting Characteristics of Composite Insulators. IEEE Access 2020, 8, 159316–159323. [Google Scholar] [CrossRef]
- Yamashita, T.; Ishimoto, R.; Furusato, T. Influence of series resistance on dry-band discharge characteristics on wet polluted insulators. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 154–161. [Google Scholar] [CrossRef]
- NBR 10621, ABNT High-voltage insulators to be used on A.C. systems—Artificial pollution tests. Braz. Assoc. Tech. Stand. 2017, 3, 1–34.
- IEC 507, CEI Artificial pollution tests on high-voltage insulators to be used on A.C. systems. Int. Stand. 1991, 2, 1–7.
- Hussein, R.; BashirShaban, K.; El-Hag, A. Denoising of acoustic partial discharge signals corrupted with random noise. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 1453–1459. [Google Scholar] [CrossRef]
- Boya, C.; Robles, G. Detection of Partial Discharge Sources Using UHF Sensors and Blind Signal Separation. Sensors 2017, 17, 2625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robles, G.; Fresno, J.M.; Martínez-Tarifa, J.M. Radio-Frequency Localization of Multiple Partial Discharges Sources with Two Receivers. Sensors 2018, 18, 1410. [Google Scholar] [CrossRef] [Green Version]
- Anjum, S.; Jayaram, S.; El-Hag, A.; Jahromi, A. Detection and classification of defects in ceramic insulators using RF antenna. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 183–190. [Google Scholar] [CrossRef]
- Soltani, A.; El-Hag, A. Denoising of Radio Frequency Partial Discharge Signals Using Artificial Neural Network. Energies 2019, 12, 3485. [Google Scholar] [CrossRef] [Green Version]
- Stefenon, S.F.; Steinheuser, D.F.; da Silva, M.P.; Ferreira, F.C.S.; Klaar, A.C.R.; de Souza, K.E.; Júnior, A.G.; Venção, A.T.; Branco, R.; Yamaguchi, C.K. Application of Active Methodologies in Engineering Education Through the Integrative Evaluation at the Universidade do Planalto Catarinense, Brazil. Interciencia 2019, 44, 408–413. [Google Scholar]
- Asimakopoulou, G.E.; Kontargyri, V.T.; Tsekouras, G.J.; Asimakopoulou, F.E.; Gonos, I.F.; Stathopulos, I.A. Artificial neural network optimisation methodology for the estimation of the critical flashover voltage on insulators. IET Sci. Meas. Technol. 2009, 3, 90–104. [Google Scholar] [CrossRef] [Green Version]
- Baczyński, D.; Parol, M. Influence of artificial neural network structure on quality of short-term electric energy consumption forecast. IEE Proc. Gener. Transm. Distrib. 2004, 151, 241–245. [Google Scholar] [CrossRef]
- Leung, F.H.F.; Lam, H.K.; Ling, S.H.; Tam, P.K.S. Tuning of the structure and parameters of a neural network using an improved genetic algorithm. IEEE Trans. Neural Netw. 2003, 14, 79–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mejía-Lavalle, M.; Rodríguez-Ortiz, G. Flashover forecasting on high-voltage insulators with a backpropagation neural net. Can. J. Electr. Comput. Eng. 1996, 21, 29–32. [Google Scholar] [CrossRef]
- Haghighi, A.; Shadloo, M.S.; Maleki, A.; Abdollahzadeh Jamalabadi, M.Y. Using Committee Neural Network for Prediction of Pressure Drop in Two-Phase Microchannels. Appl. Sci. 2020, 10, 5384. [Google Scholar] [CrossRef]
- Chen, P.C.; Chien, K.Y. Machine-Learning Based Optimal Seismic Control of Structure with Active Mass Damper. Appl. Sci. 2020, 10, 5342. [Google Scholar] [CrossRef]
- Jahromi, A.N.; El-Hag, A.H.; Jayaram, S.H.; Cherney, E.A.; Sanaye-Pasand, M.; Mohseni, H. A neural network based method for leakage current prediction of polymeric insulators. IEEE Trans. Power Deliv. 2006, 21, 506–507. [Google Scholar] [CrossRef]
- Liu, Y.; Pei, S.; Fu, W.; Zhang, K.; Ji, X.; Yin, Z. The discrimination method as applied to a deteriorated porcelain insulator used in transmission lines on the basis of a convolution neural network. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 3559–3566. [Google Scholar] [CrossRef]
- Shafiq, M.; Kauhaniemi, K.; Robles, G.; Hussain, G.A.; Kumpulainen, L. Partial discharge signal propagation in medium voltage branched cable feeder. IEEE Electr. Insul. Mag. 2018, 34, 18–29. [Google Scholar] [CrossRef]
- Xin, X.; Li, J.; Zhao, D.; Li, S.; Xie, Q.; Li, Z.; Fan, F.; Bi, C.; Zhang, X. Double-check base editing for efficient A to G conversions. ACS Synth. Biol. 2019, 8, 2629–2634. [Google Scholar] [CrossRef]
Specification | Value |
---|---|
Weight | 60 g |
Dimensions | mm |
Microphone | Advanced electret |
Sampling frequency | 384 kHz |
Resolution | 16 bits |
Frequency range | 10–160 kHz |
Interface | USB 2.0, full speed, OTG/host |
Anti-aliasing filter | 8th order, 160 kHz |
Power | USB bus powered |
Accuracy | |||
---|---|---|---|
Neurons/ Multiplier | Training/ Test (%) | Perforated/ Non-Perforated | Contaminated/ Non-Contaminated |
6/1 | 50/50 | 80.85% | 50.03% |
80/20 | 81.92% | 51.92% | |
90/10 | 80.83% | 51.50% | |
95/05 | 82.00% | 50.00% | |
8/1 | 50/50 | 80.87% | 50.27% |
80/20 | 81.92% | 52.00% | |
90/10 | 80.67% | 51.00% | |
95/05 | 82.00% | 49.67% | |
12/1 | 50/50 | 80.93% | 50.37% |
80/20 | 81.92% | 51.75% | |
90/10 | 80.83% | 51.33% | |
95/05 | 82.00% | 49.67% | |
16/1 | 50/50 | 79.67% | 50.23% |
80/20 | 81.92% | 53.25% | |
90/10 | 80.83% | 50.50% | |
95/05 | 82.00% | 53.33% | |
16/2 | 50/50 | 81.20% | 54.17% |
80/20 | 82.17% | 68.25% | |
90/10 | 80.83% | 66.50% | |
95/05 | 82.00% | 64.00% | |
16/4 | 50/50 | 81.26% | 67.77% |
80/20 | 82.00% | 63.58% | |
90/10 | 80.83% | 66.33% | |
95/05 | 82.00% | 64.66% |
Accuracy | |||
---|---|---|---|
Case Number | Condition Description | Perforated/ Non-Perforated | Contaminated/ Non-Contaminated |
Case #1 | Insulator in Good Condition | 99.6% | 77.8% |
Case #2 | Insulator with Kaolin | 100.0% | 79.3% |
Case #3 | Insulator with Kaolin and Salt | 100.0% | 79.1% |
Case #4 | Perforated Insulator | 0.1% | 37.8% |
Case #5 | Perforated Wet Insulator | 94.7% | 58.1% |
Case #6 | Perforated Contaminated Insulator | 95.1% | 78.9% |
Case Number | Condition Description | Accuracy |
---|---|---|
Case #1 | Insulator in Good Condition | 93.7% |
Case #2 | Insulator with Kaolin | 94.9% |
Case #3 | Insulator with Kaolin and Salt | 92.8% |
Case #4 | Perforated Insulator | 27.0% |
Case #5 | Perforated Wet Insulator | 63.7% |
Case #6 | Perforated Contaminated Insulator | 95.2% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sopelsa Neto, N.F.; Stefenon, S.F.; Meyer, L.H.; Bruns, R.; Nied, A.; Seman, L.O.; Gonzalez, G.V.; Leithardt, V.R.Q.; Yow, K.-C. A Study of Multilayer Perceptron Networks Applied to Classification of Ceramic Insulators Using Ultrasound. Appl. Sci. 2021, 11, 1592. https://doi.org/10.3390/app11041592
Sopelsa Neto NF, Stefenon SF, Meyer LH, Bruns R, Nied A, Seman LO, Gonzalez GV, Leithardt VRQ, Yow K-C. A Study of Multilayer Perceptron Networks Applied to Classification of Ceramic Insulators Using Ultrasound. Applied Sciences. 2021; 11(4):1592. https://doi.org/10.3390/app11041592
Chicago/Turabian StyleSopelsa Neto, Nemesio Fava, Stéfano Frizzo Stefenon, Luiz Henrique Meyer, Rafael Bruns, Ademir Nied, Laio Oriel Seman, Gabriel Villarrubia Gonzalez, Valderi Reis Quietinho Leithardt, and Kin-Choong Yow. 2021. "A Study of Multilayer Perceptron Networks Applied to Classification of Ceramic Insulators Using Ultrasound" Applied Sciences 11, no. 4: 1592. https://doi.org/10.3390/app11041592
APA StyleSopelsa Neto, N. F., Stefenon, S. F., Meyer, L. H., Bruns, R., Nied, A., Seman, L. O., Gonzalez, G. V., Leithardt, V. R. Q., & Yow, K. -C. (2021). A Study of Multilayer Perceptron Networks Applied to Classification of Ceramic Insulators Using Ultrasound. Applied Sciences, 11(4), 1592. https://doi.org/10.3390/app11041592