TOF-SIMS Molecular Imaging and Properties of pMDI-Bonded Particleboards Made from Cup-Plant and Wood
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Scanning Electron Microscopy
3.2. TOF-SIMS Analysis
3.3. Mechanical Properties
3.4. Thickness Swelling and Water Uptake
3.5. Vertical Density Profile
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Panel Federation. European Padixnel Federation—Annual Report 2013/2014; EPF: Brussels, Belgium, 2014. [Google Scholar]
- Giljum, S.; Martin, H.F.B.; Burger, E.; Frühmann, J.; Lutter, S.; Elke, P.; Christine, P.; Hannes, W.; Lisa, K.; Michael, W. Overcosumption? Our Use of the World’s Natural Resources. 2009. Available online: https://www.foe.co.uk/sites/default/files/downloads/overconsumption.pdf (accessed on 5 January 2021).
- Mast, B.; Lemmer, A.; Oechsner, H.; Reinhardt-Hanisch, A.; Claupein, W.; Graeff-Hönninger, S. Methane yield potential of novel perennial biogas crops influenced by harvest date. Ind. Crops Prod. 2014, 58, 194–203. [Google Scholar] [CrossRef]
- Khachatryan, H.; Casavant, K.; Jessup, E. Waste to Fuels Technology: Evaluating Three Technology Options and the Economics for Converting Biomass to Fuels; Final Report; Ecology Publication Number 09-07-058; Washington State University: Pullman, WA, USA, 2009; 203p. [Google Scholar]
- Pretzsch, H. Forest Dynamics, Growth and Yield: From Measurement to Model; Springer: Berlin, Germany, 2009; ISBN 978-3-540-88306-7. [Google Scholar]
- Stanford, G. Silphium perfoliatum (cup-plant) as a new forage. In Proceedings of the Twelfth North American Prairie Conference, Cedar Falls, IA, USA, 5–9 August 1990; Volume 1, pp. 33–37. [Google Scholar]
- Haag, N.L.; Nägele, H.-J.; Reiss, K.; Biertümpfel, A.; Oechsner, H. Methane formation potential of cup plant (Silphium perfoliatum). Biomass Bioenergy 2015, 75, 126–133. [Google Scholar] [CrossRef]
- Gansberger, M.; Montgomery, L.F.R.; Liebhard, P. Botanical characteristics, crop management and potential of Silphium perfoliatum L. as a renewable resource for biogas production: A review. Ind. Crops Prod. 2015, 63, 362–372. [Google Scholar] [CrossRef]
- Li, X.; Cai, Z.; Winandy, J.E.; Basta, A.H. Selected properties of particleboard panels manufactured from rice straws of different geometries. Bioresour. Technol. 2010, 101, 4662–4666. [Google Scholar] [CrossRef]
- Gerardi, V.; Minelli, F.; Viggiano, D. Steam treated rice industry residues as an alternative feedstock for the wood based particleboard industry in Italy. Biomass Bioenergy 1998, 14, 295–299. [Google Scholar] [CrossRef]
- Yasin, M.; Waheed, A.; Ahmed, A.; Karim, S. Efficient Utilization of Rice-wheat Straw to Produce Value—Added Composite Products. Int. J. Chem. Enviromental Eng. 2010, 1, 136–143. [Google Scholar]
- Kariuki, S.W.; Wachira, J.; Kawira, M.; Murithi, G. Crop residues used as lignocellulose materials for particleboards formulation. Heliyon 2020, 6, e05025. [Google Scholar] [CrossRef] [PubMed]
- Mo, X.; Cheng, E.; Wang, D.; Sun, X.S. Physical properties of medium-density wheat straw particleboard using different adhesives. Ind. Crops Prod. 2003, 18, 47–53. [Google Scholar] [CrossRef]
- Khristova, P.; Yossifov, N.; Gabir, S. Particle Board from Sunflower Stalks: Preliminary Trials. Bioresour. Technol. 1996, 58, 319–321. [Google Scholar] [CrossRef]
- Mati-Baouche, N.; De Baynast, H.; Lebert, A.; Sun, S.; Lopez-Mingo, C.J.S.; Leclaire, P.; Michaud, P. Mechanical, thermal and acoustical characterizations of an insulating bio-based composite made from sunflower stalks particles and chitosan. Ind. Crops Prod. 2014, 58, 244–250. [Google Scholar] [CrossRef] [Green Version]
- Bektas, I. The Manufacture of Particleboards using Sunflower Stalks (helianthus annuus l.) and Poplar Wood (Populus alba L.). J. Compos. Mater. 2005, 39, 467–473. [Google Scholar] [CrossRef]
- Guler, C.; Bektas, I.; Kalaycioglu, H. The experimental particleboard manufacture from sunflower stalks (Helianthus annuus L.) and Calabrian pine (Pinus brutia Ten). For. Prod. J. 2006, 56, 56–60. [Google Scholar]
- Ferrandez-Villena, M.; Ferrandez-Garcia, C.E.; Garcia-Ortuño, T.; Ferrandez-Garcia, A.; Ferrandez-Garcia, M.T. Analysis of the thermal insulation and fire-resistance capacity of particleboards made from vine (Vitis vinifera l.) prunings. Polymers 2020, 12, 1147. [Google Scholar] [CrossRef] [PubMed]
- Guler, C.; Ozen, R. Some properties of particleboards made from cotton stalks (Gossypium hirsitum L.). Holz als Roh- und Werkst. 2004, 62, 40–43. [Google Scholar] [CrossRef]
- Kowaluk, G.; Szymanowski, K.; Kozlowski, P.; Kukula, W.; Sala, C.; Robles, E.; Czarniak, P. Functional assessment of particleboards made of apple and plum orchard pruning. Waste Biomass Valoriz. 2020, 11, 2877–2886. [Google Scholar] [CrossRef] [Green Version]
- Chaydarreh, K.C.; Lin, X.; Guan, L.; Yun, H.; Gu, J.; Hu, C. Utilization of tea oil camellia (Camellia oleifera Abel.) shells as alternative raw materials for manufacturing particleboard. Ind. Crop Prod. 2021, 161, 113221. [Google Scholar] [CrossRef]
- Balducci, F.; Harper, C.; Meinlschmidt, P.; Dix, B.; Sanasi, A. Development of Innovative Particleboard Panels. Drv. Ind. 2008, 59, 131–136. [Google Scholar]
- Dix, B.; Meinlschmidt, P.; Van De Flierdt, A.; Thole, V. Leichte Spanplatten für den Möbelbau aus Rückständen der landwirtschaftlichen Produktion—T.1: Verfügbarkeit der Rohstoffe. Holztechnologie 2009, 50, 5–10. [Google Scholar]
- Selinger, J.; Wimmer, R. A novel low-density sandwich panel made from hemp. In Proceedings of the InWood2015: Innovations in Wood Materials and Processes, Brno, Czech Republic, 19–22 May 2015; Volume 19, pp. 29–31. [Google Scholar]
- Klímek, P.; Meinlschmidt, P.; Wimmer, R.; Plinke, B.; Schirp, A. Using sunflower (Helianthus annuus L.), topinambour (Helianthus tuberosus L.) and cup-plant (Silphium perfoliatum L.) stalks as alternative raw materials for particleboards. Ind. Crops Prod. 2016, 92, 157–164. [Google Scholar]
- Klímek, P.; Morávek, T.; Ráhel, J.; Stupavská, M.; Děcký, D.; Král, P.; Kúdela, J.; Wimmer, R. Utilization of air-plasma treated waste polyethylene terephthalate particles as a raw material for particleboard production. Compos. Part B Eng. 2016, 90, 188–194. [Google Scholar] [CrossRef]
- Kamke, F.A.; Lee, J.N. Adhesive penetration in wood: A review. Wood Fiber Sci. 2007, 39, 205–220. [Google Scholar]
- Whitby, J.A.; Östlund, F.; Horvath, P.; Gabureac, M.; Riesterer, J.L.; Utke, I.; Hohl, M.; Sedláček, L.; Jiruše, J.; Friedli, V.; et al. High Spatial Resolution Time-of-Flight Secondary Ion Mass Spectrometry for the Masses: A Novel Orthogonal ToF FIB-SIMS Instrument. Adv. Mater. Sci. Eng. 2012, 2012, 180437. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.V.; Jungnickel, H.; Leibrock, L.; Tentschert, J.; Reichardt, P.; Katz, A.; Luch, A. ToF-SIMS 3D imaging unveils important insights on the cellular microenvironment during biomineralization of gold nanostructures. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saito, K.; Kato, T.; Takamori, H.; Kishimoto, T.; Yamamoto, A.; Fukushima, K. A new analysis of the depolymerized fragments of lignin polymer in the plant cell walls using ToF-SIMS. Appl. Surf. Sci. 2006, 252, 6734–6737. [Google Scholar] [CrossRef]
- Tokareva, E.N.; Fardim, P.; Pranovich, A.V.; Fagerholm, H.; Daniel, G.; Holmbom, B. Imaging of wood tissue by ToF-SIMS: Critical evaluation and development of sample preparation techniques. Appl. Surf. Sci. 2007, 253, 7569–7577. [Google Scholar] [CrossRef]
- Fardim, P.; Dura, N. Modification of fibre surfaces during pulping and refining as analysed by SEM, XPS and ToF-SIMS. Colloids Surf. A Physicochem. Eng. Asp. 2003, 223, 263–276. [Google Scholar] [CrossRef]
- Kuroda, K.; Imai, T.; Saito, K.; Kato, T.; Fukushima, K. Applied Surface Science Application of ToF-SIMS to the study on heartwood formation in Cryptomeria japonica trees. Appl. Surf. Sci. 2008, 255, 1143–1147. [Google Scholar] [CrossRef]
- Gärtner, H.; Nievergelt, D. The core-microtome: A new tool for surface preparation on cores and time series analysis of varying cell parameters. Dendrochronologia 2010, 28, 85–92. [Google Scholar] [CrossRef]
- European Committee for Standardization. EN 310, Wood-Based Panels—Determination of Modulus of Elasticity in Bending and of Bending Strength; European Committee for Standardization: London, UK, 1993. [Google Scholar]
- European Committee for Standardization, EN 319, Particleboards and Fibreboards—Determination of Tensile Strength Perpendicular to the Plane of the Board; European Committee for Standardization: London, UK, 1993.
- Mahrdt, E.; Stöckel, F.; Van Herwijnen, H.W.G.; Müller, U.; Kantner, W.; Moser, J.; Gindl-Altmutter, W. Light microscopic detection of UF adhesive in industrial particle board. Wood Sci. Technol. 2015, 49, 517–526. [Google Scholar] [CrossRef]
- Klímek, P. Focused ion beam tomography as a tool for bio-inspired structural design. In Proceedings of the XVI International Conference on Electron Microscopy, Jachranka, Poland, 10–13 September 2017; pp. 37–39. [Google Scholar]
- European Committee for Standardization. EN 312, Particleboards. Specifications—Requirements for Flat-Pressed or Calendar-Pressed Unfaced Particleboards; European Committee for Standardization: London, UK, 2010. [Google Scholar]
- Rofii, M.N.; Yumigeta, S.; Suzuki, S.; Prayitno, T.A. Mechanical properties of three-layered particleboards made from different wood species. In Proceedings of the 3rd International Symposium of Indonesian Wood Research Society (IWoRS), Yogykarta, Indonesia, 3–4 November 2011; pp. 152–161. [Google Scholar]
- Geimer, R.L.; Lehmann, W.F. Effects of Layer Characteristics on the Properties Of Three-Layer Particleboards. For. Prod. J. 1975, 25, 19–29. [Google Scholar]
- Nasser, R.A. Physical and Mechanical Properties of Three-Layer Particleboard Manufactured from the Tree Pruning of Seven Wood Species. World Appl. Sci. J. 2012, 19, 741–753. [Google Scholar] [CrossRef]
- Juliana, A.H.; Paridah, M.T.; Rahim, S.; Nor Azowa, I.; Anwar, U.M.K. Properties of particleboard made from kenaf (Hibiscus cannabinus L.) as function of particle geometry. Mater. Des. 2012, 34, 406–411. [Google Scholar] [CrossRef]
- Yalinkilic, K.M.; Imamuraa, Y.; Takahashi, M.; Kalaycioglub, H.; Nemlib, G.; Demircib, Z.; Ozdemirb, T. Physical and mechanical properties of particleboard manufactured from waste tea leaves. Int. Biodeterior. Biodegrad. 1998, 41, 75–84. [Google Scholar] [CrossRef]
- Guntekin, E.; Karakus, B. Feasibility of using eggplant (Solanum melongena) stalks in the production of experimental particleboard. Ind. Crops Prod. 2008, 27, 354–358. [Google Scholar] [CrossRef]
- Suleiman, I.Y.; Aigbodion, V.S.; Shuaibu, L.; Shangalo, M.; Workshop, M.E.; Umaru, W.; Polytechnic, F. Development of eco-friendly particleboard composites using rice husk particles and gum arabic. J. Mater. Sci. Eng. Adv. Technol. 2013, 7, 75–91. [Google Scholar]
- Çöpür, Y.; Güler, C.; Akgül, M.; Taşçıoğlu, C. Some chemical properties of hazelnut husk and its suitability for particleboard production. Build. Environ. 2007, 42, 2568–2572. [Google Scholar] [CrossRef]
- Nemli, G.; Demirel, S.; Gümüşkaya, E.; Aslan, M.; Acar, C. Feasibility of incorporating waste grass clippings (Lolium perenne L.) in particleboard composites. Waste Manag. 2009, 29, 1129–1131. [Google Scholar] [CrossRef]
- Wong, E.-D.; Yang, P.; Zhang, M.; Wang, Q.; Nakao, T.; Li, K.-F.; Kawai, S. Analysis of the effects of density profile on the bending properties of particleboard using finite element method (FEM). Holz als Roh- und Werkst. 2003, 61, 66–72. [Google Scholar] [CrossRef]
- Schulte, M.; Frühwald, A. Some investigations concerning density profile, internal bond and relating failure position of particleboard. Holz als Roh- und Werkst. 1996, 289–294. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klímek, P.; Wimmer, R.; Meinlschmidt, P. TOF-SIMS Molecular Imaging and Properties of pMDI-Bonded Particleboards Made from Cup-Plant and Wood. Appl. Sci. 2021, 11, 1604. https://doi.org/10.3390/app11041604
Klímek P, Wimmer R, Meinlschmidt P. TOF-SIMS Molecular Imaging and Properties of pMDI-Bonded Particleboards Made from Cup-Plant and Wood. Applied Sciences. 2021; 11(4):1604. https://doi.org/10.3390/app11041604
Chicago/Turabian StyleKlímek, Petr, Rupert Wimmer, and Peter Meinlschmidt. 2021. "TOF-SIMS Molecular Imaging and Properties of pMDI-Bonded Particleboards Made from Cup-Plant and Wood" Applied Sciences 11, no. 4: 1604. https://doi.org/10.3390/app11041604
APA StyleKlímek, P., Wimmer, R., & Meinlschmidt, P. (2021). TOF-SIMS Molecular Imaging and Properties of pMDI-Bonded Particleboards Made from Cup-Plant and Wood. Applied Sciences, 11(4), 1604. https://doi.org/10.3390/app11041604