Wavelength-Dependent Nonlinear Absorption in Palladium Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hua, Y.; Chandra, K.; Dam, D.H.M.; Wiederrecht, G.P.; Odom, T.W. Shape-dependent nonlinear optical properties of anisotropic gold nanoparticles. J. Phys. Chem. Lett. 2015, 6, 4904–4908. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.L.; Chen, Y.; Fan, G.H. Saturable absorption and reverse saturable absorption on silver particles with different shapes. Appl. Phys. A 2014, 117, 891–894. [Google Scholar] [CrossRef]
- Qu, S.L.; Song, Y.L.; Liu, H.F.; Wang, Y.X.; Gao, Y.C.; Liu, S.T.; Zhang, X.R.; Li, Y.L.; Zhu, D.B. A theoretical and experimental study on optical limiting in platinum nanoparticles. Optics Commun. 2002, 203, 283–288. [Google Scholar] [CrossRef]
- Gao, Y.C.; Zhang, X.R.; Li, Y.L.; Liu, H.F.; Wang, Y.X.; Chang, Q.; Jiao, W.Y.; Song, Y.L. Saturable absorption and reverse saturable absorption in platinum nanoparticles. Optics Commun. 2005, 251, 429–433. [Google Scholar] [CrossRef]
- Ganeev, R.A.; Tugushev, R.I.; Usmanov, T. Application of the nonlinear optical properties of platinum nanoaprticles for the mode locking of Nd: Glass laser. Appl. Phys. B 2009, 94, 647–651. [Google Scholar] [CrossRef]
- Fan, G.H.; Qu, S.L.; Wang, Q.; Zhao, C.J.; Zhang, L.; Li, Z.G. Pd nanoparticles formation by femtosecond laser irradiation and the nonlinear optical properties at 532 nm using nanosecond laser pulses. J. Appl. Phys. 2011, 109, 023102. [Google Scholar] [CrossRef]
- Manjunatha, K.B.; Dileep, R.; Umesh, G.; Ramachandra Bhat, B. Study of third-order nonlinear optical and all-optical switching properties of palladium metal–organic complex. Opt. Mater. 2013, 35, 1366–1372. [Google Scholar] [CrossRef]
- Manjunatha, K.B.; Dileep, R.; Umesh, G.; Ramachandra Bhat, B. Nonlinear optical and all-optical switching studies of palladium (II) complex. Mater. Lett. 2013, 105, 173–176. [Google Scholar] [CrossRef]
- Fan, G.H.; Chen, M.R.; Wu, X.Z.; Han, M.; Song, Y.L.; Qu, S.L.; Xie, B.; Yang, L.P.; Gao, R.X.; Guo, Z.Y.; et al. Dramatic changes of optical nonlinearity and ultrafast dynamics of palladium nanoparticles caused by hydriding. Chem. Phys. Lett. 2016, 643, 93–97. [Google Scholar] [CrossRef]
- Rheinberger, D.; Ohm, U.; Zhumaev, E.; Domke, K.F. Extending surface plasmon resonance spectroscopy to platinum surfaces. Electrochim. Acta. 2019, 314, 96–101. [Google Scholar] [CrossRef]
- Cai, S.S.; Gonzalez-Vila, A.; Zhang, X.J.; Guo, T.C. Caucheteur.Palladium-coated plasmonic optical fiber gratings for hydrogen detection. Opt. Lett. 2019, 44, 4483–4486. [Google Scholar] [CrossRef]
- Xiong, Y.J.; Chen, J.Y.; Wiley, B.J.M.; Xia, Y.N.; Yin, Y.D.; Li, Z.Y. Size- Dependence of Surface Plasmon Resonance and Oxidation for Pd Nanocubes Synthesized via a Seed Etching Process. Nano Lett. 2005, 5, 1237–1242. [Google Scholar] [CrossRef]
- Xiong, Y.J.; McLellan, J.M.; Chen, J.Y.; Yin, Y.D.; Li, Z.Y.; Xia, Y.N. Kinetically Controlled Synthesis of Triangular and Hexagonal Nanoplates of Palladium and Their SPR/SERS Properties. Am. Chem. Soc. 2005, 127, 17118–17127. [Google Scholar] [CrossRef]
- Zeng, J.; Zhu, C.; Tao, J.; Jin, M.S.; Zhang, H.; Li, Z.Y.; Zhu, Y.M.; Xia, Y.N. Controlling the nucleation and growth of silver on palladium nanocubes by manipulating the reaction kinetics. Angew. Chem. Int. Ed. Engl. 2012, 51, 2354–2358. [Google Scholar] [CrossRef]
- Mahmoud, A. Surface-Enhanced Raman Spectroscopy of Double-Shell Hollow Nanoparticles: Electromagnetic and Chemical Enhancements. Langmuir 2013, 29, 6253–6261. [Google Scholar] [CrossRef]
- Weiner, R.G.; Desantis, C.J.; Cardoso, M.B.C. Diffusion and Seed Shape: Intertwined Parameters in the Synthesis of Branched Metal Nanostructures. ACS Nano 2014, 8, 8625–8635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahmoud, A. Plasmon Resonance Hybridization of Gold Nanospheres and Palladium Nanoshells Combined in a Rattle Structure. J. Phys. Chem. Lett. 2014, 5, 2594–2600. [Google Scholar] [CrossRef] [PubMed]
- Sugawa, K.; Tahara, H.; Yamashita, A. Refractive Index Susceptibility of the Plasmonic Palladium Nanoparticle: Potential as the Third Plasmonic Sensing Material. ACS Nano 2015, 9, 1895–1904. [Google Scholar] [CrossRef]
- Du, J.S.; Yu, J.J.; Xiong, Y.L.; Lin, Z.Q.; Zhang, H.; Yang, D. Developing an aqueous approach for synthesizing Au and M@Au (M = Pd, CuPt) hybrid nanostars with plasmonic properties. Phys. Chem. Chem. Phys. 2014, 17, 1265–1272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Yan, Y.C.; Li, Y.H.; Zhang, H. Size-controlled synthesis of Pd nanosheets for tunable plasmonic properties. CrystEngComm 2015, 17, 1833–1838. [Google Scholar] [CrossRef]
- Verma, P.; Kuwahara, Y.; Mori, K. Synthesis and Characterization of Pd/Ag Bimetallic Nanocatalyst on SBA-15 Mesoporous Silica as a Plasmonic Catalyst. J. Mater. Chem. A 2015, 3, 18889–18897. [Google Scholar] [CrossRef]
- Hsu, S.C.; Chuang, Y.C.; Sneed, B.T. Turning the Halide Switch in the Synthesis of Au–Pd Alloy and Core–Shell Nanoicosahedra with Terraced Shells: Performance in Electrochemical and Plasmon-Enhanced Catalysis. Nano Lett. 2016, 16, 5514–5520. [Google Scholar] [CrossRef]
- Rodal-Cedeira, S.; Montes-García, V.; Polavarapu, L.; Solís, D.M.; Heidari, H.; La Porta, A.; Angiola, M.; Martucci, A.; Taboada, J.M.; Obelleiro, F.; et al. Plasmonic Au@Pd nanorods with boosted refractive index susceptibility and SERS efficiency: A multifunctional platform for hydrogen sensing and monitoring of catalytic reactions. Chem. Mater. 2016, 28, 9169–9180. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, C.; Yuan, J.; Chen, R.X. Preparation of Palladium Nanoparticles by Water Bath Method and Electrocatalytic Properties of Its Modified Electrode. Rare Met. Mater. Eng. 2013, 42, 1936–1940. [Google Scholar]
- Papagiannouli, I.; Potamianos, D.; Krasia-Christoforou, T.; Couris, S. Third-order optical nonlinearities of PVP/Pd nanohybrids. Opt. Mater. 2017, 72, 226–232. [Google Scholar] [CrossRef]
- Sheik-Bahae, M.; Said, A.A.; Wei, T.H.; Hagan, D.J.; Van Stryland, E.W. Sensitive Measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electr. 1990, 26, 760769. [Google Scholar] [CrossRef] [Green Version]
(nm) | (μJ) | (m/W) | ||
---|---|---|---|---|
500 | 630 | 2.51 × 1013 | 1.32 × 1012 | 1.46 × 10−11 |
730 | 2.91 × 1013 | 4.16 × 1011 | 1.1 × 10−11 | |
752 | 2.99 × 1013 | 1.36 × 1012 | 2.53 × 10−11 | |
550 | 630 | 2.51 × 1013 | 3.59 × 1011 | 5.14 × 10−12 |
730 | 2.91 × 1013 | 2.43 × 1011 | 9.59 × 10−12 | |
752 | 2.99 × 1013 | 1.2 × 1012 | 2.8 × 10−11 | |
600 | 630 | 2.51 × 1013 | 1.05 × 1012 | 0 |
730 | 2.91 × 1013 | 8.32 × 1011 | 0 | |
752 | 2.99 × 1013 | 4.47 × 1011 | 4.92 × 10−12 | |
650 | 630 | 2.51 × 1013 | 1.26 × 1012 | 0 |
730 | 2.91 × 1013 | 8.32 × 1011 | 0 | |
752 | 2.99 × 1013 | 5.99 × 1011 | 1.8 × 10−12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Wang, J.; Gao, Y. Wavelength-Dependent Nonlinear Absorption in Palladium Nanoparticles. Appl. Sci. 2021, 11, 1640. https://doi.org/10.3390/app11041640
Chen C, Wang J, Gao Y. Wavelength-Dependent Nonlinear Absorption in Palladium Nanoparticles. Applied Sciences. 2021; 11(4):1640. https://doi.org/10.3390/app11041640
Chicago/Turabian StyleChen, Chunyu, Jun Wang, and Yachen Gao. 2021. "Wavelength-Dependent Nonlinear Absorption in Palladium Nanoparticles" Applied Sciences 11, no. 4: 1640. https://doi.org/10.3390/app11041640
APA StyleChen, C., Wang, J., & Gao, Y. (2021). Wavelength-Dependent Nonlinear Absorption in Palladium Nanoparticles. Applied Sciences, 11(4), 1640. https://doi.org/10.3390/app11041640