Artificial Intelligence and the Medical Physicist: Welcome to the Machine
Abstract
:1. Introduction
2. Artificial Intelligence in Healthcare
3. Clinical Applications of Artificial Intelligence
3.1. Imaging
3.2. Therapy
3.3. Quality Assurance (QA)
4. Challenges and Pitfalls of AI
4.1. Data Size and Quality
4.2. Interpretability
4.3. Legal and Ethical Issues
5. Role of MP
5.1. Imaging
5.2. Data Collection and Curation
5.3. Commissioning and Validation of AI
5.4. AI in Radiotherapy
5.5. Safety/Risk Management
5.6. Periodical Tests
5.7. Training of AI Users
5.8. Research in AI
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hashimoto, D.A.; Rosman, G.; Rus, D.; Meireles, O.R. Artificial Intelligence in Surgery: Promises and Perils. Ann. Surg. 2018, 268, 70–76. [Google Scholar] [CrossRef]
- Shen, C.; Nguyen, D.; Zhou, Z.; Jiang, S.B.; Dong, B.; Jia, X. An introduction to deep learning in medical physics: Advantages. potential, and challenges. Phys. Med. Biol. 2020, 65, 05TR01. [Google Scholar] [CrossRef]
- Xing, L.; Krupinski, E.A.; Cai, J. Artificial intelligence will soon change the landscape of medical physics research and practice. Med. Phys. 2018, 45, 1791–1793. [Google Scholar] [CrossRef] [Green Version]
- Samei, E.; Grist, T.M. Why physics in medicine? Phys. Med. 2019, 64, 319–322. [Google Scholar] [CrossRef]
- Samei, E.; Pawlicki, T.; Bourland, D.; Chin, E.; Das, S.; Fox, M.; Freedman, D.J.; Hangiandreou, N.; Jordan, D.; Martin, M.; et al. Redefining and reinvigorating the role of physics in clinical medicine: A Report from the AAPM Medical Physics 3.0 Ad Hoc Committee. Med. Phys. 2018, 45, e783–e789. [Google Scholar] [CrossRef] [PubMed]
- Biehl, M.; Caticha, N.; Opper, M.; Villmann, T. Statistical Physics of Learning and Inference. In Proceedings of the European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Bruges, Belgium, 24–26 April 2019. [Google Scholar]
- Ramezanpour, A.; Beam, A.L.; Chen, J.H.; Mashaghi, A. Statistical Physics for Medical Diagnostics: Learning, Inference, and Optimization Algorithms. Diagnostics 2020, 10, 972. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Wang, B.; Rong, Y. Artificial intelligence will reduce the need for clinical medical physicists. J. Appl. Clin. Med. Phys. 2018, 19, 6–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, R.F.; Valdes, G.; Fuller, C.D.; Carpenter, C.M.; Morin, O.; Aneja, S.; Lindsay, W.D.; Aerts, H.J.W.L.; Agrimson, B.C.; Deville, C., Jr.; et al. Artificial intelligence in radiation oncology: A specialty-wide disruptive transformation? Radiother. Oncol. 2018, 129, 421–426. [Google Scholar] [CrossRef]
- Avanzo, M.; Wei, L.; Stancanello, J.; Vallieres, M.; Rao, A.; Morin, O.; Mattonen, S.A.; El Naqa, I. Machine and deep learning methods for radiomics. Med. Phys. 2020, 47, e185–e202. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, S.; Yin, F.F.; Marks, L.B.; Das, S.K. Investigation of the support vector machine algorithm to predict lung radiation-induced pneumonitis. Med. Phys. 2007, 34, 3808–3814. [Google Scholar] [CrossRef] [Green Version]
- Avanzo, M.; Stancanello, J.; El Naqa, I. Beyond imaging: The promise of radiomics. Phys. Med. 2017, 38, 122–139. [Google Scholar] [CrossRef]
- Galar, M.; Fernandez, A.; Barrenechea, E.; Bustince, H.; Herrera, F. A Review on Ensembles for the Class Imbalance Problem: Bagging-, Boosting-, and Hybrid-Based Approaches. IEEE Trans. Syst. Man, Cybern. Part C Applications Rev. 2012, 42, 463–484. [Google Scholar] [CrossRef]
- Ben-Bassat, M.; Klove, K.L.; Weil, M.H. Sensitivity Analysis in Bayesian Classification Models: Multiplicative Deviations. IEEE Trans. Pattern Anal. Mach. Intell. 1980, PAMI-2, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Kukar, M.; Kononenko, I.; Silvester, T. Machine learning in prognosis of the femoral neck fracture recovery. Artif. Intell. Med. 1996, 8, 431–451. [Google Scholar] [CrossRef]
- Tseng, H.; Wei, L.; Cui, S.; Luo, Y.; Haken, R.K.T.; El Naqa, I. Machine Learning and Imaging Informatics in Oncology. Oncology 2020, 98, 344–362. [Google Scholar] [CrossRef] [PubMed]
- Syeda-Mahmood, T. Role of Big Data and Machine Learning in Diagnostic Decision Support in Radiology. J. Am. Coll. Radiol. 2018, 15, 569–576. [Google Scholar] [CrossRef]
- Azmandian, F.; Kaeli, D.; Dy, J.G.; Hutchinson, E.; Ancukiewicz, M.; Niemierko, A.; Jiang, S.B. Towards the development of an error checker for radiotherapy treatment plans: A preliminary study. Phys. Med. Biol. 2007, 52, 6511–6524. [Google Scholar] [CrossRef]
- Chetvertkov, M.A.; Siddiqui, F.; Kim, J.; Chetty, I.; Kumarasiri, A.; Liu, C.; Gordon, J.J. Use of regularized principal component analysis to model anatomical changes during head and neck radiation therapy for treatment adaptation and response assessment. Med Phys. 2016, 43, 5307–5319. [Google Scholar] [CrossRef]
- Maaten, L.v.d.; Hinton, G.E. Visualizing Data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Sanders, J.C.; Ritt, P.; Kuwert, T.; Vija, A.H.; Maier, A.K. Fully Automated Data-Driven Respiratory Signal Extraction From SPECT Images Using Laplacian Eigenmaps. IEEE Trans. Med Imaging 2016, 35, 2425–2435. [Google Scholar] [CrossRef] [PubMed]
- Groenhof, T.K.J.; Koers, L.R.; Blasse, E.; de Groot, M.; Grobbee, D.E.; Bots, M.L.; Asselbergs, F.W.; Lely, A.T.; Haitjema, S.; van Solinge, W.; et al. Data mining information from electronic health records produced high yield and accuracy for current smoking status. J. Clin. Epidemiol. 2020, 118, 100–106. [Google Scholar] [CrossRef] [Green Version]
- Gultepe, E.; Green, J.P.; Nguyen, H.; Adams, J.; Albertson, T.; Tagkopoulos, I. From vital signs to clinical outcomes for patients with sepsis: A machine learning basis for a clinical decision support system. J. Am. Med Inform. Assoc. 2014, 21, 315–325. [Google Scholar] [CrossRef] [Green Version]
- Chamunyonga, C.; Edwards, C.; Caldwell, P.; Rutledge, P.; Burbery, J. The Impact of Artificial Intelligence and Machine Learning in Radiation Therapy: Considerations for Future Curriculum Enhancement. J. Med Imaging Radiat. Sci. 2020, 51, 214–220. [Google Scholar] [CrossRef]
- Pons, E.; Braun, L.M.; Hunink, M.G.; Kors, J.A. Natural Language Processing in Radiology: A Systematic Review. Radiology 2016, 279, 329–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kreimeyer, K.; Foster, M.; Pandey, A.; Arya, N.; Halford, G.; Jones, S.F.; Forshee, R.; Walderhaug, M.; Botsis, T. Natural language processing systems for capturing and standardizing unstructured clinical information: A systematic review. J. Biomed. Inform. 2017, 73, 14–29. [Google Scholar] [CrossRef] [PubMed]
- Burger, G.; Abu-Hanna, A.; de Keizer, N.; Cornet, R. Natural language processing in pathology: A scoping review. J. Clin. Pathol. 2016, 69, 949–955. [Google Scholar] [CrossRef] [PubMed]
- Benke, K.; Benke, G. Artificial Intelligence and Big Data in Public Health. Int. J. Environ. Res. Public Health 2018, 15, 2796. [Google Scholar] [CrossRef] [Green Version]
- Castiglioni, I.; Gallivanone, F.; Soda, P.; Avanzo, M.; Stancanello, J.; Aiello, M.; Interlenghi, M.; Salvatore, M. AI-based applications in hybrid imaging: How to build smart and truly multi-parametric decision models for radiomics. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 2673–2699. [Google Scholar] [CrossRef] [PubMed]
- Mahadevaiah, G.; Rv, P.; Bermejo, I.; Jaffray, D.; Dekker, A.; Wee, L. Artificial intelligence-based clinical decision support in modern medical physics: Selection, acceptance, commissioning, and quality assurance. Med Phys. 2020, 47, e228–e235. [Google Scholar] [CrossRef]
- Welch, M.L.; McIntosh, C.; McNiven, A.; Huang, S.H.; Zhang, B.B.; Wee, L.; Traverso, A.; O’Sullivan, B.; Hoebers, F.; Dekker, A.; et al. User-controlled pipelines for feature integration and head and neck radiation therapy outcome predictions. Phys. Medica 2020, 70, 145–152. [Google Scholar] [CrossRef] [Green Version]
- El Naqa, I.; Li, R.; Murphy, M.J. Machine Learning in Radiation Oncology: Theory and Applications; Springer: Berlin, Germany, 2015. [Google Scholar]
- Giger, M.L.; Karssemeijer, N.; Schnabel, J.A. Breast image analysis for risk assessment, detection, diagnosis, and treatment of cancer. Annu. Rev. Biomed. Eng. 2013, 15, 327–357. [Google Scholar] [CrossRef] [PubMed]
- Elter, M.; Horsch, A. CADx of mammographic masses and clustered microcalcifications: A review. Med. Phys. 2009, 36, 2052–2068. [Google Scholar] [CrossRef]
- Chen, C.H.; Chang, C.K.; Tu, C.Y.; Liao, W.C.; Wu, B.R.; Chou, K.T.; Chiou, Y.R.; Yang, S.N.; Zhang, G.; Huang, T.C. Radiomic features analysis in computed tomography images of lung nodule classification. PLoS ONE 2018, 13, e0192002. [Google Scholar] [CrossRef] [Green Version]
- Weng, Q.; Zhou, L.; Wang, H.; Hui, J.; Chen, M.; Pang, P.; Zheng, L.; Xu, M.; Wang, Z.; Ji, J. A radiomics model for determining the invasiveness of solitary pulmonary nodules that manifest as part-solid nodules. Clin. Radiol. 2019, 74, 933–943. [Google Scholar] [CrossRef] [Green Version]
- Botta, F.; Raimondi, S.; Rinaldi, L.; Bellerba, F.; Corso, F.; Bagnardi, V.; Origgi, D.; Minelli, R.; Pitoni, G.; Petrella, F.; et al. Association of a CT-Based Clinical and Radiomics Score of Non-Small Cell Lung Cancer (NSCLC) with Lymph Node Status and Overall Survival. Cancers 2020, 12, 1432. [Google Scholar] [CrossRef] [PubMed]
- Cong, M.; Feng, H.; Ren, J.L.; Xu, Q.; Cong, L.; Hou, Z.; Wang, Y.Y.; Shi, G. Development of a predictive radiomics model for lymph node metastases in pre-surgical CT-based stage IA non-small cell lung cancer. Lung Cancer 2020, 139, 73–79. [Google Scholar] [CrossRef] [Green Version]
- Avanzo, M.; Stancanello, J.; Pirrone, G.; Sartor, G. Radiomics and deep learning in lung cancer. Strahlenther. Onkol. 2020, 196, 879–887. [Google Scholar] [CrossRef]
- Stanzione, A.; Gambardella, M.; Cuocolo, R.; Ponsiglione, A.; Romeo, V.; Imbriaco, M. Prostate MRI radiomics: A systematic review and radiomic quality score assessment. Eur. J. Radiol. 2020, 129, 109095. [Google Scholar] [CrossRef] [PubMed]
- Algohary, A.; Viswanath, S.; Shiradkar, R.; Ghose, S.; Pahwa, S.; Moses, D.; Jambor, I.; Shnier, R.; Bohm, M.; Haynes, A.M.; et al. Radiomic features on MRI enable risk categorization of prostate cancer patients on active surveillance: Preliminary findings. J. Magn. Reson. Imaging 2018, 48, 818–828. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, J.; Ho, A.; Jiang, W.; Logan, J.; Wang, X.; Brown, P.D.; McGovern, S.L.; Guha-Thakurta, N.; Ferguson, S.D.; et al. A predictive model for distinguishing radiation necrosis from tumour progression after gamma knife radiosurgery based on radiomic features from MR images. Eur. Radiol. 2018, 28, 2255–2263. [Google Scholar] [CrossRef]
- Hatt, M.; Tixier, F.; Visvikis, D.; Le Rest, C.C. Radiomics in PET/CT: More Than Meets the Eye? J. Nucl. Med. 2016, 58, 365–366. [Google Scholar] [CrossRef]
- Lee, S.E.; Han, K.; Kwak, J.Y.; Lee, E.; Kim, E.K. Radiomics of US texture features in differential diagnosis between triple-negative breast cancer and fibroadenoma. Sci. Rep. 2018, 8, 1–8. [Google Scholar] [CrossRef]
- Sapate, S.G.; Mahajan, A.; Talbar, S.N.; Sable, N.; Desai, S.; Thakur, M. Radiomics based detection and characterization of suspicious lesions on full field digital mammograms. Comput. Methods Progr. Biomed. 2018, 163, 1–20. [Google Scholar] [CrossRef]
- Jarrett, D.; Stride, E.; Vallis, K.; Gooding, M.J. Applications and limitations of machine learning in radiation oncology. Br. J. Radiol. 2019, 92, 20190001. [Google Scholar] [CrossRef] [PubMed]
- Skourt, B.A.; El Hassani, A.; Majda, A. Lung CT Image Segmentation USING Deep Neural Networks. Procedia Comput. Sci. 2018, 127, 109–113. [Google Scholar] [CrossRef]
- Zhong, Z.; Kim, Y.; Zhou, L.; Plichta, K.; Allen, B.; Buatti, J.; Wu, X. 3D fully convolutional networks for co-segmentation of tumors on PET-CT images. In Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), Washington, DC, USA, 4–7 April 2018; pp. 228–231. [Google Scholar]
- Peng, Z.; Fang, X.; Yan, P.; Shan, H.; Liu, T.; Pei, X.; Wang, G.; Liu, B.; Kalra, M.K.; Xu, X.G. A method of rapid quantification of patient-specific organ doses for CT using deep-learning-based multi-organ segmentation and GPU-accelerated Monte Carlo dose computing. Med. Phys. 2020, 47, 2526–2536. [Google Scholar] [CrossRef]
- Gotz, T.I.; Schmidkonz, C.; Chen, S.; Al-Baddai, S.; Kuwert, T.; Lang, E.W. A deep learning approach to radiation dose estimation. Phys. Med. Biol. 2019, 65, 035007. [Google Scholar] [CrossRef]
- Kaplan, S.; Zhu, Y.M. Full-Dose PET Image Estimation from Low-Dose PET Image Using Deep Learning: A Pilot Study. J. Digit. Imaging 2019, 32, 773–778. [Google Scholar] [CrossRef] [PubMed]
- Roser, P.; Zhong, X.; Birkhold, A.; Strobel, N.; Kowarschik, M.; Fahrig, R.; Maier, A. Physics-driven learning of x-ray skin dose distribution in interventional procedures. Med. Phys. 2019, 46, 4654–4665. [Google Scholar] [CrossRef]
- Meineke, A.; Rubbert, C.; Sawicki, L.M.; Thomas, C.; Klosterkemper, Y.; Appel, E.; Caspers, J.; Bethge, O.T.; Kropil, P.; Antoch, G.; et al. Potential of a machine-learning model for dose optimization in CT quality assurance. Eur. Radiol. 2019, 29, 3705–3713. [Google Scholar] [CrossRef]
- Gong, K.; Guan, J.; Liu, C.; Qi, J. PET Image Denoising Using a Deep Neural Network Through Fine Tuning. IEEE Trans. Radiat. Plasma Med. Sci. 2019, 3, 153–161. [Google Scholar] [CrossRef]
- Xie, S.; Zheng, X.; Chen, Y.; Xie, L.; Liu, J.; Zhang, Y.; Yan, J.; Zhu, H.; Hu, Y. Artifact Removal using Improved GoogLeNet for Sparse-view CT Reconstruction. Sci. Rep. 2018, 8, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Han, X. MR-based synthetic CT generation using a deep convolutional neural network method. Med. Phys. 2017, 44, 1408–1419. [Google Scholar] [CrossRef] [Green Version]
- Kleesiek, J.; Morshuis, J.N.; Isensee, F.; Deike-Hofmann, K.; Paech, D.; Kickingereder, P.; Köthe, U.; Rother, C.; Forsting, M.; Wick, W.; et al. Can Virtual Contrast Enhancement in Brain MRI Replace Gadolinium: A Feasibility Study. Investig. Radiol. 2019, 54, 653–660. [Google Scholar] [CrossRef]
- Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; van der Laak, J.A.W.M.; van Ginneken, B.; Sanchez, C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kesner, A.; Schmidtlein, C.R.; Kuntner, C. Real-time data-driven motion correction in PET. EJNMMI Phys. 2019, 6, 3. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Fu, S.; Zhu, Y.; Liu, Z.; Chen, S.; Lu, L.; Liang, C. Computed tomography texture analysis to facilitate therapeutic decision making in hepatocellular carcinoma. Oncotarget 2016, 7, 13248–13259. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.Y.; Zhang, H.P.; Tang, Z.Y.; Zhou, J.; He, X.J.; Liu, Y.Y.; Liu, X.J.; Guo, D.J. Value of texture analysis based on enhanced MRI for predicting an early therapeutic response to transcatheter arterial chemoembolisation combined with high-intensity focused ultrasound treatment in hepatocellular carcinoma. Clin. Radiol. 2018, 73, 758.e9–758.e18. [Google Scholar] [CrossRef]
- Iezzi, R.; Goldberg, S.N.; Merlino, B.; Posa, A.; Valentini, V.; Manfredi, R. Artificial Intelligence in Interventional Radiology: A Literature Review and Future Perspectives. J. Oncol. 2019, 2019, 6153041. [Google Scholar] [CrossRef] [PubMed]
- van Timmeren, J.E.; van Elmpt, W.; Leijenaar, R.T.H.; Reymen, B.; Monshouwer, R.; Bussink, J.; Paelinck, L.; Bogaert, E.; de Wagter, C.; Elhaseen, E.; et al. Longitudinal radiomics of cone-beam CT images from non-small cell lung cancer patients: Evaluation of the added prognostic value for overall survival and locoregional recurrence. Radiother. Oncol. 2019, 136, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Rahmim, A.; Huang, P.; Shenkov, N.; Fotouhi, S.; Davoodi-Bojd, E.; Lu, L.; Mari, Z.; Soltanian-Zadeh, H.; Sossi, V. Improved prediction of outcome in Parkinson’s disease using radiomics analysis of longitudinal DAT SPECT images. Neuroimage Clin. 2017, 16, 539–544. [Google Scholar] [CrossRef] [PubMed]
- Moraru, A.D.; Costin, D.; Moraru, R.L.; Branisteanu, D.C. Artificial intelligence and deep learning in ophthalmology—Present and future (Review). Exp. Ther. Med. 2020, 20, 3469–3473. [Google Scholar] [CrossRef]
- Ricciardi, C.; Cantoni, V.; Improta, G.; Iuppariello, L.; Latessa, I.; Cesarelli, M.; Triassi, M.; Cuocolo, A. Application of data mining in a cohort of Italian subjects undergoing myocardial perfusion imaging at an academic medical center. Comput. Methods Progr. Biomed. 2020, 189, 105343. [Google Scholar] [CrossRef]
- Moccia, S.; Banali, R.; Martini, C.; Muscogiuri, G.; Pontone, G.; Pepi, M.; Caiani, E.G. Development and testing of a deep learning-based strategy for scar segmentation on CMR-LGE images. MAGMA Magn. Reson. Mater. Phys. Biol. Med. 2018, 32, 187–195. [Google Scholar] [CrossRef] [Green Version]
- Stoel, B. Use of artificial intelligence in imaging in rheumatology—Current status and future perspectives. RMD Open 2020, 6, e001063. [Google Scholar] [CrossRef] [Green Version]
- Bera, K.; Schalper, K.A.; Rimm, D.L.; Velcheti, V.; Madabhushi, A. Artificial intelligence in digital pathology—New tools for diagnosis and precision oncology. Nat. Rev. Clin. Oncol. 2019, 16, 703–715. [Google Scholar] [CrossRef] [PubMed]
- Piehowski, P.D.; Zhu, Y.; Bramer, L.M.; Stratton, K.G.; Zhao, R.; Orton, D.J.; Moore, R.J.; Yuan, J.; Mitchell, H.D.; Gao, Y.; et al. Automated mass spectrometry imaging of over 2000 proteins from tissue sections at 100-μm spatial resolution. Nat. Commun. 2020, 11, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexandrov, T. Spatial Metabolomics and Imaging Mass Spectrometry in the Age of Artificial Intelligence. Annu. Rev. Biomed. Data Sci. 2020, 3, 61–87. [Google Scholar] [CrossRef] [Green Version]
- Voulodimos, A.; Doulamis, N.; Doulamis, A.; Protopapadakis, E. Deep Learning for Computer Vision: A Brief Review. Comput. Intell. Neurosci. 2018, 2018, 7068349. [Google Scholar] [CrossRef] [PubMed]
- Cai, T.; Giannopoulos, A.A.; Yu, S.; Kelil, T.; Ripley, B.; Kumamaru, K.K.; Rybicki, F.J.; Mitsouras, D. Natural Language Processing Technologies in Radiology Research and Clinical Applications. Radiographics 2016, 36, 176–191. [Google Scholar] [CrossRef] [Green Version]
- Zaharchuk, G.; Gong, E.; Wintermark, M.; Rubin, D.; Langlotz, C.P. Deep Learning in Neuroradiology. Am. J. Neuroradiol. 2018, 39, 1776–1784. [Google Scholar] [CrossRef] [Green Version]
- Vávra, P.; Roman, J.; Zonča, P.; Ihnát, P.; Němec, M.; Kumar, J.; Habib, N.; El-Gendi, A. Recent Development of Augmented Reality in Surgery: A Review. J. Health Eng. 2017, 2017, 4574172. [Google Scholar] [CrossRef]
- Cheng, Q.; Roelofs, E.; Ramaekers, B.L.; Eekers, D.; van Soest, J.; Lustberg, T.; Hendriks, T.; Hoebers, F.; van der Laan, H.P.; Korevaar, E.W.; et al. Development and evaluation of an online three-level proton vs photon decision support prototype for head and neck cancer—Comparison of dose, toxicity and cost-effectiveness. Radiother. Oncol. 2016, 118, 281–285. [Google Scholar] [CrossRef] [Green Version]
- Lustberg, T.; van Soest, J.; Gooding, M.; Peressutti, D.; Aljabar, P.; van der Stoep, J.; van Elmpt, W.; Dekker, A. Clinical evaluation of atlas and deep learning based automatic contouring for lung cancer. Radiother. Oncol. 2018, 126, 312–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cagni, E.; Botti, A.; Micera, R.; Galeandro, M.; Sghedoni, R.; Orlandi, M.; Iotti, C.; Cozzi, L.; Iori, M. Knowledge-based treatment planning: An inter-technique and inter-system feasibility study for prostate cancer. Phys. Med. 2017, 36, 38–45. [Google Scholar] [CrossRef]
- Cagni, E.; Botti, A.; Wang, Y.; Iori, M.; Petit, S.F.; Heijmen, B.J.M. Pareto-optimal plans as ground truth for validation of a commercial system for knowledge-based DVH-prediction. Phys. Med. 2018, 55, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Stanhope, C.; Wu, Q.J.; Yuan, L.; Liu, J.; Hood, R.; Yin, F.F.; Adamson, J. Utilizing knowledge from prior plans in the evaluation of quality assurance. Phys. Med. Biol. 2015, 60, 4873–4891. [Google Scholar] [CrossRef]
- Nicolae, A.; Semple, M.; Lu, L.; Smith, M.; Chung, H.; Loblaw, A.; Morton, G.; Mendez, L.C.; Tseng, C.L.; Davidson, M.; et al. Conventional vs machine learning-based treatment planning in prostate brachytherapy: Results of a Phase I randomized controlled trial. Brachytherapy 2020, 19, 470–476. [Google Scholar] [CrossRef] [PubMed]
- Barragan-Montero, A.M.; Nguyen, D.; Lu, W.; Lin, M.H.; Norouzi-Kandalan, R.; Geets, X.; Sterpin, E.; Jiang, S. Three-dimensional dose prediction for lung IMRT patients with deep neural networks: Robust learning from heterogeneous beam configurations. Med. Phys. 2019, 46, 3679–3691. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.; Jia, X.; Sher, D.; Lin, M.; Iqbal, Z.; Liu, H.; Jiang, S. 3D radiotherapy dose prediction on head and neck cancer patients with a hierarchically densely connected U-net deep learning architecture. Phys. Med. Biol. 2019, 64, 065020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, X.; Pineau, J.; Keyes, R.; Enger, S.A. RapidBrachyDL: Rapid Radiation Dose Calculations in Brachytherapy via Deep Learning. Int. J. Radiat. Oncol. 2020, 108, 802–812. [Google Scholar] [CrossRef]
- Avanzo, M.; Pirrone, G.; Mileto, M.; Massarut, S.; Stancanello, J.; Baradaran-Ghahfarokhi, M.; Rink, A.; Barresi, L.; Vinante, L.; Piccoli, E.; et al. Prediction of skin dose in low-kV intraoperative radiotherapy using machine learning models trained on results of in vivo dosimetry. Med. Phys. 2019, 46, 1447–1454. [Google Scholar] [CrossRef] [Green Version]
- Avanzo, M.; Pirrone, G.; Vinante, L.; Caroli, A.; Stancanello, J.; Drigo, A.; Massarut, S.; Mileto, M.; Urbani, M.; Trovo, M.; et al. Electron Density and Biologically Effective Dose (BED) Radiomics-Based Machine Learning Models to Predict Late Radiation-Induced Subcutaneous Fibrosis. Front. Oncol. 2020, 10, 490. [Google Scholar] [CrossRef] [Green Version]
- Talamonti, C.; Piffer, S.; Greto, D.; Mangoni, M.; Ciccarone, A.; Dicarolo, P.; Fantacci, M.E.; Fusi, F.; Oliva, P.; Palumbo, L.; et al. Radiomic and Dosiomic Profiling of Paediatric Medulloblastoma Tumours Treated with Intensity Modulated Radiation Therapy. Commun. Comput. Inf. Sci. 2019, 56–64. [Google Scholar]
- Shi, L.; Rong, Y.; Daly, M.; Dyer, B.A.; Benedict, S.; Qiu, J.; Yamamoto, T. Cone-beam computed tomography-based delta-radiomics for early response assessment in radiotherapy for locally advanced lung cancer. Phys. Med. Biol. 2020, 65, 015009. [Google Scholar] [CrossRef]
- Guidi, G.; Maffei, N.; Meduri, B.; D’Angelo, E.; Mistretta, G.M.; Ceroni, P.; Ciarmatori, A.; Bernabei, A.; Maggi, S.; Cardinali, M.; et al. A machine learning tool for re-planning and adaptive RT: A multicenter cohort investigation. Phys. Med. 2016, 32, 1659–1666. [Google Scholar] [CrossRef] [PubMed]
- Peeken, J.C.; Bernhofer, M.; Wiestler, B.; Goldberg, T.; Cremers, D.; Rost, B.; Wilkens, J.J.; Combs, S.E.; Nusslin, F. Radiomics in radiooncology—Challenging the medical physicist. Phys. Med. 2018, 48, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Arabi, H.; Zaidi, H. Applications of artificial intelligence and deep learning in molecular imaging and radiotherapy. Eur. J. Hybrid Imaging 2020, 4, 17. [Google Scholar] [CrossRef]
- Placidi, L.; Lenkowicz, J.; Cusumano, D.; Boldrini, L.; Dinapoli, N.; Valentini, V. Stability of dosomics features extraction on grid resolution and algorithm for radiotherapy dose calculation. Phys. Med. 2020, 77, 30–35. [Google Scholar] [CrossRef]
- Delis, H.; Christaki, K.; Healy, B.; Loreti, G.; Poli, G.L.; Toroi, P.; Meghzifene, A. Moving beyond quality control in diagnostic radiology and the role of the clinically qualified medical physicist. Phys. Med. 2017, 41, 104–108. [Google Scholar] [CrossRef] [Green Version]
- Kalet, A.M.; Luk, S.M.H.; Phillips, M.H. Radiation Therapy Quality Assurance Tasks and Tools: The Many Roles of Machine Learning. Med. Phys. 2020, 47, e168–e177. [Google Scholar] [CrossRef]
- Kimura, Y.; Kadoya, N.; Tomori, S.; Oku, Y.; Jingu, K. Error detection using a convolutional neural network with dose difference maps in patient-specific quality assurance for volumetric modulated arc therapy. Phys. Med. 2020, 73, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Chan, M.F. Predictive time-series modeling using artificial neural networks for Linac beam symmetry: An empirical study. Ann. N. Y. Acad. Sci. 2017, 1387, 84–94. [Google Scholar] [CrossRef] [PubMed]
- El Naqa, I.; Irrer, J.; Ritter, T.A.; DeMarco, J.; Al-Hallaq, H.; Booth, J.; Kim, G.; Alkhatib, A.; Popple, R.; Perez, M.; et al. Machine learning for automated quality assurance in radiotherapy: A proof of principle using EPID data description. Med Phys. 2019, 46, 1914–1921. [Google Scholar] [CrossRef]
- Nyflot, M.J.; Thammasorn, P.; Wootton, L.S.; Ford, E.C.; Chaovalitwongse, W.A. Deep learning for patient-specific quality assurance: Identifying errors in radiotherapy delivery by radiomic analysis of gamma images with convolutional neural networks. Med. Phys. 2019, 46, 456–464. [Google Scholar] [CrossRef]
- Valdes, G.; Chan, M.F.; Lim, S.B.; Scheuermann, R.; Deasy, J.O.; Solberg, T.D. IMRT QA using machine learning: A multi-institutional validation. J. Appl. Clin. Med. Phys. 2017, 18, 279–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bizzego, A.; Bussola, N.; Chierici, M.; Maggio, V.; Francescatto, M.; Cima, L.; Cristoforetti, M.; Jurman, G.; Furlanello, C. Evaluating reproducibility of AI algorithms in digital pathology with DAPPER. PLoS Comput. Biol. 2019, 15, e1006269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaikhina, T.; Lowe, D.; Daga, S.; Briggs, D.; Higgins, R.; Khovanova, N. Machine Learning for Predictive Modelling based on Small Data in Biomedical Engineering. IFAC-PapersOnLine 2015, 48, 469–474. [Google Scholar] [CrossRef]
- Chatterjee, A.; Vallières, M.; Dohan, A.; Levesque, I.R.; Ueno, Y.; Bist, V.; Saif, S.; Reinhold, C.; Seuntjens, J. An Empirical Approach for Avoiding False Discoveries When Applying High-Dimensional Radiomics to Small Datasets. IEEE Trans. Radiat. Plasma Med. Sci. 2019, 3, 201–209. [Google Scholar] [CrossRef]
- Cui, S.; Tseng, H.H.; Pakela, J.; Haken, R.K.T.; El Naqa, I. Introduction to machine and deep learning for medical physicists. Med. Phys. 2020, 47, e127–e147. [Google Scholar] [CrossRef]
- Stepwise Regression, F.G.R. Anonymous Wiley International Encyclopedia of Marketing; American Cancer Society: Atlanta, GA, USA, 2010. [Google Scholar]
- Parmar, C.; Grossmann, P.; Rietveld, D.; Rietbergen, M.M.; Lambin, P.; Aerts, H.J. Radiomic Machine-Learning Classifiers for Prognostic Biomarkers of Head and Neck Cancer. Front. Oncol. 2015, 5, 272. [Google Scholar] [CrossRef] [Green Version]
- Lian, C.; Ruan, S.; Denoeux, T.; Jardin, F.; Vera, P. Selecting radiomic features from FDG-PET images for cancer treatment outcome prediction. Med. Image Anal. 2016, 32, 257–268. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Parmar, C.; Grossmann, P.; Quackenbush, J.; Lambin, P.; Bussink, J.; Mak, R.; Aerts, H.J. Exploratory Study to Identify Radiomics Classifiers for Lung Cancer Histology. Front. Oncol. 2016, 6, 71. [Google Scholar] [CrossRef] [Green Version]
- Hinton, G.E.; Srivastava, N.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R.R. Improving neural networks by preventing co-adaptation of feature detectors. arXiv 2012, arXiv:1207.0580. [Google Scholar]
- Lemaitre, G.; Nogueira, F.; Aridas, C.K. Imbalanced-learn: A Python Toolbox to Tackle the Curse of Imbalanced Datasets in Machine Learning. arXiv 2016, arXiv:1609.06570. [Google Scholar]
- Buda, M.; Maki, A.; Mazurowski, M.A. A systematic study of the class imbalance problem in convolutional neural networks. arXiv 2017, arXiv:1710.05381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.H.; Alagappan, M.; Goldstein, M.K.; Asch, S.M.; Altman, R.B. Decaying relevance of clinical data towards future decisions in data-driven inpatient clinical order sets. Int. J. Med. Inform. 2017, 102, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Nensa, F.; Demircioglu, A.; Rischpler, C. Artificial Intelligence in Nuclear Medicine. J. Nucl. Med. 2019, 60, 29S–37S. [Google Scholar] [CrossRef]
- Li, H.; Zhu, Y.; Burnside, E.S.; Drukker, K.; Hoadley, K.A.; Fan, C.; Conzen, S.D.; Whitman, G.J.; Sutton, E.J.; Net, J.M.; et al. MR Imaging Radiomics Signatures for Predicting the Risk of Breast Cancer Recurrence as Given by Research Versions of MammaPrint, Oncotype DX, and PAM50 Gene Assays. Radiology 2016, 281, 382–391. [Google Scholar] [CrossRef] [Green Version]
- Aerts, H.J.; Grossmann, P.; Tan, Y.; Oxnard, G.G.; Rizvi, N.; Schwartz, L.H.; Zhao, B. Defining a Radiomic Response Phenotype: A Pilot Study using targeted therapy in NSCLC. Sci. Rep. 2016, 6, 33860. [Google Scholar] [CrossRef] [Green Version]
- Geis, J.R.; Brady, A.P.; Wu, C.C.; Spencer, J.; Ranschaert, E.; Jaremko, J.L.; Langer, S.G.; Kitts, A.B.; Birch, J.; Shields, W.F. Ethics of Artificial Intelligence in Radiology: Summary of the Joint European and North American Multisociety Statement. Can. Assoc. Radiol. J. 2019, 70, 329–334. [Google Scholar] [CrossRef] [Green Version]
- Lai, M.C.; Brian, M.; Mamzer, M.F. Perceptions of artificial intelligence in healthcare: Findings from a qualitative survey study among actors in France. J. Transl. Med. 2020, 18, 1–13. [Google Scholar] [CrossRef]
- Pesapane, F.; Codari, M.; Sardanelli, F. Artificial intelligence in medical imaging: Threat or opportunity? Radiologists again at the forefront of innovation in medicine. Eur. Radiol. Exp. 2018, 2, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Townsend, D.; Cheng, Z.; Georg, D.; Drexler, W.; Moser, E. Grand challenges in biomedical physics. Front. Phys. 2013, 1, 1. [Google Scholar] [CrossRef] [Green Version]
- Sensakovic, W.F.; Mahesh, M. Role of the Medical Physicist in the Health Care Artificial Intelligence Revolution. J. Am. Coll. Radiol. 2019, 16, 393–394. [Google Scholar] [CrossRef] [PubMed]
- Cody, D.D.; Fisher, T.S.; Gress, D.A.; Layman, R.R., Jr.; McNitt-Gray, M.F.; Pizzutiello, R.J., Jr.; Fairobent, L.A. AAPM medical physics practice guideline 1.a: CT protocol management and review practice guideline. J. Appl. Clin. Med Phys. 2013, 14, 3–12. [Google Scholar] [PubMed]
- Mackin, D.; Fave, X.; Zhang, L.; Fried, D.; Yang, J.; Taylor, B.; Rodriguez-Rivera, E.; Dodge, C.; Jones, A.K.; Court, L. Measuring Computed Tomography Scanner Variability of Radiomics Features. Investig. Radiol. 2015, 50, 757–765. [Google Scholar] [CrossRef] [PubMed]
- Fave, X.; Cook, M.; Frederick, A.; Zhang, L.; Yang, J.; Fried, D.; Stingo, F.; Court, L. Preliminary investigation into sources of uncertainty in quantitative imaging features. Comput. Med. Imaging Graph. 2015, 44, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Samei, E.; Hoye, J.; Zheng, Y.; Solomon, J.B.; Marin, D. Design and fabrication of heterogeneous lung nodule phantoms for assessing the accuracy and variability of measured texture radiomics features in CT. J. Med. Imaging 2019, 6, 021606. [Google Scholar] [CrossRef]
- Pfaehler, E.; Beukinga, R.J.; de Jong, J.R.; Slart, R.H.J.A.; Slump, C.H.; Dierckx, R.A.J.O.; Boellaard, R. Repeatability of (18) F-FDG PET radiomic features: A phantom study to explore sensitivity to image reconstruction settings, noise, and delineation method. Med. Phys. 2019, 46, 665–678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bianchini, L.; Botta, F.; Origgi, D.; Rizzo, S.; Mariani, M.; Summers, P.; García-Polo, P.; Cremonesi, M.; Lascialfari, A. PETER PHAN: An MRI phantom for the optimisation of radiomic studies of the female pelvis. Phys. Med. 2020, 71, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Park, C.M.; Lee, M.; Park, S.J.; Song, Y.S.; Lee, J.H.; Hwang, E.J.; Goo, J.M. Impact of Reconstruction Algorithms on CT Radiomic Features of Pulmonary Tumors: Analysis of Intra- and Inter-Reader Variability and Inter-Reconstruction Algorithm Variability. PLoS ONE. 2016, 11, e0164924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leijenaar, R.T.; Carvalho, S.; Velazquez, E.R.; van Elmpt, W.J.; Parmar, C.; Hoekstra, O.S.; Hoekstra, C.J.; Boellaard, R.; Dekker, A.L.; Gillies, R.J.; et al. Stability of FDG-PET Radiomics features: An integrated analysis of test-retest and inter-observer variability. Acta Oncol. 2013, 52, 1391–1397. [Google Scholar] [CrossRef] [Green Version]
- Zhao, B.; James, L.P.; Moskowitz, C.S.; Guo, P.; Ginsberg, M.S.; Lefkowitz, R.A.; Qin, Y.; Riely, G.J.; Kris, M.G.; Schwartz, L.H. Evaluating Variability in Tumor Measurements from Same-day Repeat CT Scans of Patients with Non–Small Cell Lung Cancer. Radiology 2009, 252, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Desseroit, M.C.; Tixier, F.; Weber, W.A.; Siegel, B.A.; le Rest, C.C.; Visvikis, D.; Hatt, M. Reliability of PET/CT shape and heterogeneity features in functional and morphological components of Non-Small Cell Lung Cancer tumors: A repeatability analysis in a prospective multi-center cohort. J. Nucl. Med. 2016, 58, 406–411. [Google Scholar] [CrossRef]
- Galavis, P.E.; Hollensen, C.; Jallow, N.; Paliwal, B.; Jeraj, R. Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters. Acta Oncol. 2010, 49, 1012–1016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, L.; Lv, W.; Jiang, J.; Ma, J.; Feng, Q.; Rahmim, A.; Chen, W. Robustness of Radiomic Features in [11C]Choline and [18F]FDG PET/CT Imaging of Nasopharyngeal Carcinoma: Impact of Segmentation and Discretization. Mol. Imaging Biol. 2016, 18, 935–945. [Google Scholar] [CrossRef] [PubMed]
- Bailly, C.; Bodet-Milin, C.; Couespel, S.; Necib, H.; Kraeber-Bodéré, F.; Ansquer, C.; Carlier, T. Revisiting the robustness of PET-based textural features in the context of multi-centric trials. PLoS ONE 2016, 11, e0159984. [Google Scholar] [CrossRef]
- Yang, F.; Dogan, N.; Stoyanova, R.; Ford, J.C. Evaluation of radiomic texture feature error due to MRI acquisition and reconstruction: A simulation study utilizing ground truth. Phys. Med. 2018, 50, 26–36. [Google Scholar] [CrossRef]
- Kaus, M.R.; Brock, K.K.; Pekar, V.; Dawson, L.A.; Nichol, A.M.; Jaffray, D.A. Assessment of a model-based deformable image registration approach for radiation therapy planning. Int. J. Radiat. Oncol. 2007, 68, 572–580. [Google Scholar] [CrossRef]
- Isaksson, L.J.; Raimondi, S.; Botta, F.; Pepa, M.; Gugliandolo, S.G.; de Angelis, S.P.; Marvaso, G.; Petralia, G.; de Cobelli, O.; Gandini, S.; et al. Effects of MRI image normalization techniques in prostate cancer radiomics. Phys. Med. 2020, 71, 7–13. [Google Scholar] [CrossRef]
- Brock, K.K. Deformable Registration Accuracy Consortium, Results of a multi-institution deformable registration accuracy study (MIDRAS). Int. J. Radiat. Oncol. 2010, 76, 583–596. [Google Scholar] [CrossRef] [PubMed]
- Avanzo, M.; Barbiero, S.; Trovo, M.; Bissonnette, J.P.; Jena, R.; Stancanello, J.; Pirrone, G.; Matrone, F.; Minatel, E.; Cappelletto, C.; et al. Voxel-by-voxel correlation between radiologically radiation induced lung injury and dose after image-guided, intensity modulated radiotherapy for lung tumors. Phys. Med. 2017, 42, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Mahesh, M. Essential Role of a Medical Physicist in the Radiology Department. Radiographics 2018, 38, 1665–1671. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, M.D.; Clunie, D.A.; Fedorov, A.; Doyle, S.W.; Pieper, S.; Klepeis, V.; Le, L.P.; Mutter, G.L.; Milstone, D.S.; Schultz, T.J.; et al. Implementing the DICOM Standard for Digital Pathology. J. Pathol. Inform. 2018, 9, 37. [Google Scholar] [PubMed]
- Kortesniemi, M.; Tsapaki, V.; Trianni, A.; Russo, P.; Maas, A.; Kallman, H.E.; Brambilla, M.; Damilakis, J. The European Federation of Organisations for Medical Physics (EFOMP) White Paper: Big data and deep learning in medical imaging and in relation to medical physics profession. Phys. Med. 2018, 56, 90–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zwanenburg, A.; Leger, S.; Vallieres, M.; Lock, S. Image Biomarker Standardisation Initiative for, Image biomarker standardisation initiative. arXiv 2016, arXiv:1612.07003. [Google Scholar]
- Mahon, R.N.; Ghita, M.; Hugo, G.D.; Weiss, E. ComBat harmonization for radiomic features in independent phantom and lung cancer patient computed tomography datasets. Phys. Med. Biol. 2019, 65, 015010. [Google Scholar] [CrossRef]
- Kesner, A.; Laforest, R.; Otazo, R.; Jennifer, K.; Pan, T. Medical imaging data in the digital innovation age. Med. Phys. 2018, 45, e40–e52. [Google Scholar] [CrossRef] [Green Version]
- Parmar, C.; Grossmann, P.; Bussink, J.; Lambin, P.; Aerts, H.J. Machine Learning methods for Quantitative Radiomic Biomarkers. Sci. Rep. 2015, 5, 13087. [Google Scholar] [CrossRef]
- Barucci, A. Adversarial radiomics: The rising of potential risks in medical imaging from adversarial learning. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 2941–2943. [Google Scholar] [CrossRef]
- Li, S.; Chen, Y.; Peng, Y.; Bai, L. Learning More Robust Features with Adversarial Training. arXiv 2018, arXiv:1804.07757. [Google Scholar]
- U.S. Food and Drug Administration: MicroArray/Sequencing Quality Control (MAQC/SEQC). 2021. Available online: https://www.fda.gov/science-research/bioinformatics-tools/microarraysequencing-quality-control-maqcseqc (accessed on 12 February 2021).
- Collins, G.S.; Reitsma, J.B.; Altman, D.G.; Moons, K.G. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD Statement. MC Med. 2015, 13, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, B.; White, G. The role of clinical medical physicists in the future: Quality, safety, technology implementation, and enhanced direct patient care. J. Appl. Clin. Med. Phys. 2019, 20, 4–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caruana, C.J.; Tsapaki, V.; Damilakis, J.; Brambilla, M.; Martin, G.M.; Dimov, A.; Bosmans, H.; Egan, G.; Bacher, K.; McClean, B. EFOMP policy statement 16: The role and competences of medical physicists and medical physics experts under 2013/59/EURATOM. Phys. Med. 2018, 48, 162–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okamoto, H.; Ota, S.; Kawamorita, R.; Sakamoto, M.; Nakamura, S.; Nishioka, S.; Kabuki, S.; Masai, N.; Mizuno, N.; Furuya, T.; et al. Summary of the Report of Task Group 100 of the AAPM: Application of Risk Analysis Methods to Radiation Therapy Quality Management. Igaku Butsuri 2020, 40, 28–34. [Google Scholar] [PubMed]
- Bang, J.Y.; Hough, M.; Hawes, R.H.; Varadarajulu, S. Use of Artificial Intelligence to Reduce Radiation Exposure at Fluoroscopy-Guided Endoscopic Procedures. Am. J. Gastroenterol. 2020, 115, 555–561. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, L.; Zhao, J. Secure Deep Learning Engineering: A Road Towards Quality Assurance of Intelligent Systems. In Lecture Notes in Computer Science; Springer: Berlin, Germany, 2019; pp. 3–15. [Google Scholar]
- Tang, A.; Tam, R.; Cadrin-Chênevert, A.; Guest, W.; Chong, J.; Barfett, J.; Chepelev, L.; Cairns, R.; Mitchell, J.R.; Cicero, M.D.; et al. Canadian Association of Radiologists White Paper on Artificial Intelligence in Radiology. Can. Assoc. Radiol. J. 2018, 69, 120–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Currie, G.; Hawk, K.E.; Rohren, E.; Vial, A.; Klein, R. Machine Learning and Deep Learning in Medical Imaging: Intelligent Imaging. J. Med Imaging Radiat. Sci. 2019, 50, 477–487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prior, F.W.; Clark, K.; Commean, P.; Freymann, J.; Jaffe, C.; Kirby, J.; Moore, S.; Smith, K.; Tarbox, L.; Vendt, B.; et al. TCIA: An information resource to enable open science. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2013, 2013, 1282–1285. [Google Scholar]
- Sharma, A.; Tarbox, L.; Kurc, T.; Bona, J.; Smith, K.; Kathiravelu, P.; Bremer, E.; Saltz, J.H.; Prior, F. PRISM: A Platform for Imaging in Precision Medicine. JCO Clin. Cancer Inform. 2020, 4, 491–499. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, M.D.; Dumontier, M.; Aalbersberg, I.J.; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten, J.W.; Santos, L.B.D. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 2016, 3, 160018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avanzo, M.; Trianni, A.; Botta, F.; Talamonti, C.; Stasi, M.; Iori, M. Artificial Intelligence and the Medical Physicist: Welcome to the Machine. Appl. Sci. 2021, 11, 1691. https://doi.org/10.3390/app11041691
Avanzo M, Trianni A, Botta F, Talamonti C, Stasi M, Iori M. Artificial Intelligence and the Medical Physicist: Welcome to the Machine. Applied Sciences. 2021; 11(4):1691. https://doi.org/10.3390/app11041691
Chicago/Turabian StyleAvanzo, Michele, Annalisa Trianni, Francesca Botta, Cinzia Talamonti, Michele Stasi, and Mauro Iori. 2021. "Artificial Intelligence and the Medical Physicist: Welcome to the Machine" Applied Sciences 11, no. 4: 1691. https://doi.org/10.3390/app11041691
APA StyleAvanzo, M., Trianni, A., Botta, F., Talamonti, C., Stasi, M., & Iori, M. (2021). Artificial Intelligence and the Medical Physicist: Welcome to the Machine. Applied Sciences, 11(4), 1691. https://doi.org/10.3390/app11041691