Construction of a Medical Radiation-Shielding Environment by Analyzing the Weaving Characteristics and Shielding Performance of Shielding Fibers Using X-ray-Impermeable Materials
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Radiation-Shielding Yarn
3.2. Radiation-Shielding Fabric
3.3. Radiation-Shielding Performance
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dougeni, E.; Faulkner, K.; Panayiotakis, G. A Review of Patient Dose and Optimisation Methods in Adult and Paediatric CT Scanning. Eur. J. Radiol. 2012, 81, e665–e683. [Google Scholar] [CrossRef]
- Del Rosario Pérez, M. Referral Criteria and Clinical Decision Support: Radiological Protection Aspects for Justification. Ann. ICRP 2015, 44, 276–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, L.; Tashiro, S. Estimation of the Effects of Medical Diagnostic Radiation Exposure Based on DNA Damage. J. Radiat. Res. 2018, 59, ii121–ii129. [Google Scholar] [CrossRef] [PubMed]
- Schonfeld, S.J.; Lee, C.; Berrington de González, A. Medical Exposure to Radiation and Thyroid Cancer. Clin. Oncol. 2011, 23, 244–250. [Google Scholar] [CrossRef]
- Hobson, J.; Cooper, A. Radiation Protection and Shielding Design—Strengthening the Link. Radiat. Prot. Dosim. 2005, 115, 251–253. [Google Scholar] [CrossRef]
- Badawy, M.K.; Deb, P.; Chan, R.; Farouque, O. A Review of Radiation Protection Solutions for the Staff in the Cardiac Catheterisation Laboratory. Heart Lung Circ. 2016, 25, 961–967. [Google Scholar] [CrossRef] [Green Version]
- Rose, A.; Rae, W.I.D. Personal Protective Equipment Availability and Utilization among Interventionalists. Saf. Health Work 2019, 10, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Aral, N.; Nergis, F.B.; Candan, C. An Alternative X-ray Shielding Material Based on Coated Textiles. Text. Res. J. 2016, 86, 803–811. [Google Scholar] [CrossRef]
- Singh, A.K.; Singh, R.K.; Sharma, B.; Tyagi, A.K. Characterization and Biocompatibility Studies of Lead Free X-ray Shielding Polymer Composite for Healthcare Application. Radiat. Phys. Chem. 2017, 138, 9–15. [Google Scholar] [CrossRef]
- Adlienė, D.; Gilys, L.; Griškonis, E. Development and Characterization of New Tungsten and Tantalum Containing Composites for Radiation Shielding in Medicine. Nucl. Instrum. Methods Phys. Res. B 2020, 467, 21–26. [Google Scholar] [CrossRef]
- Panuccio, G.; Greenberg, R.K.; Wunderle, K.; Mastracci, T.M.; Eagleton, M.G.; Davros, L. Comparison of Indirect Radiation Dose Estimates with Directly Measured Radiation Dose for Patients and Operators during Complex Endovascular Procedures. J. Vasc. Surg. 2011, 53, 885–894.e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monaco, M.G.L.; Carta, A.; Tamhid, T.; Porru, S. Anti-X Apron Wearing and Musculoskeletal Problems among Healthcare Workers: A Systematic Scoping Review. Int. J. Environ. Res. Public Health 2020, 17, 5877. [Google Scholar] [CrossRef] [PubMed]
- Hubbert, T.E.; Vucich, J.J.; Armstrong, M.R. Lightweight Aprons for Protection against Scattered Radiation during Fluoroscopy. AJR Am. J. Roentgenol. 1993, 161, 1079–1081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mori, H.; Koshida, K.; Ishigamori, O.; Matsubara, K. Evaluation of the Effectiveness of X-ray Protective Aprons in Experimental and Practical Fields. Radiol. Phys. Technol. 2014, 7, 158–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AbuAlRoos, N.J.; Azman, M.N.; Baharul Amin, N.A.; Zainon, R. Tungsten-based Material as Promising New Lead-free Gamma Radiation Shielding Material in Nuclear Medicine. Phys. Med. 2020, 78, 48–57. [Google Scholar] [CrossRef]
- Kim, S.C.; Lee, H.K.; Cho, J.H. Analysis of Low-dose Radiation Shield Effectiveness of Multi-gate Polymeric Sheets. Radiat. Eff. Defects Solids 2014, 169, 584–591. [Google Scholar] [CrossRef]
- Bychkov, A.N.; Dzhardimalieva, G.I.; Fetisov, G.P.; Valskiy, V.V.; Golubeva, N.D.; Pomogailo, A.D. Synthesis and Characterization of Metal–Polymer Nanocomposites with Radiation-protective Properties. Russ. Metall. (Metally) 2016, 2016, 1207–1213. [Google Scholar] [CrossRef]
- Li, Q.; Wei, Q.; Zheng, W.; Zheng, Y.; Okosi, N.; Wang, Z.; Su, M. Enhanced Radiation Shielding with Conformal Light-weight Nanoparticle–Polymer Composite. ACS Appl. Mater. Interfaces 2018, 10, 35510–35515. [Google Scholar] [CrossRef]
- Kumar, S.; Moro, L.; Narayan, Y. Perceived Physical Stress at Work and Musculoskeletal Discomfort in X-ray Technologists. Ergonomics 2004, 47, 189–201. [Google Scholar] [CrossRef]
- Kim, S.H.; Kim, Y.J.; Kwak, J.S. Development and Radiation Shield effects of Dose Reduction Fiber for Scatter ray in CT Exams. J. Korea Acad. Ind. Coop. Soc. 2013, 14, 1871–1876. [Google Scholar] [CrossRef]
- Irani, Z.; Alexander, B.; Zhang, D.; Liu, B.; Ghoshhajra, B.; Oklu, R. Novel lead-free drape applied to the X-ray detector protects against scatter radiation in the angiography suite. J. Vasc. Interv. Radiol. 2014, 25, 1200–1208. [Google Scholar] [CrossRef]
- Pulford, S.; Fergusson, M. A Textile Platform for Non-lead Radiation Shielding Apparel. J. Text. Inst. 2016, 107, 1610–1616. [Google Scholar] [CrossRef]
- Mirzaei, M.; Zarrebini, M.; Shirani, A.; Shanbeh, M.; Borhani, S. X-ray Shielding Behavior of Garment Woven with Melt-spun Polypropylene Monofilament. Powder Technol. 2019, 345, 15–25. [Google Scholar] [CrossRef]
- Rosenau, T.; Potthast, A.; Sixta, H.; Kosma, P. The Chemistry of Side Reactions and Byproduct Formation in the System NMMO/Cellulose (Lyocell Process). Prog. Polym. Sci. 2001, 26, 1763–1837. [Google Scholar] [CrossRef]
- Ibbett, R.N.; Domvoglou, D.; Phillips, D.A.S. The Hydrolysis and Recrystallisation of Lyocell and Comparative Cellulosic Fibres in Solutions of Mineral Acid. Cellulose 2008, 15, 241–254. [Google Scholar] [CrossRef]
- Michud, A.; Tanttu, M.; Asaadi, S.; Ma, Y.; Netti, E.; Kääriainen, P.; Persson, A.; Berntsson, A.; Hummel, M.; Sixta, H. Ioncell-F: Ionic Liquid-based Cellulosic Textile Fibers as an Alternative to Viscose and Lyocell. Text. Res. J. 2016, 86, 543–552. [Google Scholar] [CrossRef]
- Lincewati, S.; Herty, A.S.; Martha, R.; Timbangen, S.; Diana, A.B. Determination of Half Value Layer (HVL) Value on X-Rays Radiography with using Aluminum, Copper, and Lead (Al, Cu, and Sn) Attenuators. J. Phys. Conf. Ser. 2018, 1116, 1–6. [Google Scholar] [CrossRef]
- Hubbell, J.H. Photon Mass Attenuation and Energy absorption Coefficients from 1keV to 20MeV. Int. Appl. Radiat. Isot. 1982, 33, 1269–1290. [Google Scholar] [CrossRef]
- Kim, S.C.; Park, M.H. Development of Radiation Shield with Environmentally-friendly Materials; I.: Comparison and Evaluation of Fiber, Rubber, Silicon in the Radiation Shielding Sheet. J. Radiol. Sci. Technol. 2010, 33, 121–126. [Google Scholar]
- Livingstone, R.S.; Varghese, A.; Keshava, S.N. A Study on the Use of Radiation-protective Apron among Interventionists in Radiology. J. Clin. Imaging Sci. 2018, 8, 34:1–34:4. [Google Scholar] [CrossRef]
- Moore, B.; vanSonnenberg, E.; Casola, G.; Novelline, R.A. The Relationship between Back Pain and Lead Apron Use in Radiologists. AJR Am. J. Roentgenol. 1992, 158, 191–193. [Google Scholar] [CrossRef]
- Nambiar, S.; Yeow, J.T.W. Polymer-composite Materials for Radiation Protection. ACS Appl. Mater. Interfaces 2012, 4, 5717–5726. [Google Scholar] [CrossRef] [PubMed]
- Qu, L.; Tian, M.; Zhang, X.; Guo, X.; Zhu, S.; Han, G.; Li, C. Barium Sulfate/Regenerated Cellulose Composite Fiber with X-ray Radiation Resistance. J. Ind. Text. 2014, 45, 352–367. [Google Scholar] [CrossRef]
- Günther, K.; Giebing, C.; Askani, A.; Leisegang, T.; Krieg, M.; Kyosev, Y.; Weide, T.; Mahltig, B. Cellulose/Inorganic-composite Fibers for Producing Textile Fabrics of High X-ray Absorption Properties. Mater. Chem. Phys. 2015, 167, 125–135. [Google Scholar] [CrossRef]
- Mirzaei, M.; Zarrebini, M.; Shirani, A.; Shanbeh, M.; Borhani, S. X-ray Shielding by a Novel Garment Woven with Melt-spun Monofilament Weft Yarn Containing Lead and Tin Particles. Text. Res. J. 2019, 89, 63–75. [Google Scholar] [CrossRef]
- Mahltig, B.; Günther, K.; Askani, A.; Bohnet, F.; Brinkert, N.; Kyosev, Y.; Weide, T.; Krieg, M.; Leisegang, T. X-ray-protective Organic/Inorganic Fiber—Along the Textile Chain from Fiber Production to Clothing Application. J. Text. Inst. 2017, 108, 1975–1984. [Google Scholar] [CrossRef]
- Aral, N.; Nergis, F.B.; Candan, C. The X-ray Attenuation and the Flexural Properties of Lead-free Coated Fabrics. J. Ind. Text. 2017, 47, 252–268. [Google Scholar] [CrossRef]
- Aral, N.; Nergis, F.B.; Candan, C. Investigation of X-ray Attenuation and the Flex Resistance Properties of Fabrics Coated with Tungsten and Barium Sulphate Additives. Tekstil ve Konfeksiyon 2016, 26, 166–171. [Google Scholar]
- Maghrabi, H.A.; Vijayan, A.; Mohaddes, F.; Deb, P.; Wang, L. Evaluation of X-ray Radiation Shielding Performance of Barium Sulphate-coated Fabrics. Fibers Polym. 2016, 17, 2047–2054. [Google Scholar] [CrossRef]
- Lin, J.H.; Chung, J.C.; Zeng, Y.Z.; Liu, Y.C.; Lu, Y.F.; Wen, S.P.; Lou, C.W. Manufacturing and Property Evaluations of X-ray Shielding Fabric and Pattern Making of Vests. Fibers Polym. 2015, 16, 216–222. [Google Scholar] [CrossRef]
- Maghrabi, H.A.; Vijayan, A.; Deb, P.; Wang, L. Bismuth Oxide-coated Fabrics for X-ray Shielding. Text. Res. J. 2016, 86, 649–658. [Google Scholar] [CrossRef]
- Vana, N.; Hajek, M.; Berger, T.; Fugger, M.; Hofmann, P. Novel Shielding Materials for Space and Air Travel. Radiat. Prot. Dosim. 2006, 120, 405–409. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Du, X.L.; Reitzel, L.R.; Xu, L.; Sturgis, E.M. Impact of Enhanced Detection on the Increase in Thyroid Cancer Incidence in the United States: Review of Incidence Trends by Socioeconomic Status within the Surveillance, Epidemiology, and End Results Registry, 1980–2008. Thyroid 2013, 23, 103–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vuolo, M.; Baiocco, G.; Barbieri, S.; Bocchini, L.; Giraudo, M.; Gheysens, T.; Lobascio, C.; Ottolenghi, A. Exploring Innovative Radiation Shielding Approaches in Space: A Material and Design Study for a Wearable Radiation Protection Spacesuit. Life Sci. Space Res. (Amst.) 2017, 15, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Heidbuchel, H.; Wittkampf, F.H.M.; Vano, E.; Ernst, S.; Schilling, R.; Picano, E.; Mont, L.; ESC Scientific Document Group. Practical Ways to Reduce Radiation Dose for Patients and Staff during Device Implantations and Electrophysiological Procedures. EP Eur. 2014, 16, 946–964. [Google Scholar] [CrossRef] [PubMed]
Condition | Adjustable Value |
---|---|
Content of fine particles in fiber (wt%) | 5 |
Extruder temperature range (°C) | 300–315 |
Extruder pressure (Pa) | 1.5 × 10−4 |
Spinning pack temperature (°C) | 292 |
Spinning pack pressure (Pa) | 1.5 × 10−3 |
Cooling time (s) | 0.43 |
Take-off roll speed (rpm) | 3230 |
Property | Yarn Containing BaSO4 | Yarn Containing Bi2O3 |
---|---|---|
Fineness (denier) | 75.1 | 76.2 |
Tensile strength (g/d) | 3.14 | 4.11 |
Elongation at break (%) | 29.4 | 69.5 |
Mineral content (wt%) | 5 | |
Twists per meter (TPM) | 75 denier/36 filaments |
Fabric Type | Tensile Strength (N) | Elongation at Break (%) | Tearing Strength (N) | Specific Weight (g/m 2) | Thickness (mm) | |||
---|---|---|---|---|---|---|---|---|
Containing BaSO4 | Warp | 740 | Warp | 34 | Warp | 16 | 114–118 | 0.19–0.20 |
Weft | 290 | Weft | 20 | Weft | 9 | |||
Containing Bi2O3 | Warp | 710 | Warp | 58 | Warp | 28 | 110–120 | 0.20–0.21 |
Weft | 590 | Weft | 76 | Weft | 18 |
Radiation Type | Effective X-Ray Energy (keV) | Radiation-Shielding Rate (%) | |
---|---|---|---|
Containing BaSO4 | Containing Bi2O3 | ||
X-ray | 25.2 | 13.8 | 21.5 |
27.9 | 11.5 | 18.4 | |
31.4 | 9.4 | 12.8 | |
42.8 | 8.6 | 10.2 | |
50.8 | 7.4 | 9.4 | |
57.2 | 4.1 | 7.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-C. Construction of a Medical Radiation-Shielding Environment by Analyzing the Weaving Characteristics and Shielding Performance of Shielding Fibers Using X-ray-Impermeable Materials. Appl. Sci. 2021, 11, 1705. https://doi.org/10.3390/app11041705
Kim S-C. Construction of a Medical Radiation-Shielding Environment by Analyzing the Weaving Characteristics and Shielding Performance of Shielding Fibers Using X-ray-Impermeable Materials. Applied Sciences. 2021; 11(4):1705. https://doi.org/10.3390/app11041705
Chicago/Turabian StyleKim, Seon-Chil. 2021. "Construction of a Medical Radiation-Shielding Environment by Analyzing the Weaving Characteristics and Shielding Performance of Shielding Fibers Using X-ray-Impermeable Materials" Applied Sciences 11, no. 4: 1705. https://doi.org/10.3390/app11041705
APA StyleKim, S.-C. (2021). Construction of a Medical Radiation-Shielding Environment by Analyzing the Weaving Characteristics and Shielding Performance of Shielding Fibers Using X-ray-Impermeable Materials. Applied Sciences, 11(4), 1705. https://doi.org/10.3390/app11041705