Assessment of Natural Radioactivity and Radiological Risks in River Sediments from Calabria (Southern Italy)
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
3.1. Samples Collection and Preparation
3.2. Gamma Spectrometry Measurements
3.3. Radiological Indices
3.3.1. Absorbed Gamma Dose Rate
3.3.2. The Annual Effective Dose Equivalent
3.3.3. Radium Equivalent Activity
3.3.4. Hazard Indices
3.3.5. Activity Concentration Index
3.3.6. Annual Gonadal Equivalent Dose (AGED)
3.4. Delineation of Radiological Map
3.5. Statistical Analysis
4. Results and Discussion
4.1. 226. Ra, 232Th and 40K Activity Concentration in the River Sediments, Spatial Distribution and Classification of Hazard Regions
4.2. Dose Assessment and Hazard Indices
4.3. Statistical Features
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). Sources and Effects of Ionizing Radiation. Report of the United Nations Scientific Committee on the Effects of Atomic Radiation to the General Assembly; United Nations: New York, NY, USA, 2000. [Google Scholar]
- Baeza, A.; Del Rio, M.; Jimenez, A.; Miro, C.; Paniagua, J. Influence of geology and soil particle size on the surface-area/volume activity ratio for natural radionuclides. J. Radioanal. Nucl. Chem. 1995, 189, 289–299. [Google Scholar] [CrossRef]
- Tzortzis, M.; Tsertos, H.; Christofides, S.; Christodoulides, G. Gamma-ray measurements of naturally occurring radioactive samples from Cyprus characteristic geological rocks. Radiat. Meas. 2003, 37, 221–229. [Google Scholar] [CrossRef] [Green Version]
- Navas, A.; Soto, J.; Machin, J. Edaphic and physiographic factors affecting the distribution of natural gamma-emitting radionuclides in the soils of the Arnas catchment in the Central Spanish Pyrenees. Eur. J. Soil Sci. 2002, 53, 629–638. [Google Scholar] [CrossRef] [Green Version]
- Pulhani, V.A.; Dafauti, S.; Heqde, A.G.; Sharma, R.M.; Mishra, U.C. Uptake and distribution of natural radioactivity in wheat plants from soil. J. Environ. Radioact. 2005, 79, 331–346. [Google Scholar] [CrossRef]
- Chandrajith, R.; Seneviratna, S.; Wickramaarachchi, K.; Attanayake, T.; Aturaliya, T.N.C.; Dissanayake, C.B. Natural radionuclides and trace elements in rice field soils in relation to fertilizer application: Study of a chronic kidney disease area in Sri Lanka. Environ. Earth Sci. 2010, 60, 193–201. [Google Scholar] [CrossRef]
- Fornelli, A.; Piccarreta, G.; Del Moro, A.; Acquafredda, P. Multi-stage melting in the lower crust of the Serre (southern Italy). J. Petr. 2002, 43, 2191. [Google Scholar] [CrossRef]
- Sabatino, G.; Di Bella, M.; Caridi, F.; Italiano, F.; Romano, D.; Magazù, S.; Gnisci, A.; Faggio, G.; Messina, G.; Santangelo, S.; et al. Radiological assessment, mineralogy and geochemistry of the heavy-mineral placers from the Calabrian coast (South Italy). J. Instrum. 2019, 14, P05015. [Google Scholar] [CrossRef]
- El-Gamal, A.; Nasr, S.; El-Taher, A. Study of the spatial distribution of natural radioactivity in the upper Egypt Nile river sediments. Radiat. Meas. 2007, 42, 457–465. [Google Scholar] [CrossRef]
- Caridi, F.; Marguccio, S.; Belvedere, A.; D’Agostino, M.; Belmusto, G. A methodological approach to a radioactive sample analysis with low-level γ-ray spectrometry. J. Instrum. 2018, 13, P09022. [Google Scholar] [CrossRef]
- Caridi, F.; Marguccio, S.; Belvedere, A.; D’Agostino, M.; Belmusto, G.; Durante, G.; Trozzo, R.; Fullone, F. Natural radioactivity measurements and dosimetric evaluations in soil samples with a high content of NORM. Eur. Phys. J. Plus 2017, 132, 56. [Google Scholar] [CrossRef]
- Cirrincione, R.; Fazio, E.; Fiannacca, P.; Ortolano, G.; Pezzino, A.; Punturo, R. The Calabria-Peloritani Orogen, a composite terrane in Central Mediterranean; Its overall architecture and geodynamic significance for a pre-Alpine scenario around the Tethyan basin. Periodico di Mineralogia 2015, 84, 701–749. [Google Scholar] [CrossRef]
- Caggianelli, A.; Liotta, D.; Prosser, G.; Ranalli, G. Pressure-temperature evolution of the late Hercyian Calabria continental crust: Compatibility with post-collisional extensional tectonics. Terra Nova 2007, 19, 502. [Google Scholar] [CrossRef]
- Angì, G.; Cirrincione, R.; Fazio, E.; Fiannacca, P.; Ortolano, G.; Pezzino, A. Metamorphic evolution of preserved Hercynian crustal section in the Serre massif (Calabria-Peloritani Orogen, southern Italy). Lithos 2010, 115, 237. [Google Scholar] [CrossRef]
- Caridi, F.; D’Agostino, M.; Belvedere, A.; Marguccio, S.; Belmusto, G.; Gatto, M.F. Diagnostics techniques and dosimetric evaluations for environmental radioactivity investigations. J. Instrum. 2016, 11, C10012. [Google Scholar] [CrossRef]
- Caridi, F.; D’Agostino, M.; Messina, M.; Belvedere, A.; Marguccio, S.; Belmusto, G.; Marcianò, G.; Grioli, L. Lichens as environmental risk detectors. Eur. Phys. J. Plus 2017, 132, 189. [Google Scholar] [CrossRef]
- Caridi, F.; Belvedere, A.; D’Agostino, M.; Marguccio, S.; Marino, G.; Messina, M.; Belmusto, G. An investigation on airborne particulate radioactivity, heavy metals and polycyclic aromatic hydrocarbons composition in Calabrian selected sites, southern Italy. Ind. J. Environ. Protect. 2019, 39, 321–326. [Google Scholar]
- Caridi, F.; Messina, M.; Belvedere, A.; D’Agostino, M.; Marguccio, S.; Settineri, L.; Belmusto, G. Food salt characterization in terms of radioactivity and metals contamination. Appl. Sci. 2019, 9, 2882. [Google Scholar] [CrossRef] [Green Version]
- Caridi, F.; D’Agostino, M.; Belvedere, A. Radioactivity in Calabrian (Southern Italy) wild boar meat. Appl. Sci. 2020, 10, 3580. [Google Scholar] [CrossRef]
- Ramasamy, V.; Suresh, G.; Meenakshisundaram, V.; Ponnusamy, V. Horizontal and vertical characterization of radionuclides and minerals in river sediments. Appl. Rad. Isot. 2011, 69, 184–195. [Google Scholar] [CrossRef] [PubMed]
- Caridi, F.; Pappaterra, D.; Belmusto, G.; Messina, M.; Belvedere, A.; D’Agostino, M.; Settineri, L. Radioactivity and heavy metals concentration in Italian (Calabrian) DOC wines. Appl. Sci. 2019, 9, 4584. [Google Scholar] [CrossRef] [Green Version]
- Caridi, F.; Messina, M.; Faggio, G.; Santangelo, S.; Messina, G.; Belmusto, G. Radioactivity, radiological risk and metal pollution assessment in marine sediments from Calabrian selected areas, southern Italy. Eur. Phys. J. Plus 2018, 133, 65. [Google Scholar] [CrossRef]
- Torrisi, L.; Visco, A.M.; Campo, N.; Caridi, F. Pulsed laser treatments of polyethylene films. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2010, 268, 3117–3121. [Google Scholar] [CrossRef]
- Beretka, J.; Matthew, P.J. Natural radioactivity of Australian building materials, waste and by-products. Health Phys. 1985, 48, 87–95. [Google Scholar] [CrossRef]
- Official Journal of the European Union. Council Directive 2013/59/Euratom; Official Journal of the European Union: Luxembourg, 2015. [Google Scholar]
- Ravisankar, R.; Vanasundari, K.; Chandrasekaran, A.; Rajalakshmi, A.; Suganya, M.; Vijayagopal, P.; Meenakshisundaram, V. Measurement of natural radioactivity in building materials of Namakkal, Tamil Nadu, India using gamma-ray spectrometry. Appl. Rad. And Isot. 2012, 70, 699–704. [Google Scholar] [CrossRef] [PubMed]
- Darwish, D.A.E.; Abul-Nasr, K.T.M.; El-Khayatt, A.M. The assessment of natural radioactivity and its associated radiological hazards and dose parameters in granite samples from South Sinai, Egypt. J. Radiat. Res. Appl. Sci. 2015, 8, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Surfer 10 Software. Available online: https://www.goldensoftware.com/products/surfer (accessed on 17 November 2020).
- XLSTAT: Statistical Software & Data Analysis Add-On for Excel. Available online: https://www.xlstat.com/en/ (accessed on 16 November 2020).
- Mottese, A.F.; Sabatino, G.; Di Bella, M.; Fede, M.R.; Caridi, F.; Parisi, F.; Marcianò, G.; Caccamo, M.T.; Italiano, F.; Yuce, G.; et al. Environmental screening for the assessment of potentially toxic elements content in PGI soils from the Mediterranean region (Italy and Turkey). Environ. Earth Sci. 2020, 79, 499. [Google Scholar] [CrossRef]
- International Commission on Radiological Protection (ICRP). 1990 Recommendations of the International Commission on Radiological Protection. ICRP Publication 60. Ann. ICRP 1991, 21, 1–3. [Google Scholar]
- Chandrasekaran, A.; Ravisankar, R.; Senthilkumar, G.; Thillaivelavan, K.; Dhinakaran, B.; Vijayagpal, P.; Bramha, S.N.; Venkatraman, B. Spatial distribution and lifetime cancer risk due to gamma radioactivity in Yelagiri Hills, Tamilnadu, India. Egypt J. Basic Appl. Sci. 2014, 1, 38–48. [Google Scholar] [CrossRef] [Green Version]
Site ID | Sampling Site | GPS Position | |
---|---|---|---|
Latitude | Longitude | ||
1 | Gioia Tauro–Budello river | 38.43 | 15.9075 |
2 | Gioia Tauro–Petrace river | 38.4202778 | 15.8839 |
3 | Reggio Cal.–Gallico river | 38.1730556 | 15.6506 |
4 | Reggio Cal.–Calopinace river | 38.1005556 | 15.6897 |
5 | Bova Marina–Amendolea river | 37.928333 | 15.8878 |
6 | Africo–Laverde river | 38.9291667 | 16.8338 |
7 | Bovalivo–Bonamico river | 38.1275 | 16.1591 |
8 | Siderno–Novito river | 38.2505556 | 16.2794 |
9 | Caulonia–Allaro river | 38.3480556 | 16.4727 |
Scheme 226. | No. of Samples | 226Ra (Bq kg−1) | 232Th (Bq kg−1) | 40K (Bq kg−1) | |||
---|---|---|---|---|---|---|---|
Range | Mean | Range | Mean | Range | Mean | ||
1 | 10 | 10.2–23.6 | 14.5 ± 4.9 | 16.5–48.6 | 22.7 ± 3.2 | 961–1450 | 1088 ± 98 |
2 | 10 | 13.6–22.9 | 18.2 ± 4.4 | 17.5–23.8 | 20.3 ± 2.9 | 949–1028 | 1009 ± 88 |
3 | 10 | 15.1–19.6 | 16.2 ± 4.3 | 37.2–41.5 | 39.5 ± 4.8 | 712–918 | 815 ± 77 |
4 | 10 | 15.1–18.8 | 16.5 ± 6.8 | 22.5–26.3 | 24.1 ± 2.9 | 591–811 | 722 ± 84 |
5 | 10 | 19.1–21.7 | 20.6 ± 2.3 | 20.3–46.8 | 27.8 ± 3.9 | 678–762 | 702 ± 66 |
6 | 10 | 19.3–29.4 | 26.2 ± 7.5 | 25.1–36.5 | 32.5 ± 9.2 | 528–691 | 643 ± 53 |
7 | 10 | 23.6–31.8 | 26.5 ± 9.5 | 28.2–43.5 | 34.5 ± 5.6 | 608–749 | 715 ± 60 |
8 | 10 | 26.6–33.9 | 31.3 ± 8.3 | 38.2–48.6 | 43.5 ± 4.9 | 871–942 | 917 ± 86 |
9 | 10 | 17.8–26.8 | 21.9 ± 8.5 | 25.3–33.8 | 27.7 ± 3.4 | 1002–1079 | 1030 ± 98 |
Overall | 90 | 10.2–33.9 | 21.3 ± 6.3 | 16.5–48.6 | 30.3 ± 4.5 | 528–1450 | 849 ± 79 |
Scheme 1. | Absorbed Dose Rate (nGyh−1) | Effective Dose Outdoors (mSv y−1) | Effective Dose Indoors (mSv y−1) | Raeq (Bq kg−1) | Hex | Hin | I | Annual Gonadal Equivalent Dose (AGED) (µSvy−1) |
---|---|---|---|---|---|---|---|---|
1 | 66 | 0.081 | 0.323 | 66 | 0.35 | 0.39 | 0.52 | 481 |
2 | 63 | 0.077 | 0.084 | 63 | 0.33 | 0.39 | 0.50 | 457 |
3 | 66 | 0.080 | 0.088 | 65 | 0.36 | 0.41 | 0.52 | 471 |
4 | 52 | 0.064 | 0.070 | 52 | 0.28 | 0.33 | 0.42 | 378 |
5 | 56 | 0.068 | 0.075 | 55 | 0.30 | 0.36 | 0.44 | 400 |
6 | 58 | 0.072 | 0.079 | 58 | 0.33 | 0.40 | 0.46 | 418 |
7 | 63 | 0.077 | 0.085 | 63 | 0.35 | 0.43 | 0.50 | 450 |
8 | 79 | 0.097 | 0.106 | 79 | 0.44 | 0.53 | 0.63 | 566 |
9 | 70 | 0.086 | 0.094 | 69 | 0.38 | 0.44 | 0.55 | 506 |
Mean | 63 | 0.078 | 0.111 | 63 | 0.35 | 0.41 | 0.50 | 458 |
Pearson Correlation Matrix (n). | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Variables | 226Ra | 232Th | 40K | Absorbed Dose Rate (nGy h−1) | Effective Dose Outdoors (mSv y−1) | Effective Dose Indoors (mSv y−1) | Raeq (Bq kg−1) | Hex | Hin | Gamma index I | AGED µSv y−1 |
226Ra | 1 | 0.649 | −0.287 | 0.468 | 0.465 | −0.378 | 0.468 | 0.559 | 0.739 | 0.464 | 0.417 |
232Th | 0.649 | 1 | −0.305 | 0.546 | 0.536 | −0.281 | 0.546 | 0.666 | 0.719 | 0.553 | 0.494 |
40K | −0.287 | −0.305 | 1 | 0.595 | 0.603 | 0.607 | 0.596 | 0.465 | 0.301 | 0.591 | 0.647 |
Absorbed Dose Rate (nGy/h) | 0.468 | 0.546 | 0.595 | 1 | 1.000 | 0.236 | 1.000 | 0.988 | 0.936 | 0.999 | 0.998 |
Effective Dose outdoors (mSv/y) | 0.465 | 0.536 | 0.603 | 1.000 | 1 | 0.245 | 1.000 | 0.986 | 0.933 | 0.998 | 0.998 |
Effective Dose indoors (mSv/y) | −0.378 | −0.281 | 0.607 | 0.236 | 0.245 | 1 | 0.237 | 0.148 | 0.002 | 0.223 | 0.275 |
Raeq (Bq/kg) | 0.468 | 0.546 | 0.596 | 1.000 | 1.000 | 0.237 | 1 | 0.988 | 0.936 | 0.999 | 0.998 |
Hex | 0.559 | 0.666 | 0.465 | 0.988 | 0.986 | 0.148 | 0.988 | 1 | 0.970 | 0.988 | 0.976 |
Hin | 0.739 | 0.719 | 0.301 | 0.936 | 0.933 | 0.002 | 0.936 | 0.970 | 1 | 0.935 | 0.912 |
Gamma index I | 0.464 | 0.553 | 0.591 | 0.999 | 0.998 | 0.223 | 0.999 | 0.988 | 0.935 | 1 | 0.996 |
AGDE (µSv/y) | 0.417 | 0.494 | 0.647 | 0.998 | 0.998 | 0.275 | 0.998 | 0.976 | 0.912 | 0.996 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caridi, F.; Di Bella, M.; Sabatino, G.; Belmusto, G.; Fede, M.R.; Romano, D.; Italiano, F.; Mottese, A.F. Assessment of Natural Radioactivity and Radiological Risks in River Sediments from Calabria (Southern Italy). Appl. Sci. 2021, 11, 1729. https://doi.org/10.3390/app11041729
Caridi F, Di Bella M, Sabatino G, Belmusto G, Fede MR, Romano D, Italiano F, Mottese AF. Assessment of Natural Radioactivity and Radiological Risks in River Sediments from Calabria (Southern Italy). Applied Sciences. 2021; 11(4):1729. https://doi.org/10.3390/app11041729
Chicago/Turabian StyleCaridi, Francesco, Marcella Di Bella, Giuseppe Sabatino, Giovanna Belmusto, Maria Rita Fede, Davide Romano, Francesco Italiano, and Antonio Francesco Mottese. 2021. "Assessment of Natural Radioactivity and Radiological Risks in River Sediments from Calabria (Southern Italy)" Applied Sciences 11, no. 4: 1729. https://doi.org/10.3390/app11041729