Latex-Based Membrane for Oily Wastewater Filtration: Study on the Sulfur Concentration Effect
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of NBR/GO Membranes
2.3. Characterization
2.4. Performance Studies
- —Permeation flux, ;
- —Permeate volume collected, L;
- —Effective membrane area, ;
- t—Time taken to collect the measured volume of permeate, .
- —Oil rejection efficiency, %;
- —COD level in permeate, mg/L;
- —COD level in wastewater feed, mg/L.
3. Results and Discussion
3.1. Characterization of the Membrane
3.2. Performance Test
3.2.1. Tensile Test
3.2.2. Permeation Flux Efficiency
3.2.3. Oil Rejection Efficiency
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qu, X.; Alvarez, P.; Li, Q. Applications of nanotechnology in water and wastewater treatment. Water Res. 2013, 47, 3931–3946. [Google Scholar] [CrossRef] [PubMed]
- Hossein Davood Abadi Farahani, M.; Vatanpour, V.; Hooshang Taheri, A. Desalination—Challenges and Opportunities, World’s Demand for Food and Water: The Consequences of Climate Change; IntechOpen: London, UK, 2020; Chapter 4. [Google Scholar] [CrossRef]
- Pendergast, M.M.; Hoek, E.M.V. A review of water treatment membrane nanotechnologies. Energy Environ. Sci. 2011, 4, 1946–1971. [Google Scholar] [CrossRef] [Green Version]
- Tanudjaja, H.J.; Hejase, C.A.; Tarabara, V.V.; Fane, A.G.; Chew, J.W. Membrane-based separation for oily wastewater: A practical perspective. Water Res. 2019, 156, 347–365. [Google Scholar] [CrossRef]
- Daud, N.M.; Sheikh, A.; Siti, R.; Abu Hasan, H.; Yaakob, Z. Production of biodiesel and its wastewater treatment technologies: A review. Process Saf. Env. Prot. 2015, 94, 487–508. [Google Scholar] [CrossRef]
- Yan, L.; Hong, S.; Li, M.L.; Li, Y.S. Application of the Al2O3—PVDF nanocomposite tubular ultrafiltration (UF) membrane for oily wastewater treatment and its antifouling research. Sep. Purif. Tech. 2009, 66, 347–352. [Google Scholar] [CrossRef]
- Ahmad, T.; Guria, C.; Mandal, A. A review of oily wastewater treatment using ultrafiltration membrane: A parametric study to enhance the membrane performance. J. Water Process. Eng. 2020, 36, 101289. [Google Scholar] [CrossRef]
- Zhao, D.; Liu, J.; Qiu, L.; Xu, J.; Jiang, G.; Xue, T.; Wang, B.; Gu, Z.; Liu, G. Roles of a mixed hydrophilic/hydrophobic interface in the regulation of nanofiltration membrane fouling in oily produced wastewater treatment: Performance and interfacial thermodynamic mechanisms. Sep. Purif. Technol. 2021, 257, 117970. [Google Scholar] [CrossRef]
- Changmai, M.; Pasawan, M.; Purkait, M. Treatment of oily wastewater from drilling site using electrocoagulation followed by microfiltration. Sep. Purif. Technol. 2019, 210, 463–472. [Google Scholar] [CrossRef]
- Munirasu, S.; Abu Haija, M.; Banat, F. Use of membrane technology for oil field and refinery produced water treatment—A review. Process Saf. Environ. Prot. 2016, 100, 183–202. [Google Scholar] [CrossRef]
- Chakrabarty, B.; Ghoshal, A.K.; Purkait, M.K. Ultrafiltration of stable oil-in-water emulsion by polysulfone membrane. J. Membr. Sci. 2008, 325, 427–437. [Google Scholar] [CrossRef]
- Huang, S.; Ras, R.H.; Tian, X. Antifouling membranes for oily wastewater treatment: Interplay between wetting and membrane fouling. Curr. Opin. Colloid Interface Sci. 2018, 36, 90–109. [Google Scholar] [CrossRef]
- Asatekin, A.; Mayes, A.M. Oil industry wastewater treatment with fouling resistant membranes containing amphiphilic comb copolymer. Environ. Sci. Technol. 2009, 43, 4487–4492. [Google Scholar] [CrossRef]
- Yang, T.; Ma, Z.; Yang, Q. Formation and characterization of Kaolin/MnO2 bi-layer composite dynamic membrane for oily wastewater treatment: Effect of solution conditions. Desalination 2011, 270, 50–56. [Google Scholar] [CrossRef]
- Ahmad, T.; Guria, C.; Mandal, A. Synthesis, characterization and performance studies of mixed-matrix poly(vinyl chloride)-bentonite ultrafiltration membrane for the treatment of saline oily wastewater. Process. Saf. Environ. Prot. 2018, 116, 703–717. [Google Scholar] [CrossRef]
- Abdolhamid, S.; Ali, G.; Toraj, M.; Sayed Siavash, M. Experimental performance evaluation of polymeric membranes for treatment of an industrial oily wastewater. Desalination 2010, 262, 235–242. [Google Scholar]
- Mittal, P.; Jana, S.; Mohanty, K. Synthesis of low-cost hydrophilic ceramic-polymeric composite membrane for treatment of oily wastewater. Desalination 2011, 282, 54–62. [Google Scholar] [CrossRef]
- Otitoju, T.; Ahmad, A.; Ooi, B. Polyvinylidene fluoride (PVDF) membrane for oil rejection from oily wastewater: A performance review. J. Water Process. Eng. 2016, 14, 41–59. [Google Scholar] [CrossRef]
- Daniela, Z.; Igor, C.; Mariana, B.; Militina, B.; Maria, D.; Gabriela, L.; Ionel, M.; Vesna, V.; Jasmina, S. Preparation, characterization and applicability of cellulose acetate–polyurethane blend membrane in separation techniques. Colloids Surf. A Physiochem. Eng. Asp. 2010, 370, 120–128. [Google Scholar]
- Zhang, Z.; Sun, J.; Y Lai, Y.; Wang, Y.; Liu, X.; Shi, S.; Chen, X. Effects of thermal aging on uniaxial ratcheting behavior of vulcanised natural rubber. Polym. Test. 2018, 70, 102–110. [Google Scholar] [CrossRef]
- Shen, M.; Peng, X.D.; Meng, X.K.; Zheng, J.P.; Zhu, M.H. Fretting wear behavior of acrylonitrile-butadiene rubber (NBR) for mechanical seal applications. Tribo. Int. 2016, 93, 419–428. [Google Scholar] [CrossRef]
- Zhao, Y.; Yu, W.; Li, R.; Xu, Y.; Liu, Y.; Sun, T.; Shen, L.; Lin, H. Electric field endowing the conductive polyvinylidene fluoride (PVDF)-graphene oxide (GO)-nicel (Ni) membrane with high-efficient performance for dye wastewater treatment. Appl. Surf. Sci. 2019, 483, 1006–1016. [Google Scholar] [CrossRef]
- Lu, J.; Gu, Y.-H.; Chen, Y.; Yan, X.; Guo, Y.-J.; Lang, W.-Z. Ultrahigh permeability of graphene-based membranes by adjusting D-spacing with poly (ethylene imine) for the separation of dye wastewater. Sep. Purif. Tech. 2019, 210, 737–745. [Google Scholar] [CrossRef]
- Zhao, C.; Xu, X.; Chen, J.; Wang, G.; Yang, F. Highly effective antifouling performance of PVDF/graphene oxide composite membrane in membrane bioreactor (MBR) system. Desalination 2014, 340, 59–66. [Google Scholar]
- Wu, W.; Zhang, X.; Qin, L.; Li, X.; Meng, Q.; Shen, C.; Zhang, G. Enhanced MPBR with polyvinylpyrrolidone-graphene oxide/PVDF hollow fiber membrane for efficient ammonia nitrogen wastewater treatment and high-density Chlorella cultivation. Chem. Eng. J. 2020, 379, 122368. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, M.; Pan, G.; Yan, H.; Xu, J.; Shi, Y.; Shi, H.; Liu, Y. Preparation and properties of novel pH-stable TFC membrane based on organic–inorganic hybrid composite materials for nanofiltration. J. Membr. Sci. 2015, 476, 500–507. [Google Scholar] [CrossRef]
- Marjani, A.; Nakhjiri, A.T.; Adimi, M.; Jirandehi, H.F.; Shirazian, S. Effect of graphene oxide on modifying polyethersulfone membrane performance and its application in wastewater treatment. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef]
- Rasoul, M.; Javad, K.-S.; Mojtaba, S.-N.; Younes, A. Air gap membrane distillation for enrichment of H218O is isotopomers in natural water using poly(vinylidene fluoride) nanofibrous membrane. Chem. Eng. Process. Process Intensif. 2016, 100, 26–36. [Google Scholar]
- Su, C.; Li, Y.; Cao, H.; Lu, C.; Li, Y.; Chang, J.; Duan, F. Novel PTFE hollow fibre membrane fabricated by emulsion electrospinning and sintering for membrane distillation. J. Memb. Sci. 2019, 583, 200–208. [Google Scholar] [CrossRef]
- Bhran, A.; Shoaib, A.; Elsadeq, D.; El-gendi, A.; Abdallah, H. Preparation of PVC/PVP composite polymer membranes via phase inversion process for water treatment purposes. Chin. J. Chem. Eng. 2018, 26, 715–722. [Google Scholar] [CrossRef]
- Liu, H.; Liao, X. The effects of fluorocarbon special surfactant (FS-30) additive on the phase inversion, morphology and separation performance of poly(vinylidene fluoride) (PVDF) membranes. Sep. Purif. Technol. 2019, 212, 619–631. [Google Scholar] [CrossRef]
- Korolkov, I.V.; Gorin, Y.G.; Yeszhanov, A.B.; Kozlovskiy, A.L.; Zdorovets, M.V. Preparation of PET track-etched membranes for membrane distillation by photo-induced graft polymerization. Mater. Chem. Phy. 2018, 205, 55–63. [Google Scholar] [CrossRef]
- Huang, Y.; Huang, Q.L.; Liu, H.; Zhang, C.X.; You, Y.W.; Li, N.N.; Xiao, C.F. Preparation, characterization and applications of electrospun ultrafine fibrous PTFE porous membranes. J. Memb. Sci. 2017, 523, 317–326. [Google Scholar] [CrossRef]
- Naebpetch, W.; Junhasavasdikul, B.; Saetung, A.; Tulyapitak, T.; Nithi-Uthai, N. Influence of filler type and loading on cure characteristics and vulcanisate properties of SBR compounds with a novel mixed vulcanisation system. Plast. Rubber Compos. 2017, 48, 1–9. [Google Scholar] [CrossRef]
- Yew, G.Y.; Tham, T.C.; Law, C.L.; Chu, D.-T.; Ogino, C.; Show, P.L. Emerging crosslinking techniques for glove manufacturers with improved nitrile glove properties and reduced allergic risks. Mater. Today Commun. 2019, 19, 39–50. [Google Scholar] [CrossRef]
- Bhadran, B.; Vijayan, D.; George, N.; Chandra, C.J.; Begum, P.S.; Joseph, R. Reinforcing effect of organoclay in nitrile rubber-effect of mill mixing and latex stage mixing. Appl. Clay Sci. 2018, 165, 91–102. [Google Scholar] [CrossRef]
- Bakhshandeh, G.R.; Farahani, T.D.; Emamikia, M. Effect of Curing System on Mechanical Properties of NBR / Nylon-PET Cord Composite. E-Polymers 2008, 8, 273–284. [Google Scholar] [CrossRef] [Green Version]
- Hait, S.; Valentin, J.L.; Jimenez, A.G.; Ortega, P.B.; Ghosh, A.K.; Stockelhuber, K.W.; WieBner, S.; Heinrich, G.; Das, A. Poly (acrylonitrile-co-butadiene) as polymeric crosslinking accelerator for sulphur network formation. Heliyon 2020, 6, e04659. [Google Scholar] [CrossRef]
- Wręczycki, J.; Bieliński, D.; Anyszka, R. Sulfur/Organic Copolymers as Curing Agents for Rubber. Polymers 2018, 10, 870. [Google Scholar] [CrossRef] [Green Version]
- Karzov, I.; Nashchokin, A.; Tikhonov, N.; Kalugin, D.; Malakho, A. Data on compressibility of NBR samples with various cross-linking degree and zinc oxide content immersed in gasoline and oil. Data Brief 2020, 30, 105470. [Google Scholar] [CrossRef] [PubMed]
- Thebo, K.H.; Qian, X.; Zhang, Q.; Chen, L.; Cheng, H.M.; Ren, W. Highly stablegraphene-oxide-based membranes with superior permeability. Nat. Commun. 2018, 9, 1486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mensah, B.; Kim, S.; Arepalli, S.; Nah, C. A study of graphene oxide-reinforced rubber nanocomposite. J. App. Polym. Sci. 2014, 131, 1–9. [Google Scholar] [CrossRef]
- Zhong, Y.; Mahmud, S.; He, Z.; Yang, Y.; Zhang, Z.; Guo, F.; Chen, Z.; Xiong, Z.; Zhao, Y. Graphene oxide modified membrane for highly efficient wastewater treatment by dynamic combination of nanofiltration and catalysis. J. Hazard. Mater. 2020, 397, 122774. [Google Scholar] [CrossRef]
- Dave, H.K.; Nath, K. Graphene oxide incorporated novel polyvinyl alcohol composite membrane for pervaporative recovery of acetic acid from vinegar wastewater. J. Water Process. Eng. 2016, 14, 124–134. [Google Scholar] [CrossRef]
- Basile, A.; Mozia, S.; Molinari, R. (Eds.) Current Trends and Future Developments on (Bio-) Membranes: Photocatalytic Membranes and Photocatalytic Membrane Reactors; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Lee, D.I. The effects of latex coalescence and interfacial crosslinking on the mechanical properties of latex films. Polymer 2005, 46, 1287–1293. [Google Scholar] [CrossRef]
- Du, J.; Wu, Q.; Zhong, S.; Gu, X.; Liu, J.; Guo, H.; Zhang, W.; Peng, H.-L.; Zou, J. Effect of hydroxyl groups on hydrophilic and photocatalytic activities of rare earth doped titanium dioxide thin films. J. Rare Earths 2015, 33, 148–153. [Google Scholar] [CrossRef]
- OChemOnline, November 2014. “Infrared Spectroscopy Absorption Table” Electronic Reference. Available online: https://chem.libretexts.org/Reference/Reference_Tables/Spectroscopic_Parameters/Infrared_Spectroscopy_Absorption_Table#title (accessed on 23 August 2018).
- Vinayan, B.P.; Zhao-Karger, Z.; Diemant, T.; Chakravadhanula, V.S.K.; Schwarzburger, N.I.; Cambaz, M.A.; Behm, R.J.; Kübel, C.; Fichtner, M. Performance study of magnesium–sulfur battery using a graphene based sulfur composite cathode electrode and a non-nucleophilic Mg electrolyte. Nanoscale 2015, 8, 3296–3306. [Google Scholar] [CrossRef] [Green Version]
- Stobinski, L.; Lesiak, B.; Malolepszy, A.; Mazurkiewicz, M.; Mierzwa, B.; Zemek, J.; Jiricek, P.; Bieloshapka, I. Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J. Electron Spectrosc. Relat. Phenom. 2014, 195, 145–154. [Google Scholar] [CrossRef]
- Yang, Z.; Yuan, Z.; Shang, Z.; Ye, S. Multi-functional membrane based on montmorillonite/graphene oxide nanocomposites with high actuating performance and wastewater purification. Appl. Clay Sci. 2020, 197, 105781. [Google Scholar] [CrossRef]
- Linhares, F.N.; Kersch, M.; Niebergall, U.; Leite, M.C.A.M.; Altstädt, V.; Furtado, C.R.G. Effect of different Sulphur-based crosslink network on the nitrile rubber resistance to biodiesel. Fuel 2017, 191, 130–139. [Google Scholar] [CrossRef]
- Namdar, H.; Akbari, A.; Yegani, R.; Roghani-Mamaqani, H. Influence of aspartic acid functionalized graphene oxide presence in polyvinylchloride mixed matrix membranes on chromium removal from aqueous feed containing humic acid. J. Environ. Chem. Eng. 2021, 9, 104685. [Google Scholar] [CrossRef]
- Giwa, A.; Hasan, S.W. Novel polyethersulfone-functionalized graphene oxide (PES-fGO) mixed matrix membranes for wastewater treatment. Sep. Purif. Technol. 2020, 241, 116735. [Google Scholar] [CrossRef]
- Ammar, A.; Al-Enizi, A.M.; AlMaadeed, M.A.; Karim, A. Influence of graphene oxide on mechanical, morphological, barrier, and electrical properties of polymer membranes. Arab. J. Chem. 2016, 9, 274–286. [Google Scholar] [CrossRef] [Green Version]
- Mok, K.L.; Eng, A.H. Characterisation of crosslinks in vulcanized rubbers: From simple to advanced techniques. Malays. J. Chem. 2017, 20, 118–127. [Google Scholar]
- Thomas, S.P.; Thomas, S.; Marykutty, C.V.; Mathew, E.J. Evaluation of effect of various nanofillers on technological properties of NBR/NR blend vulcanized using BIAT-CBS system. J. Polym. 2013, 2013, 1–10. [Google Scholar] [CrossRef]
- Zhang, X.; Fan, X.; Li, H.; Yan, C. Facile preparation route for graphene oxide reinforced polyamide 6 composites via in situ anionic ring-opening polymerization. J. Mater. Chem. 2012, 22, 24081–24091. [Google Scholar] [CrossRef]
- Gorouhi, E.; Sadrzadeh, M.; Mohammadi, T. Microfiltration of oily wastewater using PP hydrophobic membrane. Desalination 2006, 200, 319–321. [Google Scholar] [CrossRef]
- Chen, A.S.C.; Flynn, J.T.; Cook, R.G.; Casaday, A.L. CasadayRemoval of oil, grease, and suspended solids from produced water with ceramic crossflow microfiltration. SPE Prod. Eng. 1991, 6, 131–136. [Google Scholar] [CrossRef]
NBR/GO with Sulfur Formulation (phr) | Crosslink Density (×10−4 mol/cm3) |
---|---|
0.5 | 4.7270 ± 0.0028 |
1.0 | 9.0754 ± 0.0025 |
1.5 | 9.6481 ± 0.0035 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abuhasel, K.; Jeng, Y.T.; Munusamy, Y.; Kchaou, M.; Alquraish, M. Latex-Based Membrane for Oily Wastewater Filtration: Study on the Sulfur Concentration Effect. Appl. Sci. 2021, 11, 1779. https://doi.org/10.3390/app11041779
Abuhasel K, Jeng YT, Munusamy Y, Kchaou M, Alquraish M. Latex-Based Membrane for Oily Wastewater Filtration: Study on the Sulfur Concentration Effect. Applied Sciences. 2021; 11(4):1779. https://doi.org/10.3390/app11041779
Chicago/Turabian StyleAbuhasel, Khaled, Yong Tzyy Jeng, Yamuna Munusamy, Mohamed Kchaou, and Mohammed Alquraish. 2021. "Latex-Based Membrane for Oily Wastewater Filtration: Study on the Sulfur Concentration Effect" Applied Sciences 11, no. 4: 1779. https://doi.org/10.3390/app11041779
APA StyleAbuhasel, K., Jeng, Y. T., Munusamy, Y., Kchaou, M., & Alquraish, M. (2021). Latex-Based Membrane for Oily Wastewater Filtration: Study on the Sulfur Concentration Effect. Applied Sciences, 11(4), 1779. https://doi.org/10.3390/app11041779