A Study of Adversarial Attacks and Detection on Deep Learning-Based Plant Disease Identification
Abstract
:1. Introduction
2. Methods
2.1. Plant Disease Identification Problem
2.2. Pre-Trained DNN Models for Plant Disease Identification
2.2.1. VGGNet
2.2.2. ResNet
2.2.3. Inception
2.2.4. DenseNet
2.3. Adversarial Attacks
2.3.1. FGSM
2.3.2. BIM
2.3.3. PGD
2.3.4. CW
2.4. Detection of Adversarial Samples
2.4.1. Kernel Density (KD) and Bayesian Uncertainty (BU)
2.4.2. LID
2.4.3. SafetyNet
3. Experiments and Results
3.1. Datasets
3.2. Performance of Fine-Tuned DNN Models without Adversarial Attacks
3.3. Efficacy of Adversarial Attacks
3.4. Results of Adversarial Sample Detection
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Savary, S.; Willocquet, L.; Pethybridge, S.J.; Esker, P.; McRoberts, N.; Nelson, A. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 2019, 3, 430–439. [Google Scholar] [CrossRef] [PubMed]
- Martinelli, F.; Scalenghe, R.; Davino, S.; Panno, S.; Scuderi, G.; Ruisi, P.; Villa, P.; Stroppiana, D.; Boschetti, M.; Goulart, L.R.; et al. Advanced methods of plant disease detection. A review. Agron. Sustain. Dev. 2015, 35, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Chen, J.; Zhang, D.; Sun, Y.; Nanehkaran, Y.A. Using deep transfer learning for image-based plant disease identification. Comput. Electron. Agric. 2020, 173, 105393. [Google Scholar] [CrossRef]
- Waheed, A.; Goyal, M.; Gupta, D.; Khanna, A.; Hassanien, A.E.; Pandey, H.M. An optimized dense convolutional neural network model for disease recognition and classification in corn leaf. Comput. Electron. Agric. 2020, 175, 105456. [Google Scholar] [CrossRef]
- Ferentinos, K.P. Deep learning models for plant disease detection and diagnosis. Comput. Electron. Agric. 2018, 145, 311–318. [Google Scholar] [CrossRef]
- Wolfert, S.; Ge, L.; Verdouw, C.; Bogaardt, M.J. Big Data in Smart Farming—A review. Agric. Syst. 2017, 153, 69–80. [Google Scholar] [CrossRef]
- Kaur, S.; Pandey, S.; Goel, S. Plants Disease Identification and Classification Through Leaf Images: A Survey. Arch. Comput. Methods Eng. 2019, 26, 507–530. [Google Scholar] [CrossRef]
- Hossain, E.; Hossain, M.F.; Rahaman, M.A. A Color and Texture Based Approach for the Detection and Classification of Plant Leaf Disease Using KNN Classifier. In Proceedings of the 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE), Cox’s Bazar, Bangladesh, 7–9 February 2019; pp. 1–6. [Google Scholar]
- Golhani, K.; Balasundram, S.K.; Vadamalai, G.; Pradhan, B. A review of neural networks in plant disease detection using hyperspectral data. Inf. Process. Agric. 2018, 5, 354–371. [Google Scholar] [CrossRef]
- Padol, P.B.; Yadav, A.A. SVM classifier based grape leaf disease detection. In Proceedings of the 2016 Conference on Advances in Signal Processing (CASP), Pune, India, 9–11 June 2016; pp. 175–179. [Google Scholar]
- Sandika, B.; Avil, S.; Sanat, S.; Srinivasu, P. Random forest based classification of diseases in grapes from images captured in uncontrolled environments. In Proceedings of the 2016 IEEE 13th International Conference on Signal Processing (ICSP), Chengdu, China, 6–10 November 2016; pp. 1775–1780. [Google Scholar]
- Kamilaris, A.; Prenafeta-Boldú, F.X. Deep learning in agriculture: A survey. Comput. Electron. Agric. 2018, 147, 70–90. [Google Scholar] [CrossRef] [Green Version]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Le, N.Q.K. Fertility-GRU: Identifying Fertility-Related Proteins by Incorporating Deep-Gated Recurrent Units and Original Position-Specific Scoring Matrix Profiles. J. Proteome Res. 2019, 18, 3503–3511. [Google Scholar] [CrossRef]
- Le, N.Q.K.; Do, D.T.; Hung, T.N.K.; Lam, L.H.T.; Huynh, T.T.; Nguyen, N.T.K. A Computational Framework Based on Ensemble Deep Neural Networks for Essential Genes Identification. Int. J. Mol. Sci. 2020, 21, 9070. [Google Scholar] [CrossRef]
- Tan, C.; Sun, F.; Kong, T.; Zhang, W.; Yang, C.; Liu, C. A Survey on Deep Transfer Learning BT—Artificial Neural Networks and Machine Learning—ICANN 2018; Springer International Publishing: Cham, Switzerland, 2018; pp. 270–279. [Google Scholar]
- Too, E.C.; Yujian, L.; Njuki, S.; Yingchun, L. A comparative study of fine-tuning deep learning models for plant disease identification. Comput. Electron. Agric. 2019, 161, 272–279. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015—Conference Track Proceedings, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.; Liu, Z.; Maaten, L.V.D.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 22–25 July 2017; pp. 2261–2269. [Google Scholar]
- Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.; Goodfellow, I.; Fergus, R. Intriguing properties of neural networks. In Proceedings of the 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, 14–16 April 2014. [Google Scholar]
- Ren, K.; Zheng, T.; Qin, Z.; Liu, X. Adversarial Attacks and Defenses in Deep Learning. Engineering 2020, 6, 346–360. [Google Scholar] [CrossRef]
- Rezaei, S.; Liu, X. A Target-Agnostic Attack on Deep Models: Exploiting Security Vulnerabilities of Transfer Learning. In Proceedings of the 8th International Conference on Learning Representations, ICLR 2020, Virtual Conference, Addis Ababa, Ethiopia, 26–30 April 2020. [Google Scholar]
- Cruz, A.C.; Luvisi, A.; De Bellis, L.; Ampatzidis, Y. X-FIDO: An Effective Application for Detecting Olive Quick Decline Syndrome with Deep Learning and Data Fusion. Front. Plant Sci. 2017, 8, 1741. [Google Scholar] [CrossRef] [PubMed]
- Ngugi, L.C.; Abelwahab, M.; Abo-Zahhad, M. Tomato leaf segmentation algorithms for mobile phone applications using deep learning. Comput. Electron. Agric. 2020, 178, 105788. [Google Scholar] [CrossRef]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. ImageNet: A Large-Scale Hierarchical Image Database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009. [Google Scholar]
- Guo, Y.; Shi, H.; Kumar, A.; Grauman, K.; Rosing, T.; Feris, R. SpotTune: Transfer Learning Through Adaptive Fine-Tuning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019. [Google Scholar]
- Fuentes, A.; Yoon, S.; Kim, S.C.; Park, D.S. A Robust Deep-Learning-Based Detector for Real-Time Tomato Plant Diseases and Pests Recognition. Sensors 2017, 17, 2022. [Google Scholar] [CrossRef] [Green Version]
- Jiang, P.; Chen, Y.; Liu, B.; He, D.; Liang, C. Real-Time Detection of Apple Leaf Diseases Using Deep Learning Approach Based on Improved Convolutional Neural Networks. IEEE Access 2019, 7, 59069–59080. [Google Scholar] [CrossRef]
- Darwish, A.; Ezzat, D.; Hassanien, A.E. An optimized model based on convolutional neural networks and orthogonal learning particle swarm optimization algorithm for plant diseases diagnosis. Swarm Evol. Comput. 2020, 52, 100616. [Google Scholar] [CrossRef]
- Hernández, S.; López, J.L. Uncertainty quantification for plant disease detection using Bayesian deep learning. Appl. Soft Comput. 2020, 96, 106597. [Google Scholar] [CrossRef]
- Maeda-Gutiérrez, V.; Galván-Tejada, C.E.; Zanella-Calzada, L.A.; Celaya-Padilla, J.M.; Galván-Tejada, J.I.; Gamboa-Rosales, H.; Luna-García, H.; Magallanes-Quintanar, R.; Guerrero Méndez, C.A.; Olvera-Olvera, C.A. Comparison of Convolutional Neural Network Architectures for Classification of Tomato Plant Diseases. Appl. Sci. 2020, 10, 1245. [Google Scholar] [CrossRef] [Green Version]
- Ramcharan, A.; Baranowski, K.; McCloskey, P.; Ahmed, B.; Legg, J.; Hughes, D.P. Deep Learning for Image-Based Cassava Disease Detection. Front. Plant Sci. 2017, 8, 1852. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Y.; Zhao, M. Research on deep learning in apple leaf disease recognition. Comput. Electron. Agric. 2020, 168, 105146. [Google Scholar] [CrossRef]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In Proceedings of the 32nd International Conference on Machine Learning (PMLR 37), Lille, France, 6–11 July 2015; pp. 448–456. [Google Scholar]
- Carlini, N.; Wagner, D. Towards Evaluating the Robustness of Neural Networks. In Proceedings of the 2017 IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA, 22–26 May 2017; pp. 39–57. [Google Scholar]
- Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; Vladu, A. Towards Deep Learning Models Resistant to Adversarial Attacks. In Proceedings of the 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Goodfellow, I.J.; Shlens, J.; Szegedy, C. Explaining and harnessing adversarial examples. In Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Kurakin, A.; Goodfellow, I.; Bengio, S. Adversarial Examples in the Physical World. In Proceedings of the 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, 24–26 April 2017. [Google Scholar]
- Papernot, N.; McDaniel, P.; Wu, X.; Jha, S.; Swami, A. Distillation as a Defense to Adversarial Perturbations Against Deep Neural Networks. In Proceedings of the 2016 IEEE Symposium on Security and Privacy, SP 2016, San Jose, CA, USA, 22–26 May 2016; pp. 582–597. [Google Scholar]
- Dziugaite, G.K.; Ghahramani, Z.; Roy, D.M. A Study of the Effect of JPG Compression on Adversarial Images. In Proceedings of the International Society for Bayesian Analysis (ISBA 2016) World Meeting, Sardinia, Italy, 13–17 June 2016. [Google Scholar]
- Ross, A.S.; Doshi-Velez, F. Improving the Adversarial Robustness and Interpretability of Deep Neural Networks by Regularizing their Input Gradients. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence, AAAI 2018, New Orleans, LA, USA, 2–7 February 2018; pp. 1660–1669. [Google Scholar]
- Athalye, A.; Carlini, N.; Wagner, D. Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples. In Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Vienna, Austria, 25–31 July 2018; pp. 436–448. [Google Scholar]
- Feinman, R.; Curtin, R.R.; Shintre, S.; Gardner, A.B. Detecting Adversarial Samples from Artifacts. arXiv 2017, arXiv:1703.00410. [Google Scholar]
- Lu, J.; Issaranon, T.; Forsyth, D. SafetyNet: Detecting and Rejecting Adversarial Examples Robustly. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 446–454. [Google Scholar]
- Ma, X.; Li, B.; Wang, Y.; Erfani, S.M.; Wijewickrema, S.; Schoenebeck, G.; Song, D.; Houle, M.E.; Bailey, J. Characterizing Adversarial Subspaces Using Local Intrinsic Dimensionality. In Proceedings of the 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Mohanty, S.P.; Hughes, D.P.; Salathé, M. Using deep learning for image-based plant disease detection. Front. Plant Sci. 2016, 7, 1419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Class | Number of Images |
---|---|
Scab | 630 |
Black Rot | 621 |
Cedar Apple Rust | 275 |
Healthy | 1645 |
Total | 3171 |
DNN Model | Dataset | Test Accuracy |
---|---|---|
VGG-16 | 2-class | 100% |
VGG-16 | multi-class | 99.67% |
ResNet-101 | 2-class | 99.84% |
ResNet-101 | multi-class | 100% |
Inception V3 | 2-class | 100% |
Inception V3 | multi-class | 100% |
DenseNet-121 | 2-class | 100% |
DenseNet-121 | multi-class | 100% |
DNN Model | Features | FGSM | BIM | PGD | CW |
---|---|---|---|---|---|
VGG-16 | KD + BU | 0.998 | 1 | 1 | 0.998 |
LID | 0.738 | 0.666 | 0.633 | 0.637 | |
DeepF | 0.882 | 0.899 | 0.902 | 0.732 | |
DiscF | 0.918 | 0.921 | 0.92 | 0.737 | |
ResNet-101 | KD + BU | 1 | 1 | 1 | 1 |
LID | 0.736 | 0.698 | 0.607 | 0.807 | |
DeepF | 0.94 | 0.948 | 0.957 | 0.945 | |
DiscF | 0.946 | 0.968 | 0.956 | 0.91 | |
Inception-V3 | KD + BU | 1 | 1 | 0.998 | 0.998 |
LID | 0.754 | 0.74 | 0.705 | 0.587 | |
DeepF | 0.942 | 0.907 | 0.912 | 0.839 | |
DiscF | 0.954 | 0.905 | 0.885 | 0.838 | |
DenseNet-121 | KD + BU | 1 | 1 | 1 | 1 |
LID | 0.738 | 0.606 | 0.571 | 0.666 | |
DeepF | 0.962 | 0.942 | 0.948 | 0.94 | |
DiscF | 0.967 | 0.984 | 0.967 | 0.916 |
DNN Model | Features | FGSM | BIM | PGD | CW |
---|---|---|---|---|---|
VGG-16 | KD + BU | 0.987 | 1 | 1 | 0.987 |
LID | 0.728 | 0.674 | 0.641 | 0.612 | |
DeepF | 0.867 | 0.785 | 0.782 | 0.696 | |
DiscF | 0.91 | 0.864 | 0.889 | 0.756 | |
ResNet-101 | KD + BU | 1 | 1 | 1 | 1 |
LID | 0.7 | 0.626 | 0.639 | 0.793 | |
DeepF | 0.844 | 0.801 | 0.756 | 0.874 | |
DiscF | 0.926 | 0.896 | 0.912 | 0.913 | |
Inception V3 | KD + BU | 0.998 | 1 | 1 | 0.997 |
LID | 0.74 | 0.719 | 0.663 | 0.675 | |
DeepF | 0.872 | 0.73 | 0.733 | 0.741 | |
DiscF | 0.948 | 0.864 | 0.875 | 0.825 | |
DenseNet-121 | KD + BU | 1 | 1 | 1 | 1 |
LID | 0.691 | 0.629 | 0.604 | 0.675 | |
DeepF | 0.898 | 0.855 | 0.871 | 0.784 | |
DiscF | 0.957 | 0.946 | 0.951 | 0.894 |
Model | Source | FGSM | BIM | PGD | CW |
---|---|---|---|---|---|
VGG-16 | FGSM | – | 1 | 1 | 0.768 |
BIM | 0.846 | – | 0.861 | 0.622 | |
PGD | 0.988 | 0.994 | – | 0.746 | |
CW | 1 | 1 | 1 | – | |
ResNet-101 | FGSM | – | 1 | 1 | 0.994 |
BIM | 1 | – | 1 | 0.994 | |
PGD | 1 | 1 | – | 0.995 | |
CW | 1 | 1 | 1 | – | |
Inception V3 | FGSM | – | 1 | 1 | 0.840 |
BIM | 0.997 | – | 1 | 0.819 | |
PGD | 0.997 | 1 | – | 0.820 | |
CW | 0.983 | 1 | 1 | – | |
DenseNet-121 | FGSM | – | 1 | 1 | 0.957 |
BIM | 1 | – | 1 | 0.961 | |
PGD | 1 | 1 | – | 0.957 | |
CW | 1 | 1 | 1 | – |
Model | Source | FGSM | BIM | PGD | CW |
---|---|---|---|---|---|
VGG-16 | FGSM | – | 1 | 1 | 0.802 |
BIM | 1 | – | 1 | 0.805 | |
PGD | 0.998 | 1 | – | 0.802 | |
CW | 1 | 1 | 1 | – | |
ResNet-101 | FGSM | – | 1 | 1 | 0.976 |
BIM | 1 | – | 1 | 0.986 | |
PGD | 1 | 1 | – | 0.978 | |
CW | 1 | 1 | 1 | – | |
Inception V3 | FGSM | – | 1 | 1 | 0.826 |
BIM | 1 | – | 1 | 0.824 | |
PGD | 0.999 | 0.999 | – | 0.800 | |
CW | 1 | 1 | 1 | – | |
DenseNet-121 | FGSM | – | 1 | 1 | 0.953 |
BIM | 1 | – | 1 | 0.957 | |
PGD | 1 | 1 | – | 0.957 | |
CW | 1 | 1 | 1 | – |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Z.; Li, Q.; Zheng, J. A Study of Adversarial Attacks and Detection on Deep Learning-Based Plant Disease Identification. Appl. Sci. 2021, 11, 1878. https://doi.org/10.3390/app11041878
Luo Z, Li Q, Zheng J. A Study of Adversarial Attacks and Detection on Deep Learning-Based Plant Disease Identification. Applied Sciences. 2021; 11(4):1878. https://doi.org/10.3390/app11041878
Chicago/Turabian StyleLuo, Zhirui, Qingqing Li, and Jun Zheng. 2021. "A Study of Adversarial Attacks and Detection on Deep Learning-Based Plant Disease Identification" Applied Sciences 11, no. 4: 1878. https://doi.org/10.3390/app11041878
APA StyleLuo, Z., Li, Q., & Zheng, J. (2021). A Study of Adversarial Attacks and Detection on Deep Learning-Based Plant Disease Identification. Applied Sciences, 11(4), 1878. https://doi.org/10.3390/app11041878