Radiochromic Films for the Two-Dimensional Dose Distribution Assessment
Abstract
:1. Introduction
2. Basics of Radiochromic Films
2.1. Operating Principle and Formation of the Image
2.2. Radiochromic Film Types
2.3. Physical Quantities for Measuring the Radiochromic Film Darkening
- transmitted (I) through the RCF and collected by the detector,
- scattered () by the RCF and not collected by the detector,
- absorbed () by the RCF.
3. Instruments for Dose Reading
3.1. Flatbed Scanners
3.2. Densitometers and Spectrometers
4. Radiochromic Films Response to Relevant Physical Quantities
5. Conclusions and Outlook
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Braccini, S. The new Bern PET cyclotron, its research beam line, and the development of an innovative beam monitor detector. In AIP Conference Proceedings; American Institute of Physics: New York, NY, USA, 2013; Volume 1525, pp. 144–150. [Google Scholar]
- Braccini, S. Particle accelerators and detectors for medical diagnostics and therapy. arXiv 2016, arXiv:1601.06820. [Google Scholar]
- Belver-Aguilar, C.; Braccini, S.; Carzaniga, T.S.; Gsponer, A.; Häffner, P.D.; Scampoli, P.; Schmidt, M. A Novel Three-Dimensional Non-Destructive Beam-Monitoring Detector. Appl. Sci. 2020, 10, 8217. [Google Scholar] [CrossRef]
- Tommasino, F.; Rovituso, M.; Fabiano, S.; Piffer, S.; Manea, C.; Lorentini, S.; Lanzone, S.; Wang, Z.; Pasini, M.; Burger, W.; et al. Proton beam characterization in the experimental room of the Trento Proton Therapy facility. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2017, 869, 15–20. [Google Scholar] [CrossRef]
- Auger, M.; Braccini, S.; Carzaniga, T.S.; Ereditato, A.; Nesteruk, K.P.; Scampoli, P. A detector based on silica fibers for ion beam monitoring in a wide current range. J. Instrum. 2016, 11, P03027. [Google Scholar] [CrossRef]
- Hoehr, C.; Hanna, M.; Zeisler, S.; Penner, C.; Stokely, M.; Dehnel, M. Ce-and B-Doped Silica Fibers for Monitoring Low-Energy Proton Beams on a Medical Cyclotron. Appl. Sci. 2020, 10, 4488. [Google Scholar] [CrossRef]
- Potkins, D.E.; Braccini, S.; Nesteruk, K.P.; Carzaniga, T.S.; Vedda, A.; Chiodini, N.; Timmermans, J.; Melanson, S.; Dehnel, M.P. A low-cost beam profiler based on cerium-doped silica fibers. Phys. Procedia 2017, 90, 215–222. [Google Scholar] [CrossRef]
- Gambarini, G.; Regazzoni, V.; Artuso, E.; Giove, D.; Mirandola, A.; Ciocca, M. Measurements of 2D distributions of absorbed dose in protontherapy with Gafchromic EBT3 films. Appl. Radiat. Isot. 2015, 104, 192–196. [Google Scholar] [CrossRef] [PubMed]
- Sipilä, P.; Ojala, J.; Kaijaluoto, S.; Jokelainen, I.; Kosunen, A. Gafchromic EBT3 film dosimetry in electron beams—energy dependence and improved film read-out. J. Appl. Clin. Med. Phys. 2016, 17, 360–373. [Google Scholar] [CrossRef]
- Borca, V.C.; Pasquino, M.; Russo, G.; Grosso, P.; Cante, D.; Sciacero, P.; Girelli, G.; Porta, M.R.L.; Tofani, S. Dosimetric characterization and use of GAFCHROMIC EBT3 film for IMRT dose verification. J. Appl. Clin. Med. Phys. 2013, 14, 158–171. [Google Scholar] [CrossRef] [PubMed]
- Nobah, A.; Aldelaijan, S.; Devic, S.; Tomic, N.; Seuntjens, J.; Al-Shabanah, M.; Moftah, B. Radiochromic film based dosimetry of image-guidance procedures on different radiotherapy modalities. J. Appl. Clin. Med. Phys. 2014, 15, 229–239. [Google Scholar] [CrossRef]
- Das, I.J. Radiochromic Film: Role and Applications in Radiation Dosimetry; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Niroomand-Rad, A.; Blackwell, C.R.; Coursey, B.M.; Gall, K.P.; Galvin, J.M.; McLaughlin, W.L.; Meigooni, A.S.; Nath, R.; Rodgers, J.E.; Soares, C.G. Radiochromic film dosimetry: Recommendations of AAPM radiation therapy committee task group 55. Med. Phys. 1998, 25, 2093–2115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devic, S. Radiochromic film dosimetry: Past, present, and future. Phys. Med. 2011, 27, 122–134. [Google Scholar] [CrossRef]
- Butson, M.J.; Peter, K.; Cheung, T.; Metcalfe, P. Radiochromic film for medical radiation dosimetry. Mater. Sci. Eng. R Rep. 2003, 41, 61–120. [Google Scholar] [CrossRef]
- Devic, S.; Tomic, N.; Lewis, D. Reference radiochromic film dosimetry: Review of technical aspects. Phys. Med. 2016, 32, 541–556. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.; Metcalfe, P. Radiochromic film dosimetry and its applications in radiotherapy. In AIP Conference Proceedings; American Institute of Physics: New York, NY, USA, 2011; Volume 1345, pp. 75–99. [Google Scholar]
- Santos, T.; Ventura, T.; Lopes, M.D.C. A review on radiochromic film dosimetry for dose verification in high energy photon beams. Radiat. Phys. Chem. 2021, 179, 109217. [Google Scholar] [CrossRef]
- McLaughlin, W.; Humphreys, J.; Hocken, D.; Chappas, W. Radiochromic dosimetry for validation and commissioning of industrial radiation processes. Int. J. Radiat. Appl. Instrum. Part C. Radiat. Phys. Chem. 1988, 31, 505–514. [Google Scholar] [CrossRef]
- McLaughlin, W.L.; Yun-Dong, C.; Soares, C.G.; Miller, A.; Van Dyk, G.; Lewis, D.F. Sensitometry of the response of a new radiochromic film dosimeter to gamma radiation and electron beams. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1991, 302, 165–176. [Google Scholar] [CrossRef]
- McLaughlin, W.L.; Puhl, J.M.; Al-Sheikhly, M.; Christou, C.; Miller, A.; Kovacs, A.; Wojnarovits, L.; Lewis, D.F. Novel radiochromic films for clinical dosimetry. Radiat. Prot. Dosim. 1996, 66, 263–268. [Google Scholar] [CrossRef]
- Meigooni, A.S.; Sanders, M.; Ibbott, G.; Szeglin, S. Dosimetric characteristics of an improved radiochromic film. Med. Phys. 1996, 23, 1883–1888. [Google Scholar] [CrossRef]
- Tomic, N.; Devic, S. Radiochromic Film Dosimetry for Radiology. In Handbook of X-ray Imaging: Physics and Technology; CRC Press: Boca Raton, FL, USA, 2017; p. 203. [Google Scholar]
- Fiandra, C.; Ricardi, U.; Ragona, R.; Anglesio, S.; Romana Giglioli, F.; Calamia, E.; Lucio, F. Clinical use of EBT model Gafchromic™ film in radiotherapy. Med. Phys. 2006, 33, 4314–4319. [Google Scholar] [CrossRef]
- Asgharizadeh, S.; Bekerat, H.; Syme, A.; Aldelaijan, S.; DeBlois, F.; Vuong, T.; Evans, M.; Seuntjens, J.; Devic, S. Radiochromic film–based quality assurance for CT-based high-dose-rate brachytherapy. Brachytherapy 2015, 14, 578–585. [Google Scholar] [CrossRef] [PubMed]
- Gafar, S.; El-Ahdal, M. A new developed radiochromic film for high-dose dosimetry applications. Dyes Pigment. 2015, 114, 273–277. [Google Scholar] [CrossRef]
- Di Capua, F.; Campajola, L.; Casolaro, P.; Campajola, M.; Aloisio, A.; Lucaroni, A.; Furano, G.; Menicucci, A.; Di Mascio, S.; Malatesta, F.; et al. Full characterization of a compact 90Sr/90Y beta source for TID radiation testing. Adv. Space Res. 2019, 63, 3249–3257. [Google Scholar] [CrossRef]
- Menicucci, A.; Malatesta, F.; Di Capua, F.; Campajola, L.; Casolaro, P.; Furano, G.; Di Mascio, S.; Ottavi, M. Simplified Procedures for COTS TID Testing: A Comparison Between 90 Sr and 60 Co. In Proceedings of the 2018 IEEE Radiation Effects Data Workshop (REDW), Waikoloa Village, HI, USA, 16–20 July 2018; pp. 1–6. [Google Scholar]
- Martorana, F.; Parlato, A.; Perrone, G.; Tomarchio, E.A.G. Response of GAFChromic® HD-V2 film dosimeter in 10-300 Gy dose range for radiation testing of electronic devices. Nucl. Technol. Radiat. Prot. 2019, 34, 79–84. [Google Scholar] [CrossRef] [Green Version]
- Ravotti, F. Dosimetry techniques and radiation test facilities for total ionizing dose testing. IEEE Trans. Nucl. Sci. 2018, 65, 1440–1464. [Google Scholar] [CrossRef] [Green Version]
- Anders, J.; Braccini, S.; Carzaniga, T.; Ereditato, A.; Fehr, A.; Meloni, F.; Merlassino, C.; Miucci, A.; Rimoldi, M.; Weber, M. A facility for radiation hardness studies based on the Bern medical cyclotron. arXiv 2018, arXiv:1803.01939. [Google Scholar]
- Aldelaijan, S.; Nobah, A.; Alsbeih, G.; Moftah, B.; Aldahlawi, I.; Alzahrany, A.; Tomic, N.; Devic, S. Dosimetry of biological irradiations using radiochromic films. Phys. Med. Biol. 2013, 58, 3177. [Google Scholar] [CrossRef]
- Baratto-Roldán, A.; Jiménez-Ramos, M.D.C.; Battaglia, M.C.; García-López, J.; Gallardo, M.I.; Cortés-Giraldo, M.A.; Espino, J.M. Feasibility study of a proton irradiation facility for radiobiological measurements at an 18 MeV cyclotron. Instruments 2018, 2, 26. [Google Scholar] [CrossRef] [Green Version]
- Del Río, J.T.; Forastero, C.; Moreno-Torres, M.; Molina-Matas, M.; Martínez-Felipe, A.M.; Moreno, Á.; López-Peñalver, J.J.; Guirado, D. Use of radiochromic film dosimetry in radiobiology experiments. Radiat. Phys. Chem. 2019, 156, 169–173. [Google Scholar] [CrossRef]
- Ghithan, S.; Crespo, P.; do Carmo, S.; Marques, R.F.; Fraga, F.; Simões, H.; Alves, F.; Rachinhas, P. Development of a PET cyclotron based irradiation setup for proton radiobiology. J. Instrum. 2015, 10, P02010. [Google Scholar] [CrossRef] [Green Version]
- Krzempek, D.; Mianowska, G.; Bassler, N.; Stolarczyk, L.; Kopeć, R.; Sas-Korczyńska, B.; Olko, P. Calibration of Gafchromic EBT3 film for dosimetry of scanning proton pencil beam (PBS). Radiat. Prot. Dosim. 2018, 180, 324–328. [Google Scholar] [CrossRef] [PubMed]
- Castriconi, R.; Ciocca, M.; Mirandola, A.; Sini, C.; Broggi, S.; Schwarz, M.; Fracchiolla, F.; Martišíková, M.; Aricò, G.; Mettivier, G.; et al. Dose–response of EBT3 radiochromic films to proton and carbon ion clinical beams. Phys. Med. Biol. 2016, 62, 377. [Google Scholar] [CrossRef] [PubMed]
- Yonai, S.; Arai, C.; Shimoyama, K.; Fournier-Bidoz, N. Experimental evaluation of dosimetric characterization of gafchromic EBT3 and EBT-XD films for clinical carbon ion beams. Radiat. Prot. Dosim. 2018, 180, 314–318. [Google Scholar] [CrossRef]
- Hara, Y.; Furukawa, T.; Mizushima, K.; Takeshita, E.; Shirai, T.; Noda, K. Application of radiochromic film for quality assurance in the heavy-ion beam scanning irradiation system at HIMAC. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2014, 331, 253–256. [Google Scholar] [CrossRef]
- Avila-Rodriguez, M.; Wilson, J.; McQuarrie, S. The use of radiochromic films to measure and analyze the beam profile of charged particle accelerators. Appl. Radiat. Isot. 2009, 67, 2025–2028. [Google Scholar] [CrossRef] [PubMed]
- Sansaloni, F.; Lagares, J.; Arce, P.; Llop, J.; Perez, J. Characterization of the proton beam from an IBA Cyclone 18/9 with radiochromic film EBT2. In AIP Conference Proceedings; American Institute of Physics: New York, NY, USA, 2012; Volume 1509, pp. 46–50. [Google Scholar]
- Braccini, S.; Ereditato, A.; Scampoli, P.; von Bremen, K. The new Bern cyclotron laboratory for radioisotope production and research. In Proceedings of the Second International Particle Accelerator Conference—IPAC2011 (3618), San Sebastian, Spain, 4–9 September 2011. [Google Scholar]
- Lasi, D.; Tulej, M.; Neuland, M.B.; Wurz, P.; Carzaniga, T.S.; Nesteruk, K.P.; Braccini, S.; Elsener, H. Testing the radiation hardness of thick-film resistors for a time-of-flight mass spectrometer at jupiter with 18 MeV protons. In Proceedings of the 2017 IEEE Radiation Effects Data Workshop (REDW), New Orleans, LA, USA, 17–21 July 2017; pp. 1–9. [Google Scholar]
- Nürnberg, F.; Schollmeier, M.; Brambrink, E.; Blažević, A.; Carroll, D.; Flippo, K.; Gautier, D.; Geissel, M.; Harres, K.; Hegelich, B.; et al. Radiochromic film imaging spectroscopy of laser-accelerated proton beams. Rev. Sci. Instrum. 2009, 80, 033301. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, J.; Margarone, D.; Candiano, G.; Kim, I.J.; Jeong, T.M.; Pšikal, J.; Romano, F.; Cirrone, P.; Scuderi, V.; Korn, G. Radiochromic film diagnostics for laser-driven ion beams. In Research Using Extreme Light: Entering New Frontiers with Petawatt-Class Lasers II; International Society for Optics and Photonics: San Diego, CA, USA, 2015; Volume 9515, p. 95151J. [Google Scholar]
- Cirrone, G.; Petringa, G.; Cagni, B.; Cuttone, G.; Fustaino, G.; Guarrera, M.; Khanna, R.; Catalano, R. Use of radiochromic films for the absolute dose evaluation in high dose-rate proton beams. J. Instrum. 2020, 15, C04029. [Google Scholar] [CrossRef]
- Ashraf, M.R.; Rahman, M.; Zhang, R.; Williams, B.B.; Gladstone, D.J.; Pogue, B.W.; Bruza, P. Dosimetry for FLASH Radiotherapy: A Review of Tools and the Role of Radioluminescence and Cherenkov Emission. arXiv 2020, arXiv:2006.03755. [Google Scholar] [CrossRef]
- Curry, C.; Dunning, C.; Gauthier, M.; Chou, H.G.; Fiuza, F.; Glenn, G.; Tsui, Y.; Bazalova-Carter, M.; Glenzer, S. Optimization of radiochromic film stacks to diagnose high-flux laser-accelerated proton beams. Rev. Sci. Instrum. 2020, 91, 093303. [Google Scholar] [CrossRef]
- Butson, M.; Niroomand-Rad, A. Historical background, development, and construction of radiochromic films. In Radiochromic Film: Role and Applications in Radiation Dosimetry; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- McLaughlin, W. A radiochromic solid-state polymerization reaction. In Proceedings of the 208th ACS National Meeting, Washington, DC, USA, 21–26 August 1994. [Google Scholar]
- McLaughlin, W.L.; Al-Sheikhly, M.; Lewis, D.; Kovács, A.; Wojnárovits, L. Radiochromic Solid-State Polymerization Reaction; ACS Publications: Washington, DC, USA, 1996. [Google Scholar]
- Cheung, T.; Butson, M.J.; Peter, K. Post-irradiation colouration of Gafchromic EBT radiochromic film. Phys. Med. Biol. 2005, 50, N281. [Google Scholar] [CrossRef] [Green Version]
- Campajola, L.; Casolaro, P.; Di Capua, F. Absolute dose calibration of EBT3 Gafchromic films. J. Instrum. 2017, 12, P08015. [Google Scholar] [CrossRef]
- Labate, L.; Lamia, D.; Russo, G. Dosimetry of laser-driven electron beams for radiobiology and medicine. In Laser-Driven Particle Acceleration towards Radiobiology and Medicine; Springer: Berlin/Heidelberg, Germany, 2016; pp. 203–218. [Google Scholar]
- McCabe, B.P.; Speidel, M.A.; Pike, T.L.; Van Lysel, M.S. Calibration of GafChromic XR-RV3 radiochromic film for skin dose measurement using standardized x-ray spectra and a commercial flatbed scanner. Med. Phys. 2011, 38, 1919–1930. [Google Scholar] [CrossRef] [Green Version]
- Al-Okshi, A.; Nilsson, M.; Petersson, A.; Wiese, M.; Lindh, C. Using GafChromic film to estimate the effective dose from dental cone beam CT and panoramic radiography. Dentomaxillofacial Radiol. 2013, 42, 20120343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miura, H.; Ozawa, S.; Hosono, F.; Sumida, N.; Okazue, T.; Yamada, K.; Nagata, Y. Gafchromic EBT-XD film: Dosimetry characterization in high-dose, volumetric-modulated arc therapy. J. Appl. Clin. Med. Phys. 2016, 17, 312–322. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.; Batsberg, W.; Karman, W. A new radiochromic thin-film dosimeter system. Int. J. Radiat. Appl. Instrum. Part C. Radiat. Phys. Chem. 1988, 31, 491–496. [Google Scholar] [CrossRef]
- Butson, M.J.; Cheung, T.; Peter, K. Absorption spectra analysis of exposed FWT-60 radiochromic film. Phys. Med. Biol. 2004, 49, N377. [Google Scholar] [CrossRef] [Green Version]
- AshlandTM. Gafchromic Films. 2021. Available online: http://www.gafchromic.com/gafchromic-film/radiotherapy-films/HD-V2/index.asp (accessed on 10 February 2021).
- Fusi, F.; Mercatelli, L.; Marconi, G.; Cuttone, G.; Romano, G. Optical characterization of a radiochromic film by total reflectance and transmittance measurements. Med. Phys. 2004, 31, 2147–2154. [Google Scholar] [CrossRef]
- Aldelaijan, S.; Devic, S. Comparison of dose response functions for EBT3 model GafChromic™ film dosimetry system. Phys. Med. 2018, 49, 112–118. [Google Scholar] [CrossRef]
- Butson, M.J.; Peter, K.; Cheung, T.; Inwood, D. Polarization effects on a high-sensitivity radiochromic film. Phys. Med. Biol. 2003, 48, N207. [Google Scholar] [CrossRef]
- Andres, C.; Del Castillo, A.; Tortosa, R.; Alonso, D.; Barquero, R. A comprehensive study of the Gafchromic EBT2 radiochromic film. A comparison with EBT. Med. Phys. 2010, 37, 6271–6278. [Google Scholar] [CrossRef]
- Butson, E.T.; Cheung, T.; Peter, K.; Butson, M.J. Measuring solar UV radiation with EBT radiochromic film. Phys. Med. Biol. 2010, 55, N487. [Google Scholar] [CrossRef]
- García-Garduño, O.A.; Lárraga-Gutiérrez, J.M.; Rodríguez-Villafuerte, M.; Martínez-Dávalos, A.; Celis, M.A. Small photon beam measurements using radiochromic film and Monte Carlo simulations in a water phantom. Radiother. Oncol. 2010, 96, 250–253. [Google Scholar] [CrossRef]
- Severgnini, M.; de Denaro, M.; Bortul, M.; Vidali, C.; Beorchia, A. In vivo dosimetry and shielding disk alignment verification by EBT3 GAFCHROMIC film in breast IOERT treatment. J. Appl. Clin. Med. Phys. 2015, 16, 112–120. [Google Scholar] [CrossRef]
- León-Marroquín, E.Y.; Lárraga-Gutiérrez, J.M.; Herrera-González, J.A.; Camacho-López, M.A.; Villarreal Barajas, J.E.; García-Garduño, O.A. Investigation of EBT 3 radiochromic film’s response to humidity. J. Appl. Clin. Med. Phys. 2018, 19, 283–290. [Google Scholar] [CrossRef] [Green Version]
- Aldelaijan, S.; Alzorkany, F.; Moftah, B.; Buzurovic, I.; Seuntjens, J.; Tomic, N.; Devic, S. Use of a control film piece in radiochromic film dosimetry. Phys. Med. 2016, 32, 202–207. [Google Scholar] [CrossRef]
- Ferreira, B.; Lopes, M.; Capela, M. Evaluation of an Epson flatbed scanner to read Gafchromic EBT films for radiation dosimetry. Phys. Med. Biol. 2009, 54, 1073. [Google Scholar] [CrossRef]
- Lárraga-Gutiérrez, J.M.; García-Garduño, O.A.; Treviño-Palacios, C.; Herrera-González, J.A. Evaluation of an LED-based flatbed document scanner for radiochromic film dosimetry in transmission mode. Phys. Med. 2018, 47, 86–91. [Google Scholar] [CrossRef] [Green Version]
- Schoenfeld, A.A.; Wieker, S.; Harder, D.; Poppe, B. The origin of the flatbed scanner artifacts in radiochromic film dosimetry—Key experiments and theoretical descriptions. Phys. Med. Biol. 2016, 61, 7704. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, A.A.; Poppinga, D.; Harder, D.; Doerner, K.J.; Poppe, B. The artefacts of radiochromic film dosimetry with flatbed scanners and their causation by light scattering from radiation-induced polymers. Phys. Med. Biol. 2014, 59, 3575. [Google Scholar] [CrossRef] [PubMed]
- Van Battum, L.; Huizenga, H.; Verdaasdonk, R.; Heukelom, S. How flatbed scanners upset accurate film dosimetry. Phys. Med. Biol. 2015, 61, 625. [Google Scholar] [CrossRef] [PubMed]
- Lewis, D.; Chan, M.F. Correcting lateral response artifacts from flatbed scanners for radiochromic film dosimetry. Med. Phys. 2015, 42, 416–429. [Google Scholar] [CrossRef]
- Micke, A.; Lewis, D.F.; Yu, X. Multichannel film dosimetry with nonuniformity correction. Med. Phys. 2011, 38, 2523–2534. [Google Scholar] [CrossRef] [PubMed]
- Lewis, D.; Micke, A.; Yu, X.; Chan, M.F. An efficient protocol for radiochromic film dosimetry combining calibration and measurement in a single scan. Med. Phys. 2012, 39, 6339–6350. [Google Scholar] [CrossRef] [PubMed]
- Mathot, M.; Sobczak, S.; Hoornaert, M.T. Gafchromic film dosimetry: Four years experience using FilmQA Pro software and Epson flatbed scanners. Phys. Med. 2014, 30, 871–877. [Google Scholar] [CrossRef] [Green Version]
- Marrazzo, L.; Zani, M.; Pallotta, S.; Arilli, C.; Casati, M.; Compagnucci, A.; Talamonti, C.; Bucciolini, M. GafChromic® EBT3 films for patient specific IMRT QA using a multichannel approach. Phys. Med. 2015, 31, 1035–1042. [Google Scholar] [CrossRef]
- Howard, M.E.; Herman, M.G.; Grams, M.P. Methodology for radiochromic film analysis using FilmQA Pro and ImageJ. PLoS ONE 2020, 15, e0233562. [Google Scholar] [CrossRef]
- Helt-Hansen, J.; Miller, A. RisøScan—A new dosimetry software. Radiat. Phys. Chem. 2004, 71, 361–364. [Google Scholar] [CrossRef]
- Helt-Hansen, J.; Miller, A. Assessment of dose measurement uncertainty using RisøScan. Radiat. Phys. Chem. 2006, 75, 1101–1106. [Google Scholar] [CrossRef]
- Asero, G.; Greco, C.; Gueli, A.; Raffaele, L.; Spampinato, S. Evaluation of spatial resolution in image acquisition by optical flatbed scanners for radiochromic film dosimetry. J. Instrum. 2016, 11, P03024. [Google Scholar] [CrossRef]
- Mirza, J.A.; Hernández Millares, R.; Kim, G.I.; Park, S.Y.; Lee, J.; Ye, S.J. Characterization of radiochromic films as a micrometer-resolution dosimeter by confocal Raman spectroscopy. Med. Phys. 2019, 46, 5238–5248. [Google Scholar] [CrossRef]
- Heilemann, G.; Georg, D.; Berg, A. Pushing the boundaries of spatial resolution in dosimetry using polymer gels and radiochromic films. J. Physics Conf. Ser. 2015, 573, 012034. [Google Scholar] [CrossRef] [Green Version]
- Casolaro, P. Innovative Detection Methods for Radiation Hardness. Ph.D. Thesis, Università degli Studi di Napoli Federico II, Napoli, Italy, 2019. [Google Scholar]
- Devic, S.; Seuntjens, J.; Sham, E.; Podgorsak, E.B.; Schmidtlein, C.R.; Kirov, A.S.; Soares, C.G. Precise radiochromic film dosimetry using a flat-bed document scanner. Med. Phys. 2005, 32, 2245–2253. [Google Scholar] [CrossRef]
- Darafsheh, A.; León-Marroquín, E.Y.; Mulrow, D.J.; Baradaran-Ghahfarokhi, M.; Zhao, T.; Khan, R. On the spectral characterization of radiochromic films irradiated with clinical proton beams. Phys. Med. Biol. 2019, 64, 135016. [Google Scholar] [CrossRef] [PubMed]
- León-Marroquín, E.Y.; Mulrow, D.J.; Khan, R.; Darafsheh, A. Spectral analysis of the EBT3 radiochromic films for clinical photon and electron beams. Med. Phys. 2019, 46, 973–982. [Google Scholar] [CrossRef]
- Martín-Viera Cueto, J.; Parra Osorio, V.; Moreno Sáiz, C.; Navarro Guirado, F.; Casado Villalón, F.; Galán Montenegro, P. A universal dose–response curve for radiochromic films. Med. Phys. 2015, 42, 221–231. [Google Scholar] [CrossRef]
- Casolaro, P.; Campajola, L.; Di Capua, F. The physics of radiochromic process: One calibration equation for all film types. J. Instrum. 2019, 14, P08006. [Google Scholar] [CrossRef]
- Ibarmia, S.; Eck, J.; Ivanchenko, V.; Lavielle, D.; Rivera, A.; Cueto, J.; Santin, G. Experimental dose enhancement in multi-layer shielding structures exposed to high-energy electron environments. IEEE Trans. Nucl. Sci. 2013, 60, 2486–2493. [Google Scholar] [CrossRef]
- Butson, M.J.; Cheung, T.; Yu, P.K.; Alnawaf, H. Dose and absorption spectra response of EBT2 Gafchromic film to high energy X-rays. Australas. Phys. Eng. Sci. Med. 2009, 32, 196–202. [Google Scholar] [CrossRef] [PubMed]
- León-Marroquín, E.Y.; Camacho-López, M.A.; García-Garduño, O.A.; Herrera-González, J.A.; Villarreal-Barajas, J.E.; Gutiérrez-Fuentes, R.; Contreras-Bulnes, R. Spectral analysis of the EBT3 radiochromic film irradiated with 6 MV X-ray radiation. Radiat. Meas. 2016, 89, 82–88. [Google Scholar] [CrossRef]
- Soares, C.G. New developments in radiochromic film dosimetry. Radiat. Prot. Dosim. 2006, 120, 100–106. [Google Scholar] [CrossRef]
- Vaiano, P.; Consales, M.; Casolaro, P.; Campajola, L.; Fienga, F.; Di Capua, F.; Breglio, G.; Buontempo, S.; Cutolo, A.; Cusano, A. A novel method for EBT3 Gafchromic films read-out at high dose levels. Phys. Med. 2019, 61, 77–84. [Google Scholar] [CrossRef]
- Casolaro, P.; Campajola, L.; Breglio, G.; Buontempo, S.; Consales, M.; Cusano, A.; Cutolo, A.; Di Capua, F.; Fienga, F.; Vaiano, P. Real-time dosimetry with radiochromic films. Sci. Rep. 2019, 9, 1–11. [Google Scholar]
- Mignani, A.G.; Romano, S.; Fusi, F.; Mencaglia, A.A. Radiation dosimetry in radiotherapy: A model for an extrinsic optical fiber sensor. In European Workshop on Optical Fibre Sensors; International Society for Optics and Photonics: San Diego, CA, USA, 1998; Volume 3483, pp. 99–102. [Google Scholar]
- Rink, A.; Vitkin, I.A.; Jaffray, D.A. Suitability of radiochromic medium for real-time optical measurements of ionizing radiation dose. Med. Phys. 2005, 32, 1140–1155. [Google Scholar] [CrossRef]
- Jaccard, M.; Petersson, K.; Buchillier, T.; Germond, J.F.; Durán, M.T.; Vozenin, M.C.; Bourhis, J.; Bochud, F.O.; Bailat, C. High dose-per-pulse electron beam dosimetry: Usability and dose-rate independence of EBT3 Gafchromic films. Med. Phys. 2017, 44, 725–735. [Google Scholar] [CrossRef]
- Karsch, L.; Beyreuther, E.; Burris-Mog, T.; Kraft, S.; Richter, C.; Zeil, K.; Pawelke, J. Dose rate dependence for different dosimeters and detectors: TLD, OSL, EBT films, and diamond detectors. Med. Phys. 2012, 39, 2447–2455. [Google Scholar] [CrossRef]
- Bin, J.; Ji, Q.; Seidl, P.; Raftrey, D.; Steinke, S.; Persaud, A.; Nakamura, K.; Gonsalves, A.; Leemans, W.; Schenkel, T. Absolute calibration of GafChromic film for very high flux laser driven ion beams. Rev. Sci. Instrum. 2019, 90, 053301. [Google Scholar] [CrossRef] [PubMed]
- Massillon-JL, G.; Chiu-Tsao, S.T.; Domingo-Munoz, I.; Chan, M.F. Energy Dependence of the New Gafchromic EBT3 Film: Dose Response Curves for 50 kV, 6 and 15 MV X-ray Beams. Sci. Res. 2012, 1, 21922. [Google Scholar]
- Farah, N.; Francis, Z.; Abboud, M. Analysis of the EBT3 Gafchromic film irradiated with 6 MV photons and 6 MeV electrons using reflective mode scanners. Phys. Med. 2014, 30, 708–712. [Google Scholar] [CrossRef]
- Bekerat, H.; Devic, S.; DeBlois, F.; Singh, K.; Sarfehnia, A.; Seuntjens, J.; Shih, S.; Yu, X.; Lewis, D. Improving the energy response of external beam therapy (EBT) GafChromicTM dosimetry films at low energies (≤100 keV). Med. Phys. 2014, 41, 022101. [Google Scholar] [CrossRef]
- Hammer, C.G.; Rosen, B.S.; Fagerstrom, J.M.; Culberson, W.S.; DeWerd, L.A. Experimental investigation of GafChromic® EBT3 intrinsic energy dependence with kilovoltage x rays, 137Cs, and 60Co. Med. Phys. 2018, 45, 448–459. [Google Scholar] [CrossRef]
- Vallières, S.; Bienvenue, C.; Puyuelo-Valdes, P.; Salvadori, M.; d’Humières, E.; Schiettekatte, F.; Antici, P. Low-energy proton calibration and energy-dependence linearization of EBT-XD radiochromic films. Rev. Sci. Instrum. 2019, 90, 083301. [Google Scholar] [CrossRef]
- Khachonkham, S.; Dreindl, R.; Heilemann, G.; Lechner, W.; Fuchs, H.; Palmans, H.; Georg, D.; Kuess, P. Characteristic of EBT-XD and EBT3 radiochromic film dosimetry for photon and proton beams. Phys. Med. Biol. 2018, 63, 065007. [Google Scholar] [CrossRef]
- Reinhardt, S.; Würl, M.; Greubel, C.; Humble, N.; Wilkens, J.; Hillbrand, M.; Mairani, A.; Assmann, W.; Parodi, K. Investigation of EBT2 and EBT3 films for proton dosimetry in the 4–20 MeV energy range. Radiat. Environ. Biophys. 2015, 54, 71–79. [Google Scholar] [CrossRef]
- Vadrucci, M.; Esposito, G.; Ronsivalle, C.; Cherubini, R.; Marracino, F.; Montereali, R.; Picardi, L.; Piccinini, M.; Pimpinella, M.; Vincenti, M.; et al. Calibration of GafChromic EBT3 for absorbed dose measurements in 5 MeV proton beam and 60Co γ-rays. Med. Phys. 2015, 42, 4678–4684. [Google Scholar] [CrossRef] [Green Version]
- Di Lillo, F.; Mettivier, G.; Sarno, A.; Tromba, G.; Tomic, N.; Devic, S.; Russo, P. Energy dependent calibration of XR-QA2 radiochromic film with monochromatic and polychromatic x-ray beams. Med. Phys. 2016, 43, 583–588. [Google Scholar] [CrossRef]
- Yuri, Y.; Narumi, K.; Yuyama, T. Characterization of a Gafchromic film for the two-dimensional profile measurement of low-energy heavy-ion beams. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2016, 828, 15–21. [Google Scholar] [CrossRef]
- Xu, X.; Liao, Q.; Wu, M.; Geng, Y.; Li, D.; Zhu, J.; Li, C.; Hu, R.; Shou, Y.; Chen, Y.; et al. Detection and analysis of laser driven proton beams by calibrated Gafchromic HD-V2 and MD-V3 radiochromic films. Rev. Sci. Instrum. 2019, 90, 033306. [Google Scholar] [CrossRef] [PubMed]
- Yuri, Y.; Ishizaka, T.; Agematsu, T.; Yuyama, T.; Seito, H.; Okumura, S. Use of a Gafchromic film HD-V2 for the profile measurement of energetic ion beams. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2017, 406, 221–224. [Google Scholar] [CrossRef]
- Torrisi, L.; Havranek, V.; Cutroneo, M.; Torrisi, A. Gafchromic HD-V2 investigations using MeV ion beams in vacuum. Radiat. Eff. Defects Solids 2019, 174, 1063–1075. [Google Scholar] [CrossRef]
- Maeyama, T.; Fukunishi, N.; Ishikawa, K.L.; Fukasaku, K.; Fukuda, S. Radiological properties of nanocomposite Fricke gel dosimeters for heavy ion beams. J. Radiat. Res. 2016, 57, 318–324. [Google Scholar] [CrossRef] [Green Version]
- Maeyama, T.; Fukunishi, N.; Ishikawa, K.L.; Fukasaku, K.; Fukuda, S. Organic-gelatin-free nanocomposite fricke gel dosimeter. J. Phys. Chem. B 2017, 121, 4238–4246. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casolaro, P. Radiochromic Films for the Two-Dimensional Dose Distribution Assessment. Appl. Sci. 2021, 11, 2132. https://doi.org/10.3390/app11052132
Casolaro P. Radiochromic Films for the Two-Dimensional Dose Distribution Assessment. Applied Sciences. 2021; 11(5):2132. https://doi.org/10.3390/app11052132
Chicago/Turabian StyleCasolaro, Pierluigi. 2021. "Radiochromic Films for the Two-Dimensional Dose Distribution Assessment" Applied Sciences 11, no. 5: 2132. https://doi.org/10.3390/app11052132
APA StyleCasolaro, P. (2021). Radiochromic Films for the Two-Dimensional Dose Distribution Assessment. Applied Sciences, 11(5), 2132. https://doi.org/10.3390/app11052132