Multi-Stage Dynamic Transmission Network Expansion Planning Using LSHADE-SPACMA
Abstract
:1. Introduction
2. Problem Formulation
2.1. Deterministic Static TNEP (DSTNEP) Model without Security Constraint
2.2. Multi-Stage Dynamic TNEP (MSDTNEP) Model
2.3. Applied Strategy
3. Load Forecasting Using ANFIS
- Step 1:
- Define the input and output of the model. Input is the historical year and output is the actual peak load data.
- Step 2:
- Collect all data from previous periods and normalize scales,
- Step 3:
- Divide data into two sets—training data and test data. Training data are about 70–90% of the data available.
- Step 4:
- Run and estimate all reasonable ANFIS and determine the type of membership function and number of linguistic variables.
- Step 5:
- Select the best ANFIS model.
- Step 6:
- Project input variables using an autoregressive model in years (defined for the future).
- Step 7:
- Predict total peak loads using selected ANFIS.
4. LSHADE with Semi-Parameter Adaptation Hybrid with CMA-ES
4.1. LSHADE
4.1.1. Initialization
4.1.2. Mutation
4.1.3. Crossover
4.1.4. Selection Scheme
4.1.5. Linear Population Size Reduction (LPSR)
4.1.6. Semi-Parameter Adaptation (SPA) of Scaling Factor (F) and Crossover Rate (Cr)
First Part of SPA
Second Part of SPA
4.2. Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
- Generate an initial population and then calculate the fitness function.
- Gaussian distribution is used to produce new individuals, thus:
- Update m using the best μ individuals according to where and .
- Update σc and C.
- Steps 2 and 3 are repeated until a stop criterion is met.
4.3. LSHADE-SPACMA Hybridization Framework
4.4. Pseudocode of LSHADE-SPACMA for Solving the TNEP Problem
5. Simulation Results and Analyses
5.1. Validation of LSHADE-SPACMA Technique to Solve the TNEP Problem
5.1.1. Garver 6-Bus Test System
5.1.2. 93-Bus Colombian System
5.2. West Delta Network (WDN) System Planning
5.2.1. Validation of LSHADE-SPACMA Technique to Solve the TNEP Problem for WDN
5.2.2. Multi-Stage Dynamic Planning for WDN up to 2040 without Security N-1 Security Constraint
5.2.3. Multi-Stage Dynamic Planning for WDN up to 2040 with Security N-1 Security Constraint
6. Conclusions and Future Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
ACTNEP | AC transmission network expansion planning |
ANFIS | Adaptive neuro-fuzzy inference system |
CMA-ES | Covariance Matrix Adaptation Evolution Strategy |
DCTNEP | DC transmission network Expansion planning |
DCPF | DC power flow |
DE | Differential Evolution |
DSTNEP | Deterministic static transmission network expansion planning |
DTNEP | Dynamic transmission network expansion planning |
GA | Genetic algorithm |
HM | Heuristic method |
LP | Linear programming |
LPSR | Linear population size reduction |
LSHADE-SPACMA | Linear population size reduction Success History-based Differential Evolution with semi-parameter adaptation hybrid with CMA-ES |
MSDTNEP | Multi-stage dynamic transmission network expansion planning |
SPA | Semi-parameter adaptation |
STNEP | Static transmission network expansion planning |
TNEP | Transmission network expansion planning |
WDN | Egyptian West Delta Network |
R | Line resistance |
Active power injection at bus i | |
Bij | Susceptance of route between bus i and j |
, | Voltage angles at bus i and j, respectively |
Active power generation source and the load demand (MW) at bus i, respectively | |
Cost of circuit between buses i and j | |
X | Line reactance |
,, | Initial number of circuits, the maximum number of circuits, and the actual number of circuits between buses i and j, respectively |
, | Active power flow and the active power flow limit in the i-j right of way (MW), respectively |
Amount of load shedding | |
Penalty parameter that penalizes, in the objective function, any system load shedding | |
Maximum percentage of load shedding | |
, | Total number of stages and stage number, respectively |
Np | Population size |
Initial, upper bound, and lower bound of mth component of the decision vector, respectively | |
Mutant vector corresponding to each population member | |
F | Scale factor |
CR | Crossover rate |
Best individual vector with the best fitness value at G generation in the population | |
Trial vector | |
NFE | Current number of fitness evaluations |
MAXNFE | Maximum number of fitness evaluations |
Ninit | Initial population size |
Nmin | Minimum number of individuals that DE can work with |
References
- Mahdavi, M.; Antunez, C.S.; Ajalli, M.; Romero, R. Transmission expansion planning: Literature review and classification. IEEE Syst. J. 2019, 13, 3129–3140. [Google Scholar] [CrossRef]
- Freitas, P.F.S.; Macedo, L.H.; Romero, R. A strategy for transmission network expansion planning considering multiple generation scenarios. Elect. Power Syst. Res. 2019, 172, 22–31. [Google Scholar] [CrossRef]
- Naderi, E.; Pourakbari-Kasmaei, M.; Lehtonen, M. transmission expansion planning integrated with wind farms: A review, comparative study, and a novel profound search approach. Int. J. Electr. Power Energy Syst. 2020, 115, 105460. [Google Scholar] [CrossRef]
- Garver, L.L. Transmission Network Estimation. IEEE Trans. Power Appar. Sys. 1970, 89, 1688–1697. [Google Scholar] [CrossRef]
- Han, S.; Kim, H.-J.; Lee, D. A Long-term evaluation on transmission line expansion planning with multistage stochastic programming. Energies 2020, 13, 1899. [Google Scholar] [CrossRef] [Green Version]
- Taherkhani, M.; Hosseini, S.H.; Javadi, M.S.; Catalão, J.P. Scenario-based probabilistic multi-stage optimization for transmission expansion planning incorporating wind generation integration. Elect. Power Syst. Res. 2020, 189, 106601. [Google Scholar] [CrossRef]
- Zhang, F.; Hu, Z.; Song, Y. Mixed-integer linear model for transmission expansion planning with line losses and energy storage systems. IET Gener. Transm. Distr. 2013, 7, 919–928. [Google Scholar] [CrossRef]
- Dodu, J.C.; Merlin, A. Dynamic model for long-term expansion planning studies of power transmission systems: The Ortie model. Int. J. Elect. Power Energy Syst. 1981, 3, 2–16. [Google Scholar] [CrossRef]
- Mora, C.A.; Montoya, O.D.; Trujillo, E.R. Mixed-integer programming model for transmission network expansion planning with battery energy storage systems (BESS). Energies 2020, 13, 4386. [Google Scholar] [CrossRef]
- Li, Y.-H.; Wang, J.-X. Flexible transmission network expansion planning considering uncertain renewable generation and load demand based on hybrid clustering analysis. Appl. Sci. 2016, 6, 3. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Verma, A.; Bijwe, P.R. Efficient multi-year security constrained AC transmission network expansion planning. Elect. Power Syst. Res. 2020, 187, 106507. [Google Scholar] [CrossRef]
- Lee, S.T.Y.; Hicks, K.L.; Hnyilicza, E. Transmission expansion by branch-and-bound integer programming with optimal cost-capacity curves. IEEE Trans. Power Appar. Syst. 1974, PAS-93, 1390–1400. [Google Scholar] [CrossRef]
- Zhan, J.; Chung, C.Y.; Zare, A. A fast solution method for stochastic transmission expansion planning. IEEE Trans. Power Syst. 2017, 32, 4684–4695. [Google Scholar] [CrossRef]
- Pereira, M.V.F.; Pinto, L.M.V.G. Application of sensitivity analysis of load supplying capability to interactive transmission expansion planning. IEEE Trans. Power Appar. Syst. 1985, 381–389. [Google Scholar] [CrossRef]
- Sousa, A.S.; Asada, E.N. Combined heuristic with fuzzy system to transmission system expansion planning. Elect. Power Syst. Res. 2011, 81, 123–128. [Google Scholar] [CrossRef]
- Da Silva, E.L.; Gil, H.A.; Areiza, J.M. Transmission network expansion planning under an improved genetic algorithm. IEEE Trans. Power Syst. 2000, 15, 1168–1174. [Google Scholar] [CrossRef]
- Escobar, A.H.; Gallego, R.A.; Romero, R. Multistage and coordinated planning of the expansion of transmission systems. IEEE Trans. Power Syst. 2004, 19, 735–744. [Google Scholar] [CrossRef]
- Da Silva, E.L.; Ortiz, J.M.A.; De Oliveira, G.C.; Binato, S. Transmission network expansion planning under a tabu search approach. IEEE Trans. Power Syst. 2001, 16, 62–68. [Google Scholar] [CrossRef]
- Binato, S.; De Oliveira, G.C.; De Araújo, J.L. A greedy randomized adaptive search procedure for transmission expansion planning. IEEE Trans. Power Syst. 2001, 16, 247–253. [Google Scholar] [CrossRef]
- Shayeghi, H.; Mahdavi, M.; Bagheri, A. Discrete PSO algorithm based optimization of transmission lines loading in TNEP problem. Energy Convers. Manag. 2010, 51, 112–121. [Google Scholar] [CrossRef]
- Shayeghi, H.; Mahdavi, M.; Bagheri, A. An improved DPSO with mutation based on similarity algorithm for optimization of transmission lines loading. Energy Convers. Manag. 2010, 51, 2715–2723. [Google Scholar] [CrossRef]
- Torres, S.P.; Castro, C.A. Expansion planning for smart transmission grids using AC model and shunt compensation. IET Gener. Transm. Distr. 2014, 8, 966–975. [Google Scholar] [CrossRef]
- Huang, S.; Dinavahi, V. Multi-group particle swarm optimisation for transmission expansion planning solution based on LU decomposition. IET Gener. Transm. Distr. 2017, 11, 1434–1442. [Google Scholar] [CrossRef]
- Fathy, A.A.; Elbages, M.S.; El-Sehiemy, R.A.; Bendary, F.M. Static transmission expansion planning for realistic networks in Egypt. Elect. Power Syst. Res. 2017, 151, 404–418. [Google Scholar] [CrossRef]
- Shaheen, A.M. Application of multi-verse optimizer for transmission network expansion planning in power systems. In Proceedings of the 2019 International Conference on Innovative Trends in Computer Engineering (ITCE’2019), Aswan, Egypt, 2–4 February 2019. [Google Scholar]
- Mohamed, A.W.; Hadi, A.A.; Fattouh, A.M.; Jambi, K.M. LSHADE with Semi-Parameter Adaptation Hybrid with CMA-ES for Solving CEC 2017 Benchmark Problems. In Proceedings of the 2017 IEEE Congress On Evolutionary Computation (Cec), San Sebastián, Spain, 5–8 June 2017. [Google Scholar]
- Nazar, M.S.; Vahidi, B.; Hosseinian, S.H. TNEP and the effects of wind generation on market prices, network reliability, and line failures in TNEP. Int. J. Electr. Power Energy Syst. 2020, 123, 106296. [Google Scholar] [CrossRef]
- Silva, I.D.J.; Rider, M.J.; Romero, R.; Garcia, A.V.; Murari, C.A. Transmission network expansion planning with security constraints. IET Gener. Transm. Distr. 2005, 152, 828–836. [Google Scholar] [CrossRef]
- Akdemir, B.; Çetinkaya, N. Long-term load forecasting based on adaptive neural fuzzy inference system using real energy data. Energy Procedia 2012, 14, 794–799. [Google Scholar] [CrossRef] [Green Version]
- Tanabe, R.; Fukunaga, A.S. Improving the search performance of SHADE using linear population size reduction. In Proceedings of the 2014 IEEE Congress on Evolutionary Computation (CEC), Beijing, China, 6–11 July 2014. [Google Scholar]
- Fathy, A.; Aleem, S.H.E.A.; Rezk, H. A novel approach for PEM fuel cell parameter estimation using LSHADEEpSin optimization algorithm. Int. J. Energy Res. 2020, 1–21. [Google Scholar] [CrossRef]
- Zhang, J.; Member, S.; Sanderson, A.C. JADE: Adaptive differential evolution with optional external archive. IEEE Trans. on Evolutionary Comp. 2009, 13, 945–958. [Google Scholar] [CrossRef]
- Fathy, A.A.; Elbages, M.S.; Mahmoud, H.M.; Bendary, F.M. Transmission expansion planning for realistic Network in Egypt using Heuristic Technique. Int. Electrical Eng. J. 2016, 7, 2148–2155. [Google Scholar]
- Zobaa, A.F.; Aleem, S.H.E.A.; Abdelaziz, A.Y. Classical and Recent Aspects of Power System Optimization; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Abdel Aleem, S.H.E.; Zobaa, A.F.; Abdel Mageed, H.M. Assessment of energy credits for the enhancement of the Egyptian Green Pyramid Rating System. Energy Policy 2015, 87, 407–416. [Google Scholar] [CrossRef] [Green Version]
- Rawa, M.; Abusorrah, A.; Al-Turki, Y.; Mekhilef, S.; Mostafa, M.H.; Ali, Z.M.; Aleem, S.H.E.A. Optimal allocation and economic analysis of battery energy storage systems: Self-consumption rate and hosting capacity enhancement for microgrids with high renewable penetration. Sustainability 2020, 12, 144. [Google Scholar] [CrossRef]
Input |
|
Initialization |
|
Algorithm loop | |
Step 1 | For i = 1:NP, do ri = select from [1,H] randomly; FCPi,g = MFCP,ri If nfes < max_nfes/2 otherwise, end end |
Step 2 |
|
Step 3 | Generate trial vector (U). |
Step 4 |
|
Step 5 | Update POP and Fitness function according to the evaluation of U. |
Step 6 | Store successful FCP, F, and Cr |
Step 7 |
End |
Step 8 | Update MCr and MFCP If nfes < max_nfes/2 Update MF end |
Step 9 |
|
Step 10 |
|
Optimization Algorithm | |||||||
---|---|---|---|---|---|---|---|
LP [4] | LSHADE-SPACMA | ||||||
Terminal | No. of Circuits | Power Flow (MW) | Terminal | No. of Circuits | Power Flow (MW) | ||
From | To | From | To | ||||
1 | 2 | 1 | −51 | 1 | 2 | 1 | −51.25 |
1 | 4 | 1 | −32 | 1 | 4 | 1 | −31.74 |
1 | 5 | 1 | 53 | 1 | 5 | 1 | 52.99 |
2 | 3 | 1 | 62 | 2 | 3 | 1 | 62.00 |
2 | 4 | 1 | 4 | 2 | 4 | 1 | 3.63 |
3 | 5 | 2 | 187 | 3 | 5 | 2 | 187.00 |
2 | 6 | 3 | −357 | 2 | 6 | 4 | −356.88 |
4 | 6 | 3 | −188 | 4 | 6 | 2 | −188.12 |
Cost (million USD) | 200 | Cost (million USD) | 200 | ||||
Time (s) | NC * | Time (s) | 6.68 |
Escobar et al. [17] | LSHADE-SPACMA | ||||
---|---|---|---|---|---|
Terminal | No. of Circuits | Terminal | No. of Circuits | ||
From | To | From | To | ||
45 | 81 | 1 | 45 | 81 | 1 |
55 | 57 | 1 | 55 | 57 | 1 |
55 | 62 | 1 | 55 | 62 | 1 |
56 | 57 | 1 | 56 | 57 | 1 |
56 | 81 | 1 | 56 | 81 | 1 |
82 | 85 | 1 | 82 | 85 | 1 |
Cost (million USD) | 316.44 | Cost (million USD) | 316.44 | ||
Time (s) | NC | Time (s) | 475.19 |
IBPSO [20] | HT [28] | MVO [21] | LSHADE-SPACMA | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Terminal | No. of Circuits | Terminal | No. Circuits | Terminal | No. Circuits | Terminal | No. of Circuits | ||||
From | To | From | To | From | To | From | To | ||||
5 | 22 | 1 | 6 | 34 | 2 | 6 | 34 | 1 | 5 | 6 | 1 |
6 | 34 | 2 | 31 | 53 | 1 | 7 | 36 | 1 | 33 | 53 | 1 |
33 | 53 | 2 | 32 | 53 | 1 | 22 | 53 | 1 | 5 | 53 | 2 |
34 | 53 | 2 | 33 | 53 | 1 | 37 | 53 | 1 | 36 | 53 | 2 |
36 | 53 | 2 | 34 | 53 | 1 | 33 | 53 | 1 | 20 | 53 | 1 |
35 | 53 | 1 | 34 | 53 | 1 | ||||||
36 | 53 | 2 | 36 | 53 | 2 | ||||||
Added circuits | 9 | Added circuits | 9 | Added circuits | 8 | Added circuits | 7 | ||||
Total Cost (million USD) | 22.19 | Total Cost (million USD) | 21.24 | Total Cost (million USD) | 20.64 | Total Cost (million USD) | 17.28 | ||||
Time (s) | NC | Time (s) | NC | Time (s) | NC | Time (s) | 164.78 |
LSHADE-SPACMA | |||||||||
---|---|---|---|---|---|---|---|---|---|
Terminal | No. Circuits | Power Flow (MW) | Max. Power Flow (MW) | Terminal | No. Circuits | Power Flow (MW) | Max. Power Flow (MW) | ||
From | To | From | To | ||||||
6 | 41 | 2 | 210.36 | 278.08 | 28 | 29 | 2 | 27.13 | 175.52 |
41 | 39 | 2 | 112.38 | 175.52 | 13 | 29 | 2 | 3.51 | 175.52 |
39 | 38 | 2 | 27.67 | 87.792 | 2 | 13 | 2 | 137.23 | 278.08 |
8 | 41 | 2 | −73.13 | 278.08 | 13 | 30 | 2 | 114.53 | 175.52 |
8 | 51 | 2 | 14.48 | 22 | 1 | 12 | 2 | 40.68 | 292.64 |
8 | 46 | 2 | 74.95 | 175.52 | 2 | 12 | 2 | −26.56 | 278.08 |
8 | 47 | 2 | 161.11 | 278.08 | 4 | 25 | 2 | 24.93 | 43.84 |
47 | 48 | 2 | 105.77 | 175.52 | 4 | 24 | 2 | 23.48 | 43.84 |
48 | 49 | 2 | 77.65 | 175.52 | 24 | 25 | 2 | 1.60 | 43.84 |
3 | 17 | 2 | 71.61 | 278.08 | 4 | 23 | 2 | 7.05 | 278.08 |
17 | 19 | 2 | 36.71 | 175.52 | 4 | 26 | 2 | 58.17 | 175.52 |
3 | 16 | 2 | 52.18 | 278.08 | 3 | 14 | 2 | −52.27 | 278.08 |
16 | 18 | 2 | 47.94 | 278.08 | 23 | 14 | 2 | −12.71 | 278.08 |
1 | 11 | 2 | 95.88 | 175.52 | 20 | 21 | 2 | 50.17 | 278.08 |
11 | 28 | 2 | 85.72 | 175.52 | 18 | 20 | 2 | −4.79 | 278.08 |
7 | 43 | 2 | 185.89 | 278.08 | 6 | 42 | 2 | 91.80 | 278.08 |
44 | 43 | 2 | −81.42 | 175.52 | 2 | 14 | 2 | 75.20 | 278.08 |
44 | 45 | 2 | −3.29 | 175.52 | 3 | 15 | 2 | 12.71 | 278.08 |
7 | 42 | 2 | −19.77 | 82.304 | 21 | 22 | 2 | 19.76 | 278.08 |
40 | 42 | 2 | 5.90 | 82.304 | 4 | 27 | 2 | 28.24 | 278.08 |
6 | 40 | 2 | 66.61 | 82.304 | 1 | 10 | 2 | 22.59 | 87.792 |
6 | 36 | 2 | −163.09 | 175.52 | 1 | 9 | 2 | 15.44 | 87.792 |
5 | 36 | 2 | 99.07 | 175.52 | 49 | 50 | 2 | 16.94 | 87.792 |
5 | 33 | 2 | 13.44 | 87.792 | 51 | 52 | 2 | 11.29 | 175.52 |
36 | 35 | 2 | 63.39 | 87.792 | 5 | 37 | 2 | 33.88 | 87.792 |
5 | 34 | 2 | 59.66 | 175.52 | 5 | 6 | 1 | 131.08 | 139.04 |
5 | 31 | 2 | 42.45 | 278.08 | 33 | 53 | 1 | −97.36 | 139.04 |
31 | 30 | 2 | −43.09 | 175.52 | 5 | 53 | 2 | −188.29 | 278.08 |
30 | 32 | 2 | 60.14 | 278.08 | 36 | 53 | 2 | −276.58 | 278.08 |
46 | 45 | 2 | 17.41 | 175.52 | 20 | 53 | 1 | −77.55 | 139.04 |
Total number of circuits = 117 |
Year | Predicted Load | Year | Predicted Load |
---|---|---|---|
2016 | 1260.2 | 2029 | 2128.3 |
2017 | 1325.1 | 2030 | 2195.8 |
2018 | 1390.6 | 2031 | 2263.4 |
2019 | 1456.6 | 2032 | 2330.9 |
2020 | 1523 | 2033 | 2398.5 |
2021 | 1589.7 | 2034 | 2466.1 |
2022 | 1656.7 | 2035 | 2533.7 |
2023 | 1723.8 | 2036 | 2601.3 |
2024 | 1791 | 2037 | 2668.9 |
2025 | 1858.4 | 2038 | 2736.5 |
2026 | 1925.8 | 2039 | 2804.1 |
2027 | 1993.2 | 2040 | 2871.7 |
2028 | 2060.7 |
Stage No. | Added Lines | Total Cost (Million USD) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5–6 | 5–8 | 6–34 | 7–34 | 7–36 | 23–53 | 22–53 | 33–53 | 5–53 | 34–53 | 36–53 | 8–53 | ||
1 | 0 | 0 | 1 * | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 4.71 |
2 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 7.23 |
3 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 2 | 1 | 2 | 0 | 3.42 |
4 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 2 | 2 | 2 | 0 | 6.28 |
5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 6.58 |
Total circuits = 126 | 28.22 |
Candidate Line | Scenario 1 | Candidate Line | Scenario 2 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Stage Number | Stage Number | ||||||||||
1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | ||
5–6 | 1 | 1 | 1 | 1 | 1 | 6–41 | 0 | 0 | 2 | 2 | 2 |
5–7 | 1 | 1 | 1 | 1 | 1 | 41–39 | 0 | 2 | 2 | 2 | 2 |
5–8 | 1 | 1 | 1 | 1 | 1 | 39–38 | 1 | 2 | 2 | 2 | 2 |
5–22 | 1 | 1 | 1 | 1 | 1 | 8–41 | 2 | 2 | 2 | 2 | 2 |
5–29 | 1 | 1 | 1 | 1 | 1 | 8–51 | 1 | 1 | 2 | 2 | 2 |
5–32 | 0 | 0 | 0 | 0 | 1 | 8–47 | 0 | 0 | 2 | 2 | 2 |
6–32 | 0 | 0 | 0 | 0 | 1 | 47–48 | 0 | 2 | 2 | 2 | 2 |
6–34 | 1 | 1 | 1 | 1 | 1 | 48–49 | 0 | 0 | 0 | 1 | 1 |
6–37 | 0 | 0 | 0 | 0 | 1 | 3–17 | 0 | 0 | 0 | 0 | 2 |
7–32 | 0 | 1 | 1 | 1 | 1 | 7–43 | 1 | 1 | 1 | 1 | 1 |
7–33 | 1 | 1 | 1 | 1 | 1 | 44–43 | 2 | 2 | 2 | 2 | 2 |
7–34 | 0 | 0 | 0 | 1 | 1 | 44–45 | 0 | 0 | 2 | 2 | 2 |
7–36 | 1 | 1 | 1 | 1 | 1 | 7–42 | 1 | 1 | 2 | 2 | 2 |
7–37 | 0 | 0 | 1 | 1 | 1 | 6–36 | 0 | 0 | 0 | 1 | 1 |
8–38 | 1 | 1 | 1 | 1 | 1 | 5–36 | 1 | 2 | 2 | 2 | 2 |
8–33 | 0 | 0 | 0 | 1 | 1 | 5–33 | 2 | 2 | 2 | 2 | 2 |
8–34 | 1 | 1 | 1 | 1 | 1 | 36–35 | 2 | 2 | 2 | 2 | 2 |
8–36 | 0 | 1 | 1 | 1 | 1 | 13–29 | 2 | 2 | 2 | 2 | 2 |
8–37 | 1 | 1 | 1 | 1 | 1 | 13–30 | 2 | 2 | 2 | 2 | 2 |
25–53 | 0 | 0 | 0 | 1 | 1 | 4–24 | 0 | 0 | 0 | 0 | 2 |
23–53 | 1 | 1 | 1 | 1 | 1 | 24–25 | 0 | 0 | 0 | 0 | 2 |
22–53 | 0 | 0 | 0 | 1 | 1 | 4–26 | 0 | 0 | 2 | 2 | 2 |
19–53 | 1 | 1 | 1 | 1 | 1 | 18–20 | 2 | 2 | 2 | 2 | 2 |
37–53 | 0 | 0 | 0 | 0 | 1 | 6–42 | 1 | 1 | 1 | 1 | 1 |
33–53 | 0 | 1 | 1 | 1 | 1 | 2–14 | 0 | 0 | 0 | 1 | 1 |
5–53 | 0 | 1 | 1 | 1 | 1 | 1–10 | 0 | 0 | 2 | 2 | 2 |
31–53 | 0 | 1 | 1 | 1 | 1 | 1–9 | 0 | 0 | 0 | 0 | 2 |
34–53 | 0 | 0 | 0 | 0 | 1 | 5–37 | 0 | 0 | 0 | 0 | 1 |
36–53 | 1 | 1 | 1 | 1 | 1 | 5–7 | 1 | 1 | 1 | 1 | 2 |
20–53 | 1 | 1 | 1 | 1 | 1 | 5–8 | 0 | 0 | 1 | 1 | 1 |
8–53 | 0 | 1 | 1 | 1 | 1 | 5–22 | 0 | 0 | 4 | 4 | 4 |
NA * | 6–32 | 1 | 1 | 1 | 1 | 1 | |||||
6–34 | 0 | 0 | 1 | 2 | 2 | ||||||
23–53 | 1 | 1 | 1 | 1 | 1 | ||||||
22–53 | 0 | 0 | 1 | 1 | 1 | ||||||
33–53 | 0 | 0 | 0 | 0 | 1 | ||||||
5–53 | 2 | 4 | 4 | 4 | 4 | ||||||
34–53 | 0 | 0 | 1 | 1 | 1 | ||||||
36–53 | 0 | 0 | 0 | 3 | 4 | ||||||
Added circuits | 15 | 6 | 1 | 4 | 5 | 25 | 8 | 20 | 7 | 12 | |
Added load shedding (MW) | 162.68 | 43.23 | 127.4 | 134.19 | 160.46 | 0 | 0 | 0 | 0 | 0 | |
Cost (million USD) | 115.07 | 36.25 | 46.11 | 44.39 | 45.63 | 25.7 | 7.73 | 8.12 | 6.59 | 6.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Refaat, M.M.; Aleem, S.H.E.A.; Atia, Y.; Ali, Z.M.; Sayed, M.M. Multi-Stage Dynamic Transmission Network Expansion Planning Using LSHADE-SPACMA. Appl. Sci. 2021, 11, 2155. https://doi.org/10.3390/app11052155
Refaat MM, Aleem SHEA, Atia Y, Ali ZM, Sayed MM. Multi-Stage Dynamic Transmission Network Expansion Planning Using LSHADE-SPACMA. Applied Sciences. 2021; 11(5):2155. https://doi.org/10.3390/app11052155
Chicago/Turabian StyleRefaat, Mohamed M., Shady H. E. Abdel Aleem, Yousry Atia, Ziad M. Ali, and Mahmoud M. Sayed. 2021. "Multi-Stage Dynamic Transmission Network Expansion Planning Using LSHADE-SPACMA" Applied Sciences 11, no. 5: 2155. https://doi.org/10.3390/app11052155
APA StyleRefaat, M. M., Aleem, S. H. E. A., Atia, Y., Ali, Z. M., & Sayed, M. M. (2021). Multi-Stage Dynamic Transmission Network Expansion Planning Using LSHADE-SPACMA. Applied Sciences, 11(5), 2155. https://doi.org/10.3390/app11052155