Maceral Types and Quality of Coal in the Tuli Coalfield: A Case Study of Coal in the Madzaringwe Formation in the Vele Colliery, Limpopo Province, South Africa
Abstract
:Featured Application
Abstract
1. Introduction
2. Geological Settings
3. Materials and Methods
4. Results
5. Interpretation and Discussion
5.1. Maceral Group
5.1.1. Vitrinite
5.1.2. Inertinite
5.1.3. Liptinite
5.2. Mineral Matter in the Coal
5.3. Coal Rank Determination
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Catuneanu, O.; Wopfner, H.; Eriksson, P.G.; Cairncross, B.; Rubidge, B.S.; Smith, R.M.H.; Hancox, P.J. The Karoo basins of south-central Africa. J. Afr. Earth Sci. 2005, 43, 211–253. [Google Scholar] [CrossRef]
- Bordy, E.M.; Catuneanu, O. Sedimentology and palaeontology of upper Karoo aeolian strata (Early Jurassic) in the Tuli Basin, South Africa. J. Afr. Earth Sci. 2002, 35, 301–314. [Google Scholar] [CrossRef]
- Suárez-Ruiz, I.; Flores, D.; Mendonça Filho, J.G.; Hackley, P.C. Review and update of the applications of organic petrology: Part 1, geological applications. Int. J. Coal Geol. 2012, 99, 54–112. [Google Scholar] [CrossRef]
- Suárez-Ruiz, I.; Ward, C.R. Basic factors controlling coal quality and technological behavior of coal. Appl. Coal Petrol. 2008, 87, 19–59. [Google Scholar]
- Brandl, G.; McCourt, S. A lithostratigraphic subdivision of the Karoo Sequence in the north-eastern Transvaal. Ann. Geol. Surv. South Afr. 1980, 14, 51–56. [Google Scholar]
- Snyman, C.P. The role of coal petrography in understanding the properties of South African coal. Int. J. Coal Geol. 1989, 14, 83–101. [Google Scholar] [CrossRef]
- Steyn, J.G.D.; Smith, W.H. Coal petrography in the evaluation of South African coals. Coal Gold Base Miner. 1977, 102, 107–117. [Google Scholar]
- Hancox, P.J.; Götz, A.E. South Africa’s coalfields—A 2014 perspective. Int. J. Coal Geol. 2014, 132, 170–254. [Google Scholar] [CrossRef] [Green Version]
- Barton, J.M.; Key, R.M. The Tectonic Development of the Limpopo Mobile belt and the Evolution of the Archaean Cratons of Southern Africa. Dev. Precambrian Geol. 1981, 4, 185–212. [Google Scholar]
- Johnson, M.R.; Van Vuuren, C.J.; Hegenberger, W.F.; Key, R.; Show, U. Stratigraphy of the Karoo Supergroup in southern Africa: An overview. J. Afr. Earth Sci. 1996, 23, 3–15. [Google Scholar] [CrossRef]
- Bordy, E.M.; Hancox, P.J.; Rubidge, B.S. The contact of the Molteno and Elliot formations through the main Karoo Basin, South Africa: A second-order sequence boundary. South Afr. J. Geol. 2005, 108, 351–364. [Google Scholar] [CrossRef]
- Toulkeridis, T.; Clauer, N.; Kröner, A.; Reimer, T.; Todt, W. Characterization, provenance, and tectonic setting of Fig Tree greywackes from the Archaean Barberton greenstone belt, South Africa. Sediment. Geol. 1999, 124, 113–129. [Google Scholar] [CrossRef]
- Baiyegunhi, C.; Liu, K.; Gwavava, O. Geochemistry of sandstones and shales from the Ecca Group, Karoo Supergroup, in the Eastern Cape Province of South Africa: Implications for provenance, weathering and tectonic setting. Open Geosci. 2017, 2017, 340–360. [Google Scholar] [CrossRef] [Green Version]
- Eriksson, P.G.; Schereiber, U.M.; Reczko, B.F.; Synman, C.P. Petrography and geochemistry of sandstones interbedded with the Rooiberg Felite Group (Transvaal, South Africa): Implications for provenance and tectonic setting. J. Sediment. Res. 1999, 64, 836–846. [Google Scholar]
- Vail, J.R.; Dodson, M.H. Geochronology of Rhodesia. South Afr. J. Geol. 1969, 72, 79–113. [Google Scholar]
- Burke, K.; Dewey, J.F. Plume-generated triple junctions: Key indicators in applying plate tectonics to old rocks. J. Geol. 1973, 81, 406–433. [Google Scholar] [CrossRef] [Green Version]
- Chevallier, L.; Woodford, A. Morpho-tectonics and mechanism of emplacement of the dolerite rings and sills of the western Karoo, South Africa. South Afr. J. Geol. 1999, 102, 43–54. [Google Scholar]
- Wronkiewicz, D.J.; Condie, K.C. Geochemistry and mineralogy of sediments from the Ventersdorp and Transvaal Supergroups, South Africa: Cratonic evolution during the early Proterozoic. Geochim. Cosmochim. Acta 1990, 54, 343–354. [Google Scholar] [CrossRef]
- Malaza, N.; Liu, K.; Zhao, B. Facies Analysis and Depositional Environments of the Late Palaeozoic Coal-Bearing Madzaringwe Formation in the Tshipise-Pafuri Basin, South Africa. Int. Sch. Res. Not. Geol. 2013, 2013, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Van der Merwe, W.C.; Flint, S.S.; Hodgson, D.M. Sequence stratigraphy of an argillaceous, deepwater basin-plain succession: Vischkuil Formation (Permian), Karoo Basin, South Africa. Mar. Pet. Geol. 2010, 27, 321–333. [Google Scholar] [CrossRef]
- International Organization for Standardization (ISO) 7404-2. Methods for the Petrographic Analysis of Coals—Part 2: Methods of Preparing Coal Samples; International Organization for Standardization: Geneva, Switzerland, 2009; pp. 1–12. [Google Scholar]
- Hower, J.C.; Wagner, N.J.; Jennifer, M.K.; Drew, J.W.; Stacker, J.D.; Richardson, A.R. International Journal of Coal Geology Maceral types in some Permian Southern African coals. Int. J. Coal Geol. 2012, 100, 93–107. [Google Scholar] [CrossRef]
- International Committee for Coal and Organic Petrology. The new vitrinite classification (ICCP System 1994). Fuel 1998, 77, 349–358. [Google Scholar] [CrossRef]
- International Committee for Coal and Organic Petrology. The new inertinite classification (ICCP System 1994). Fuel 1994, 82, 459–471. [Google Scholar]
- Ward, C.R. Analysis, origin and significance of mineral matter in coal: An updated review. Int. J. Coal Geol. 2016, 165, 1–27. [Google Scholar] [CrossRef]
- Tyson, R.V. Abundance of organic matter in sediments: TOC, hydrodynamic equivalence, dilution and flux effects. In Sedimentary Organic Matter; Springer: Dordrecht, The Netherlands, 1995; pp. 81–118. [Google Scholar]
- Smith, G.C.; Cook, A.C. Coalification paths of exinite, vitrinite and inertinite. Fuel 1980, 59, 641–646. [Google Scholar] [CrossRef]
- Stach, E.; Mackowsky, M.T.; Teichmüller, M.; Taylor, G.H.; Chandra, D.; Teichmüller, R. Coal Petrology; Gebrüder Borntraeger: Berlin, Germany, 1982; pp. 521–535. [Google Scholar]
- Schneider, S.; Hornung, J.; Hinderer, M.; Garzanti, E. Petrography and geochemistry of modern river sediments in an equatorial environment (Rwenzori Mountains and Albertine rift, Uganda)—Implications for weathering and provenance. Sediment. Geol. 2016, 336, 106–119. [Google Scholar] [CrossRef]
- Hackely, P.C.; Kolak, J.J. Petrographic and Vitrinite Reflectance Analyses of a Suite of High Volatile Bituminous Coal Samples from the United States and Venezuela US Department of the Interior; Open-File Report; U.S. Geological Survey: Tulsa, OK, USA, 2008; pp. 1–36.
- Alexander, N.; Golab, A.; Adrian, C.; Hutton, D.H. The impact of igneous intrusions on coal, cleat carbonate, and groundwater composition. Int. J. Coal Geol. 2007, 64, 1–9. [Google Scholar]
- Bibler, C.J.; Marshall, J.S.; Pilcher, R.C. Status of worldwide coal mine methane emissions and use. Int. J. Coal Geol. 1998, 35, 283–310. [Google Scholar] [CrossRef]
Lab. No | Borehole | Sampling Depth (m) | Lithology | Mine Description |
---|---|---|---|---|
MM-1 | OV125149 | 36.9 | Black coal | Middle middle coal seam |
MM-2 | OV125149 | 41.4 | Black coal | Middle middle coal seam |
TM-1 | OV125156 | 27.3 | Black coal | Top middle coal seam |
TM-2 | OV125156 | 30.9 | Black coal | Top middle coal seam |
TM-3 | OV125156 | 33.3 | Black coal | Top middle coal seam |
BM-1 | OV125160 | 23.5 | Black coal | Bottom middle coal seam |
BM-2 | OV125160 | 29.0 | Black coal | Bottom middle coal seam |
Maceral Group Analysis (% By Volume) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample No: | TM-1 (Depth 27.3 m) | TM-2 (Depth 30.9 m) | TM-3 (Depth 33.3 m) | MM-1 (Depth 36.9 m) | MM-2 (Depth 41.4 m) | BM-1 (Depth 23.5 m) | BM-2 (Depth 29.0 m) | ||||||||
Borehole OV125156 | Borehole OV125149 | Borehole OV125160 | |||||||||||||
Maceral Group | MACERAL (vol%) | inc.mm | mmf | inc.mm | mmf | inc.mm | mmf | inc.mm | mmf | inc.mm | mmf | inc.mm | mmf | inc.mm | mmf |
vol.% | vol.% | vol.% | vol.% | vol.% | vol.% | vol.% | vol.% | vol.% | vol.% | vol.% | vol.% | vol.% | vol.% | ||
Vitrinite | Telinite | 1.6 | 2.0 | 4.7 | 6.5 | 1.0 | 1.3 | 3.0 | 3.1 | 3.9 | 4.3 | 2.2 | 2.3 | 0.8 | 0.8 |
Collotellinite | 58.8 | 74.9 | 38.5 | 52.4 | 48.0 | 60.6 | 56.7 | 60.3 | 57.7 | 62.3 | 51.2 | 55.5 | 55.7 | 58.7 | |
Vitrodetrinite | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
Collodetrinite | 1.2 | 1.5 | 12.8 | 17.5 | 4.1 | 5.2 | 4.3 | 4.6 | 6.5 | 7.0 | 4.9 | 5.3 | 8.4 | 8.9 | |
Corpogelinite | 0.8 | 1.0 | 3.0 | 4.0 | 15.2 | 19.2 | 18.3 | 19.5 | 15.6 | 16.8 | 17.8 | 19.4 | 13.1 | 13.8 | |
Gelinite | 0.4 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
Pseudovitrinite | 4.6 | 5.9 | 0.2 | 0.3 | 4.5 | 5.7 | 4.5 | 4.8 | 1.4 | 1.5 | 2.9 | 3.2 | 0.8 | 0.8 | |
Inertinite | Fusinite | 5.4 | 6.9 | 5.1 | 7.0 | 2.7 | 3.4 | 1.0 | 1 | 2.0 | 2.1 | 5.5 | 6.0 | 3.5 | 3.7 |
Reactive semi-fusinite | 0.6 | 0.8 | 0.6 | 0.8 | 0.4 | 0.5 | 0.8 | 0.8 | 0.6 | 0.6 | 0.0 | 0.0 | 0.6 | 0.6 | |
Inert semi-fusinite | 1.6 | 2.0 | 4.1 | 5.6 | 0.6 | 0.8 | 1.4 | 1.5 | 0.6 | 0.6 | 1.6 | 1.7 | 0.2 | 0.2 | |
Micrinite | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
Macrinite | 0.2 | 0.3 | 0.0 | 0.0 | 0.2 | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4 | 0.4 | 0.0 | 0.0 | |
Secrinite | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
Funginite | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
Inertodetrinite R | 0.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
Inertodetrinite I | 2.0 | 0.0 | 1.8 | 2.4 | 0.2 | 0.3 | 0.2 | 0.2 | 0.6 | 0.6 | 0.8 | 0.9 | 0.4 | 0.4 | |
Liptinite | Sporinite | 0.4 | 0.5 | 2.4 | 2.4 | 2.0 | 2.6 | 3.3 | 3.3 | 3.5 | 3.8 | 3.1 | 3.4 | 5.3 | 5.6 |
Cutinite | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.3 | 0.6 | 0.6 | 0.2 | 0.2 | 1.4 | 1.5 | 5.7 | 6.0 | |
Resinite | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
Alginite | 0.0 | 0.0 | 1.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
Liptoderinite | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
Suberinite | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
Exsudatinite | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.4 | 0.4 | 0.4 | |
mineral matter | Silicate (clay/qtz) | 7.2 | 21.7 | 18.4 | 2.8 | 5.7 | 6.9 | 3.5 | |||||||
Sulfide | 5.4 | 0.8 | 0.8 | 0.0 | 0.2 | 0.0 | 0.2 | ||||||||
Carbonate | 8.6 | 3.2 | 1.6 | 3.1 | 1.6 | 1.0 | 1.2 | ||||||||
Other | 0.2 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ||||||||
Summary Table | |||||||||||||||
Maceral Group | Vitrinite | 67.5 | 85.9 | 59.2 | 80.6 | 72.8 | 92.0 | 86.8 | 92.3 | 85.0 | 91.9 | 79.0 | 85.7 | 78.8 | 83.1 |
Totals (Vol. %) | Inertinite | 10.6 | 13.6 | 11.6 | 15.9 | 4.1 | 5.2 | 3.5 | 3.8 | 3.7 | 4.0 | 8.2 | 8.9 | 4.7 | 5.0 |
Liptinite | 0.4 | 0.5 | 2.6 | 3.5 | 2.3 | 2.8 | 3.7 | 4.0 | 3.7 | 4.0 | 4.9 | 5.3 | 11.4 | 12.0 | |
Mineral matter | 21.5 | 26.6 | 20.9 | 7.5 | 7.5 | 7.8 | 4.9 | ||||||||
Total inertinite | 10.6 | 13.6 | 11.6 | 15.9 | 4.1 | 5.2 | 3.7 | 3.8 | 3.7 | 4.0 | 8.2 | 8.9 | 4.7 | 5.0 | |
Total reactive maceral | 69.3 | 88.2 | 62.3 | 84.9 | 75.4 | 95.3 | 89.4 | 97.1 | 89.4 | 96.6 | 83.9 | 91.1 | 90.8 | 95.7 |
Group | Maceral | Origin | Significance |
---|---|---|---|
Vitrinite | Telovitrinite | Humidified stem, root bark, and leaf tissue, which has survived intact and displays remnants of cellular structure | High vitrinite content, especially the structured telovitrinite, indicates a permanently water-saturated peatland balanced or high accommodation creation |
Detrovitrinite | Stem, root, bark, and leaf tissue deposited as fine-grained attritus before humification | ||
Liptinite | Sporinite | Resins, fats, waxes, and oils | Increased liptinite content indicates loss of biomass associated with poor preservation conditions |
Cutinite | Cuticles of needles, shots, stalks, leaves, roots, and stems | ||
Resinite | Raisins, fats waxes, and oils | ||
Inertinite | Micrinite | Product of fine-grained oxidized plant material | high inertinite content, especially structured fusinite and semi-fusinite indicate a low or fluctuation mire water-table and low accommodation relative to peat |
Macrinite | Jellified plant material which has undergone some oxidation | ||
Semi-fusinite | partial oxidation of plant material, which has survived intact and shows remnants of cellular structure | ||
Fusinite | Plant material which has survived intact following partial combustion in the wilderness. Shows remnants of cellular structure | ||
Itertodetrinite | Fragmented semi-fusinite |
Vitrinite Reflectance (RoV%) | |||||||
---|---|---|---|---|---|---|---|
Borehole Number | OV125156 | OV125149 | OV125160 | ||||
Sample Number | TM-1 | TM-2 | TM-3 | MM-1 | MM-2 | BM-1 | BM-2 |
No of reflectance readings (count) | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Reflectance maximum value (RoV%) | 0.89 | 0.87 | 0.93 | 0.83 | 0.89 | 0.88 | 1.02 |
Reflectance minimum value (RoV%) | 0.57 | 0.61 | 0.58 | 0.64 | 0.61 | 0.58 | 0.63 |
Average reflectance value (RoV%) | 0.76 | 0.80 | 0.78 | 0.75 | 0.77 | 0.75 | 0.80 |
Standard deviation | 0.068 | 0.052 | 0.049 | 0.048 | 0.055 | 0.057 | 0.051 |
Rank Category | Medium rank C | Medium rank C | Medium rank C | Medium rank C | Medium rank C | Medium rank C | Medium rank C |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Denge, E.; Baiyegunhi, C. Maceral Types and Quality of Coal in the Tuli Coalfield: A Case Study of Coal in the Madzaringwe Formation in the Vele Colliery, Limpopo Province, South Africa. Appl. Sci. 2021, 11, 2179. https://doi.org/10.3390/app11052179
Denge E, Baiyegunhi C. Maceral Types and Quality of Coal in the Tuli Coalfield: A Case Study of Coal in the Madzaringwe Formation in the Vele Colliery, Limpopo Province, South Africa. Applied Sciences. 2021; 11(5):2179. https://doi.org/10.3390/app11052179
Chicago/Turabian StyleDenge, Elelwani, and Christopher Baiyegunhi. 2021. "Maceral Types and Quality of Coal in the Tuli Coalfield: A Case Study of Coal in the Madzaringwe Formation in the Vele Colliery, Limpopo Province, South Africa" Applied Sciences 11, no. 5: 2179. https://doi.org/10.3390/app11052179
APA StyleDenge, E., & Baiyegunhi, C. (2021). Maceral Types and Quality of Coal in the Tuli Coalfield: A Case Study of Coal in the Madzaringwe Formation in the Vele Colliery, Limpopo Province, South Africa. Applied Sciences, 11(5), 2179. https://doi.org/10.3390/app11052179