Time-Domain Near-Infrared Spectroscopy in Subjects with Asymptomatic Cerebral Small Vessel Disease
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wardlaw, J.M.; Smith, C.; Dichgans, M. Small vessel disease: Mechanisms and clinical implications. Lancet Neurol. 2019, 18, 684–696. [Google Scholar] [CrossRef]
- Pantoni, L. Cerebral small vessel disease: From pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol. 2010, 9, 689–701. [Google Scholar] [CrossRef]
- Østergaard, L.; Engedal, T.S.; Moreton, F.; Hansen, M.B.; Wardlaw, J.M.; Dalkara, T.; Markus, H.S.; Muir, K.W. Cerebral small vessel disease: Capillary pathways to stroke and cognitive decline. J. Cereb. Blood Flow. Metab. 2016, 36, 302–325. [Google Scholar] [CrossRef] [PubMed]
- Das, A.D.; Regenhardt, R.W.; Vernooij, M.W.; Blacker, D.; Charidimou, A.; Viswanathan, A. Asymptomatic Cerebral Small Vessel Disease: Insights from Population-Based Studies. J. Stroke 2019, 21, 121–138. [Google Scholar] [CrossRef]
- Vermeer, S.E.; Longstreth, W.T.; Koudstaal, P.J. Silent brain infarcts: A systematic review. Lancet Neurol. 2007, 6, 611–619. [Google Scholar] [CrossRef]
- Greenberg, S.M.; Vernooij, M.W.; Cordonnier, C.; Viswanathan, A.; Al-Shahi Salman, R.; Warach, S.; Launer, L.J.; Van Buchem, M.A.; Breteler, M.M. Microbleed Study Group Cerebral microbleeds: A guide to detection and interpretation. Lancet Neurol. 2009, 8, 165–174. [Google Scholar] [CrossRef] [Green Version]
- Prins, N.D.; Scheltens, P. White matter hyperintensities, cognitive impairment and dementia: An update. Nat. Rev. Neurol. 2015, 11, 157–165. [Google Scholar] [CrossRef]
- Fazekas, F.; Chawluk, J.B.; Alavi, A.; Hurtig, H.I.; Zimmerma, R.A. MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. Am. J. Neuroradiol. 1987, 8, 421–426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giusto, A.; D’Andrea, C.; Spinelli, L.; Contini, D.; Torricelli, A.; Martelli, F.; Zaccanti, G.; Cubeddu, R. Monitoring absorption changes in a layered diffusive medium by white-light time-resolved reflectance spectroscopy. IEEE Trans. Instrum. Meas. 2010, 59, 1925–1932. [Google Scholar] [CrossRef]
- Giacalone, G.; Zanoletti, M.; Contini, D.; Re, R.; Spinelli, L.; Roveri, L.; Torricelli, A. Cerebral time domain-NIRS: Reproducibility analysis, optical properties, hemoglobin species and tissue oxygen saturation in a cohort of adult subjects. Biomed. Opt. Express 2017, 8, 4987. [Google Scholar] [CrossRef] [Green Version]
- Hallacoglu, B.; Sassaroli, A.; Wysocki, M.; Guerrero-Berroa, E.; Schnaider Beeri, M.; Haroutunian, V.; Shaul, M.; Rosenberg, I.H.; Troen, A.M.; Fantini, S. Absolute measurement of cerebral optical coefficients, hemoglobin concentration and oxygen saturation in old and young adults with near-infrared spectroscopy. J. Biomed. Opt. 2012, 17, 081406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flint, A.C.; Bhandari, S.G.; Cullen, S.P.; Reddy, A.V.; Hsu, D.P.; Rao, V.A.; Patel, M.; Pombra, J.; Edwards, N.J.; Chan, S.L. Detection of anterior circulation large artery occlusion in ischemic stroke using noninvasive cerebral oximetry. Stroke 2018, 49, 458–460. [Google Scholar] [CrossRef] [PubMed]
- Ritzenthaler, T.; Cho, T.H.; Mechtouff, M.; Ong, E.; Turjman, F.; Robinson, F.; Berthezène, Y.; Nighoghossian, N. Cerebral near-infrared spectroscopy a potential approach for thrombectomy monitoring. Stroke 2017, 48, 3390–3392. [Google Scholar] [CrossRef]
- Delgado-Mederos, R.; Gregori-Pla, C.; Zirak, P.; Blanco, I.; Dinia, L.; Marín, R.; Durduran, T.; Martí-Fàbregas, J. Transcranial diffuse optical assessment of the microvascular reperfusion after thrombolysis for acute ischemic stroke. Biomed. Opt. Express 2018, 9, 1262–1271. [Google Scholar] [CrossRef] [Green Version]
- Durduran, T.; Zhou, C.; Edlow, B.L.; Yu, G.; Choe, R.; Kim, M.N.; Cucchiara, B.L.; Putt, M.E.; Shah, Q.; Kasner, S.E.; et al. Transcranial optical monitoring of cerebrovascular hemodynamics in acute stroke patients. Opt. Express 2009, 17, 3884–3902. [Google Scholar] [CrossRef] [Green Version]
- Gregori-Pla, C.; Blanco, I.; Camps-Renom, P.; Zirak, P.; Serra, I.; Cotta, G.; Maruccia, F.; Prats-Sánchez, L.; Martínez-Domeño, A.; Busch, D.R.; et al. Early microvascular cerebral blood flow response to head-of-bed elevation is related to outcome in acute ischemic stroke. J. Neurol. 2019, 266, 990–997. [Google Scholar] [CrossRef] [PubMed]
- Gregori-Pla, C.; Delgado-Mederos, R.; Cotta, G.; Giacalone, G.; Maruccia, F.; Avtzi, S.; Prats-Sánchez, L.; Martínez-Domeño, A.; Camps-Renom, P.; Martí-Fàbregas, J.; et al. Microvascular cerebral blood flow fluctuations due to periodic apneas in acute ischemic stroke. Neurophotonics 2019, 6, 025004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giacalone, G.; Zanoletti, M.; Re, R.; Germinario, B.; Contini, D.; Spinelli, L.; Torricelli, A.; Roveri, L. Time-domain near-infrared spectroscopy in acute ischemic stroke patients. Neurophotonics 2019, 6, 015003. [Google Scholar] [CrossRef]
- Tatu, L.; Moulin, T.; Bogousslavsky, J.; Duvernoy, H. Arterial territories of the human brain: Cerebral hemispheres. Neurology 1998, 50, 1699–1708. [Google Scholar] [CrossRef] [Green Version]
- Koessler, L.; Maillard, L.; Benhadid, A.; Vignal, J.P.; Felblinger, J.; Vespignani, H.; Braun, M. Automated cortical projection of EEG sensors: Anatomical correlation via the international 10-10 system. Neuroimage 2009, 46, 64–72. [Google Scholar] [CrossRef]
- Nonaka, H.; Akima, M.; Hatori, T.; Nagayama, T.; Zhang, Z.; Ihara, F. Microvasculature of the human cerebral white matter: Arteries of the deep white matter. Neuropathology 2003, 23, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Tong, L.S.; Guo, Z.N.; Ou, Y.B.; Yu, Y.N.; Zhang, X.C.; Tang, J.; Zhang, J.H.; Lou, M. Cerebral venous collaterals: A new fort for fighting ischemic stroke? Prog. Neurobiol. 2018, 163–164, 172–193. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, R.; Berghold, A.; Jokinen, H.; Gouw, A.A.; van der Flier, W.M.; Barkhof, F.; Scheltens, P.; Petrovic, P.; Madureira, S.; Verdelho, A.; et al. White matter lesion progression in LADIS: Frequency, clinical effects, and sample size calculations. Stroke 2012, 43, 2643–2647. [Google Scholar] [CrossRef]
- Van Dijk, E.J.; Prins, N.D.; Vrooman, H.A.; Hofman, A.; Koudstaal, P.J.; Breteler, M.M.B. Progression of cerebral small vessel disease in relation to risk factors and cognitive consequences: Rotterdam scan study. Stroke 2008, 39, 2712–2719. [Google Scholar] [CrossRef] [Green Version]
- Farina, A.; Torricelli, A.; Bargigia, I.; Spinelli, L.; Cubeddu, R.; Foschum, F.; Jäger, M.; Simon, E.; Fugger, O.; Kienle, A.; et al. In vivo Multilaboratory investigation of the optical properties of the human head. Biomed. Opt. Express 2015, 6, 2609–2623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
noWMHs n = 6 | pvWMHs n = 5 | d+pvWMHs n = 9 | p | |
---|---|---|---|---|
Age (years) * | 59 (56–61) | 68 (67–78) | 70 (70–77) | 0.015 |
Gender (M/F) | 83/17% | 80/20% | 44/56% | 0.22 |
Arterial hypertension | 17% | 20% | 67% | 0.09 |
Diabetes mellitus | 0% | 40% | 33% | 0.23 |
Smoking | 33% | 0% | 0% | 0.07 |
Hypercholesterolemia | 17% | 20% | 11% | 0.9 |
Atrial fibrillation | 0% | 0% | 22% | 0.26 |
Migraine | 0% | 20% | 11% | 0.54 |
MAP (mmHg) * | 95 (88–97) | 90 (87–90) | 90 (87–103) | 0.63 |
Heart rate (beats/min) * | 64 (60–70) | 65(60–73) | 71 (65–82) | 0.60 |
SpO2 (%) * | 99 (98–99) | 97 (96–97) | 98 (98–99) | 0.06 |
Hb (g/dl) * | 13.9 (1.4) | 13.9 (0.5) | 13.2 (1.2) | 0.56 |
noWMHs n = 6 | pvWMHs n = 5 | d+pvWMHs n = 9 | p | |
---|---|---|---|---|
HbR (µM) | 23.7 (22.1–25.3) | 19.0 (18.6–19.1) | 23.0 (17.9–25.8) | 0.32 |
HbO (µM) | 34.1 (31.9–35.6) | 29.8 (26.5–35.2) | 26.9 (25.7–29.3) | 0.26 |
HbT (µM) | 57.5 (54.8–61.0) | 48.8 (45.2–54.3) | 51.1 (44.2–55.1) | 0.28 |
StO2 (%) | 58.8 (57.5–59.5) | 61.1 (58.6–61.6) | 54.8 (53.2–57.3) | 0.007 |
Independent Variables | t | Beta | p |
---|---|---|---|
StO2 | −2.5 | −0.96 (−0.18–−0.015) | 0.023 |
Age | 3.7 | 0.06 (0.025–0.093) | 0.002 |
Arterial hypertension | 2.3 | 0.55 (0.040–1.01) | 0.037 |
Smoking | −1.5 | −0.63 (−1.5–0.26) | 0.152 |
SpO2 | 2.0 | 0.21 (−0.01–0.43) | 0.066 |
Constant | −1.6 | −18.1 (−42.9–6.7) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giacalone, G.; Zanoletti, M.; Re, R.; Contini, D.; Spinelli, L.; Torricelli, A.; Roveri, L. Time-Domain Near-Infrared Spectroscopy in Subjects with Asymptomatic Cerebral Small Vessel Disease. Appl. Sci. 2021, 11, 2407. https://doi.org/10.3390/app11052407
Giacalone G, Zanoletti M, Re R, Contini D, Spinelli L, Torricelli A, Roveri L. Time-Domain Near-Infrared Spectroscopy in Subjects with Asymptomatic Cerebral Small Vessel Disease. Applied Sciences. 2021; 11(5):2407. https://doi.org/10.3390/app11052407
Chicago/Turabian StyleGiacalone, Giacomo, Marta Zanoletti, Rebecca Re, Davide Contini, Lorenzo Spinelli, Alessandro Torricelli, and Luisa Roveri. 2021. "Time-Domain Near-Infrared Spectroscopy in Subjects with Asymptomatic Cerebral Small Vessel Disease" Applied Sciences 11, no. 5: 2407. https://doi.org/10.3390/app11052407
APA StyleGiacalone, G., Zanoletti, M., Re, R., Contini, D., Spinelli, L., Torricelli, A., & Roveri, L. (2021). Time-Domain Near-Infrared Spectroscopy in Subjects with Asymptomatic Cerebral Small Vessel Disease. Applied Sciences, 11(5), 2407. https://doi.org/10.3390/app11052407