A Novel Method in Predicting Hypertension Using Facial Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Data Extraction
2.3. Group Classification
2.4. Statistical Analysis
3. Results
3.1. General Characteristics of the Subjects
3.2. Differences in Facial Characteristics among the Subject Groups
3.3. Association between Hypertension and Facial Characteristics
3.4. Accuracy of Prediction Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Korea Statistical Information Service (KOSIS). Statistics for Number of Deaths due to Hypertension. Available online: www.kosis.kr (accessed on 23 January 2021).
- Lee, S.W.; Lee, H.-Y.; Ihm, S.H.; Park, S.H.; Kim, T.H.; Kim, H.C. Status of hypertension screening in the Korea National General Health Screening Program: A questionnaire survey on 210 screening centers in two metropolitan areas. Clin. Hypertens 2017, 23, 23. [Google Scholar] [CrossRef]
- National Health Insurance Corporation (NHIS). Medical Service Usage Statistics by Region. Available online: http://www.nhis.or.kr/bbs7/boards/B0075 (accessed on 23 January 2021).
- Tsoi, K.; Yiu, K.; Lee, H.; Cheng, H.-M.; Wang, T.-D.; Tay, J.-C.; Teo, B.W.; Turana, Y.; Soenarta, A.A.; Sogunuru, G.P.; et al. Applications of artificial intelligence for hypertension management. J. Clin. Hypertens 2021. [Google Scholar] [CrossRef] [PubMed]
- Monte-Moreno, E. Non-invasive estimate of blood glucose and blood pressure from a photoplethysmograph by means of machine learning techniques. Artif. Intell. Med. 2011, 53, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Esmaelpoor, J.; Moradi, M.H.; Kadkhodamohammadi, A. A multistage deep neural network model for blood pressure estimation using photoplethysmogram signals. Comput. Biol. Med. 2020, 120, 103719. [Google Scholar] [CrossRef]
- Miao, F.; Wen, B.; Hu, Z.; Fortino, G.; Wang, X.P.; Liu, Z.D.; Tang, M.; Li, Y. Continuous blood pressure measurement from one-channel electrocardiogram signal using deep-learning techniques. Artif. Intell. Med. 2020, 108, 101919. [Google Scholar] [CrossRef] [PubMed]
- Ankışhan, H. Blood pressure prediction from speech recordings. Biomed. Signal Process. Control 2020, 58, 101842. [Google Scholar] [CrossRef]
- Stephen, I.D.; Hiew, V.; Coetzee, V.; Tiddeman, B.P.; Perrett, D.I. Facial shape analysis identifies valid cues to aspects of physiological health in Caucasian, Asian, and African populations. Front. Psychol. 2017, 8. [Google Scholar] [CrossRef] [Green Version]
- Stephen, I.D.; Law Smith, M.J.; Stirrat, M.R.; Perrett, D.I. Facial skin coloration affects perceived health of human faces. Int. J. Primatol. 2009, 30, 845–857. [Google Scholar] [CrossRef] [Green Version]
- O’Higgins, P.; Bastir, M.; Kupczik, K. Shaping the human face. Int. Congr. Ser. 2006, 1296, 55–73. [Google Scholar] [CrossRef]
- Nunes, L.; Souza de Jesus, A.; Augusto Casotti, C.; Araújo, E. Geometric morphometrics and face shape characteristics associated with chronic disease in the elderly. Biosci. J. 2018, 34, 1035–1046. [Google Scholar] [CrossRef] [Green Version]
- Demayo, C.; Torres, M.; Veña, C. Face shapes of diabetics and non-diabetics described using geometric morphometrics. Internet J. Endocrinol. 2009, 6, 1–12. [Google Scholar] [CrossRef]
- Solon, C.C.; Torres, M.A.; Demayo, C. Analyzing shape of faces of hypertensive and non-hypertensive males using geometric morphometric methods. J. Med. Bioeng. 2013, 2, 126–130. [Google Scholar] [CrossRef]
- Sweet, E.; McDade, T.W.; Kiefe, C.I.; Liu, K. Relationships between skin color, income, and blood pressure among African Americans in the CARDIA study. Am. J. Public Health 2007, 97, 2253–2259. [Google Scholar] [CrossRef]
- Gravlee, C.C.; Dressler, W.W.; Bernard, H.R. Skin color, social classification, and blood pressure in Southeastern Puerto Rico. Am. J. Public Health 2005, 95, 2191–2197. [Google Scholar] [CrossRef]
- Do, J.H.; Ku, B.; Jang, J.S.; Kim, H.; Kim, J.Y. Analysis of Sasang constitutional types using facial features with compensation for photographic distance. Integr. Med. Res. 2012, 1, 26–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ang, L.; Kim, J.Y.; Lee, J. Analysis of facial features according to Sasang types between native Japanese and native Korean populations. Evid Based Complement Altern. Med. 2018, 2018, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larson, S.; Cho, M.-C.; Tsioufis, K.; Yang, E. Korean society of hypertension guideline for the management of hypertension: A comparison of American, European, and Korean blood pressure guidelines. Eur. Heart J. 2020, 41, 1384–1386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meier, L.; Van De Geer, S.; Bühlmann, P. The group lasso for logistic regression. J. R. Stat. Soc. Ser. B Stat Methodol. 2008, 70, 53–71. [Google Scholar] [CrossRef] [Green Version]
- Friedman, J.; Hastie, T.; Tibshirani, R.; Simon, N.; Narasimhan, B.; Qian, J. Lasso and Elastic-Net Regularized Generalized Linear Models. Available online: https://glmnet.stanford.edu/ (accessed on 26 February 2021).
- Tibshirani, R. Regression Shrinkage and Selection via the Lasso. J. R. Stat. Soc. Ser. B Stat. Methodol. 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Hastie, T.; Qian, J. Glmnet Vignette. Available online: https://web.stanford.edu/~hastie/glmnet/glmnet_alpha.html (accessed on 26 February 2021).
- Friedman, J.; Hastie, T.; Tibshirani, R. Regularization Paths for Generalized Linear Models via Coordinate Descent. J. Stat. Softw. 2010, 33, 1–22. [Google Scholar] [CrossRef] [Green Version]
- LeDell, E.; Petersen, M.; van der Laan, M. Computationally efficient confidence intervals for cross-validated area under the ROC curve estimates. Electron. J. Stat. 2015, 9, 1525, 1583–1607. [Google Scholar] [CrossRef]
Frontal Face | Profile Face | ||
---|---|---|---|
Number | Name | Number | Name |
10 | Upper eyebrow point | 6 | Hairline point |
17 | Upper eyelid point | 7 | Mid forehead point |
18 | Inner eye angle point | 9 | Lower forehead point |
20 | Inner pupil point | 10 | Eyebrow point |
21 | Pupil point | 12 | Top nasal point |
22 | Outer pupil point | 13 | Nasal point |
25 | Outer eye lid point | 14 | Nose apex point |
26 | Lower eye lid point | 21 | Under nose point |
33 | Horizontal facial end point | 22 | Upper lip point |
36 | Outer nostril point | 25 | Mid lip point |
37 | Inner nostril point | 32 | Upper chin point |
38 | Philtrum point | 33 | Lower chin point |
43 | Lower jaw angle point | 36 | Hyoid point |
47 | Hairline point | 71 | Forehead 1st point |
50 | Mid lip point | 72 | Forehead 2nd point |
52 | Glabella point | 73 | Forehead 3rd point |
53 | Right eye horizontal end point | 77 | Forehead horizontal point |
80 | Upper lip point | 84 | Nasal inclination staring point |
81 | Septum point | 87 | Nasal inclination 1st point |
90 | 10 cm starting point | 88 | Nasal inclination 2nd point |
91 | 10 cm end point | 90 | 10 cm starting point |
94 | Right nose horizontal end point | 91 | 10 cm end point |
Variables | Description |
---|---|
FD_n1_n2 [or PD_n,_n2] | The length between two points in the frontal/profile picture |
FDH_n,_n2 [or PDH_n1_n2] | The horizontal length between two points in the frontal/profile picture |
FDV_n1_n2 [or PDV_n1_n2] | The vertical length between two points in the frontal/profile picture |
FDL_n1_n2_n3 [or PDL_n1_n2_n3] | The length between the point n1 and segments n2, n3 |
FHD_n1_n2_n3_n4 [or PHD_n1_n2_n3_n4] | FDH_n1_n2/FD_n3_n4 [or PDH_n1_n2/PD_n3_n4] |
FDH_n1_n2_n3_n4 [or PDH_n1_n2_n3_n4] | FD_n1_n2/FDH_n3_n4 [or PD_n1_n2/PDH_n3_n4] |
FDD_n1_n2_n3_n4 [or PDD_n1_n2_n3_n4] | FD_n1_n2/FD_n3_n4 [or PD_n1_n2/PD_n3_n4] |
FVD_n1_n2_n3_n4 [or PVD_n1_n2_n3_n4] | FDV_n1_n2/FD_n3_n4 [or PDV_n1_n2/PD_n3_n4] |
FVV_n1_n2_n3_n4 [or PVV_n1_n2_n3_n4] | FDV_n1_n2/FDV_n3_n4 [or PDV_n1_n2/PDV_n3_n4] |
FVH_n1_n2_n3_n4 [or PVH_n1_n2_n3_n4] | FDV_n1_n2/FDH_n3_n4 [or PDV_n1_n2/PDH_n3_n4] |
FA_n1_n2 [or PA_n1_n2] | The angle that the straight-line vector (n1, n2) makes with the horizontal line in the frontal/profile image |
FAs_n1_n2 [or PA_n1_n2] | 180—The angle that the straight-line vector (n1, n2) makes with the horizontal line in the frontal/profile image |
FAi_n1_n2 [or PAi_n1_n2] | The angle that the straight-line vector (n1, n2) makes with the horizontal line in the frontal/profile image * (−1) |
FAis_ n1_n2 [or PAis_n1_n2] | 180—The angle that the straight-line vector (n1, n2) makes with the horizontal line in the frontal/profile image |
FA_n1_n2_n3 [or PA_n1_n2_n3 ] | The angle formed by the three points n1, n2, and n3 in the frontal/profile image |
FArea02 | The area of the face defined using points 53, 94, 194, and 153 |
FArea03 | The area of the face defined using points 94, 43, 143, and 194 |
Men (n = 376) | p-Value | Women (n = 723) | p-Value | |||
---|---|---|---|---|---|---|
Normal (n = 262) | Hypertension (n = 114) | Normal (n = 560) | Hypertension (n = 163) | |||
Age [yrs] | 43.66 ± 15.84 | 55.30 ± 11.97 | <0.001 ** | 44.93 ± 14.15 | 61.64 ± 11.62 | <0.001 ** |
Height [cm] | 171.11 ± 6.41 | 169.34 ± 6.17 | 0.012 * | 158.68 ± 5.63 | 154.98 ± 5.90 | 0.002 ** |
Weight [kg] | 69.35 ± 10.45 | 72.26 ± 10.27 | 0.013 * | 57.05 ± 8.32 | 59.48 ± 8.82 | <0.001 ** |
BMI [kg/m2] | 23.64 ± 2.97 | 25.17 ± 2.93 | <0.001 ** | 22.66 ± 3.11 | 24.74 ± 3.19 | <0.001 ** |
SBP [mmHg] | 119.81 ± 15.01 | 131.24 ± 15.75 | <0.001 ** | 113.45 ± 15.01 | 127.72 ± 16.29 | <0.001 ** |
DBP [mmHg] | 77.42 ± 11.72 | 83.32 ± 11.78 | <0.001 ** | 73.23 ± 10.81 | 80.58 ± 10.92 | 0.039 * |
Variables Descriptions | Variables | Men (n = 376) | |||
---|---|---|---|---|---|
Normal (n = 262) | Hypertensive (n = 114) | p-Value | |||
Frontal face | Middle face length and ratio | FDV_52_50 | 77.51 ± 0.32 | 76.28 ± 0.49 | 0.043 |
FVD_52_50_53_153 | 0.51 ± 0.00 | 0.50 ± 0.00 | 0.002 | ||
FVD_52_81_53_153 | 0.32 ± 0.00 | 0.31 ± 0.00 | 0.003 | ||
Middle face angle and area | FA_117_125_143 | 121.06 ± 0.38 | 122.62 ± 0.60 | 0.033 | |
FA_18_43_50 | 57.00 ± 0.22 | 55.93 ± 0.34 | 0.010 | ||
FA_18_94_50 | 60.65 ± 0.27 | 59.16 ± 0.42 | 0.004 | ||
Ratio of eye variable | FHD_25_125_53_153 | 0.68 ± 0.00 | 0.67 ± 0.00 | 0.048 | |
Profile face | Nose width and area | PDH_12_14 | 20.66 ± 0.14 | 19.97 ± 0.22 | 0.012 |
PDV_12_21 | 51.82 ± 0.24 | 50.86 ± 0.37 | 0.035 | ||
PD_12_21 | 52.20 ± 0.24 | 51.20 ± 0.38 | 0.031 | ||
Facial color | Check color | ChRD_b | 20.53 ± 0.25 | 19.53 ± 0.39 | 0.036 |
ChLU_L | 60.03 ± 0.34 | 61.53 ± 0.54 | 0.024 | ||
ChLW_L | 57.50 ± 0.37 | 59.04 ± 0.57 | 0.029 |
Variable Descriptions | Variables | Women (n = 723) | |||
---|---|---|---|---|---|
Normal (n = 560) | Hypertensive (n = 163) | p-Value | |||
Frontal face | Face contour angle | FAs_153_194 | 88.43 ± 0.11 | 89.04 ± 0.23 | 0.020 |
Eye length and ratio | FD_17_26 | 9.27 ± 0.06 | 8.81 ± 0.11 | 0.001 | |
FD_117_126 | 9.36 ± 0.06 | 9.02 ± 0.12 | 0.011 | ||
FDH_17_26_18_25 | 0.29 ± 0.00 | 0.28 ± 0.00 | 0.007 | ||
FDD_17_26_52_81 | 0.21 ± 0.00 | 0.20 ± 0.00 | 0.003 | ||
FDD_17_26_52_50 | 0.13 ± 0.00 | 0.12 ± 0.00 | 0.002 | ||
Profile face | Forehead shape | PAi_71_72 | 78.55 ± 0.25 | 77.30 ± 0.49 | 0.029 |
Nose length and area | PDH_14_21 | 13.29 ± 0.07 | 12.96 ± 0.13 | 0.026 | |
PA_14_21 | 45.92 ± 0.19 | 47.12 ± 0.38 | 0.007 | ||
PA_12_14_21 | 107.81 ± 0.22 | 109.02 ± 0.43 | 0.017 | ||
Facial color | Forehead color | FhR_L | 69.97 ± 0.24 | 68.62 ± 0.47 | 0.015 |
FhR_a | 10.24 ± 0.11 | 10.77 ± 0.21 | 0.030 | ||
FhL_a | 10.07 ± 0.10 | 10.74 ± 0.21 | 0.006 | ||
FhW_a | 10.15 ± 0.10 | 10.76 ± 0.20 | 0.009 | ||
Cheek color | ChRU_L | 65.07 ± 0.21 | 63.49 ± 0.42 | 0.002 | |
ChRW_L | 61.61 ± 0.22 | 60.21 ± 0.43 | 0.005 | ||
Nose color | Nose_L | 70.22 ± 0.24 | 68.85 ± 0.48 | 0.016 | |
Nose_a | 11.87 ± 0.11 | 12.55 ± 0.22 | 0.009 |
Variable Descriptions | Selected Variables | |
---|---|---|
BMI | ||
AGE | ||
Frontal face | Facial width, ratio, and angle | FD_53_153 |
FVD_52_81_53_153 | ||
FA_117_125_143 | ||
FA_18_94_50 | ||
Eye length, ratio, and angle | FD_117_126 | |
FHD_18_118_53_153 | ||
FHD_25_125_53_153 | ||
FAis_125_117 | ||
Mouth ratio | FVV_80_50_81_50 | |
Profile face | Forehead shape | PAi_9_7 |
PDV_9_12 | ||
Nose horizontal distance and tilting angle | PDH_12_14 | |
PA_87_21 | ||
Facial color | Forehead color | FhR_a |
Cheek color | ChRD_b | |
ChLU_L |
Variable Descriptions | Selected Variables | |
---|---|---|
BMI | ||
AGE | ||
Frontal face | Facial shape ratio and angle | FVV_47_52_81_50 |
FAs_153_194 | ||
FA_118_125_143 | ||
FA_17_25_43 | ||
FA_117_125_143 | ||
FA_18_25_94 | ||
Eye length and ratio | FD_17_26 | |
FDD_17_26_52_50 | ||
Mouth ratio | FVV_80_50_52_50 | |
Profile face | Forehead shape | PAi_71_72 |
PA_10_12 | ||
Nose tilting angle | PA_14_21 | |
PA_12_14_21 | ||
Face width | PDH_44_53 | |
Facial color | Forehead color | FhL_a |
Cheek color | ChRU_L |
Gender | n | Number of Selected Variables | AUC (95% CI) | Grading |
---|---|---|---|---|
Men | 376 | 18 | 0.706 (0.652–0.760) | Fair |
Women | 723 | 18 | 0.827 (0.794–0.860) | Good |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ang, L.; Yim, M.H.; Do, J.-H.; Lee, S. A Novel Method in Predicting Hypertension Using Facial Images. Appl. Sci. 2021, 11, 2414. https://doi.org/10.3390/app11052414
Ang L, Yim MH, Do J-H, Lee S. A Novel Method in Predicting Hypertension Using Facial Images. Applied Sciences. 2021; 11(5):2414. https://doi.org/10.3390/app11052414
Chicago/Turabian StyleAng, Lin, Mi Hong Yim, Jun-Hyeong Do, and Sanghun Lee. 2021. "A Novel Method in Predicting Hypertension Using Facial Images" Applied Sciences 11, no. 5: 2414. https://doi.org/10.3390/app11052414
APA StyleAng, L., Yim, M. H., Do, J.-H., & Lee, S. (2021). A Novel Method in Predicting Hypertension Using Facial Images. Applied Sciences, 11(5), 2414. https://doi.org/10.3390/app11052414