Laser Use in Creating Orthodontic Adhesion to Ceramic Surfaces
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. The Effect of Laser on Non-Feldspathic Ceramic
4.2. The Effect of Laser on Feldspathic Ceramic
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maiman, T.H. Stimulated optical radiation in ruby lasers. Nature 1960, 187, 493. [Google Scholar] [CrossRef]
- Goldman, L.; Goldman, B.; Van-Lieu, N. Current laser dentistry. Lasers Surg. Med. 1987, 6, 559–562. [Google Scholar] [CrossRef] [PubMed]
- RP Photonics Encyclopedia. Available online: https://www.rp-photonics.com/encyclopedia.htm (accessed on 22 January 2021).
- Miserendino, L.J.; Pick, R.M. Current applications of lasers in dentistry. In Lasers in Dentistry; Quintessence Publishing Co, Inc: Singapore, 1995; pp. 126–128. [Google Scholar]
- Verma, S.; Chaudhari, P.; Maheshwari, S.; Singh, R. Laser in dentistry: An innovative tool in modern dental practice. Natl. J. Maxillofac. Surg. 2012, 3, 124–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harashima, T.; Kinoshita, J.I.; Kimura, Y.; Brugnera, A., Jr.; Zanin, F.; Pecora, J.D.; Matsumoto, K. Morphological comparativestudy on ablation of dental hard tissue at cavity preparation by Er: YAG and Er, CR: YSGG lasers. Photomed. Laser Ther. 2005, 23, 52–55. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, I.; Aoki, A.; Takasaki, A.A. Clinical application of erbium: YAG Laser in periodontology. J. Int. Acad. Periodontol. 2008, 10, 22–30. [Google Scholar]
- Hilgers, J.J.; Tracey, S.G. Clinical uses of diode lasers in orthodontics. J. Clin. Orthod. 2004, 38, 266–273. [Google Scholar]
- Moulton, P.F. Spectroscopic and laser characteristics of Ti:Al2O3. J. Opt. Soc. Am. B 1986, 3, 125–133. [Google Scholar] [CrossRef]
- Nalcaci, R.; Cokakoglu, S. Lasers in orthodontics. Eur. J. Dent. 2013, 7, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Wassell, R.; Nohl, F.; Steele, J.; Walls, A. Extra-Coronal Restorations: Concepts and Clinical Application, 2nd ed.; Springer: Cham, UK, 2019; pp. 179–192. [Google Scholar]
- García-Sanz, V.; Paredes-Gallardo, V.; Bellot-Arcís, C.; Martínez-León, L.; Torres-Mendieta, R.; Montero, J.; Albaladejo, A. Femtosecond laser settings for optimal bracket bonding to zirconia. Lasers Med. Sci. 2019, 34, 297–304. [Google Scholar] [CrossRef]
- García-Sanz, V.; Paredes-Gallardo, V.; Bellot-Arcís, C.; Mendoza-Yero, O.; Doñate-Buendía, C.; Montero, J.; Albaladejo, A. Effects of femtosecond laser and other surface treatments on the bond strength of metallic and ceramic orthodontic brackets to zirconia. PLoS ONE 2017, 12, e0186796. [Google Scholar]
- Erdur, E.A.; Basciftci, F.A. Effect of Ti:sapphire laser on shear bond strength of orthodontic brackets to ceramic surfaces. Lasers Surg. Med. 2015, 47, 512–519. [Google Scholar] [CrossRef]
- Ahrari, F.; Heravi, F.; Hosseini, M. CO2 laser conditioning of porcelain surfaces for bonding metal orthodontic brackets. Lasers Med. Sci. 2013, 28, 1091–1097. [Google Scholar] [CrossRef]
- Tai, Y.; Zhu, X.; Tang, G.; Wang, G.; Mao, Z. Influence of different surface treatments in bond strength of brackets to porcelain. J. Jilin Univ. Med. Ed. 2015, 41, 1207–1210. [Google Scholar]
- Mirhashemi, A.; Chiniforush, N.; Jadidi, H.; Sharifi, N. Comparative study of the effect of Er:YAG and Er:Cr;YSGG lasers on porcelain: Etching for the bonding of orthodontic brackets. Lasers Med. Sci. 2018, 33, 1997–2005. [Google Scholar] [CrossRef] [PubMed]
- Aksakalli, S.; Ileri, Z.; Yavuz, T.; Malkoc, M.A.; Ozturk, N. Porcelain laminate veneer conditioning for orthodontic bonding: SEM-EDX analysis. Lasers Med. Sci. 2015, 30, 1829–1834. [Google Scholar] [CrossRef] [PubMed]
- Topcuoglu, T.; Oksayan, R.; Topcuoglu, S.; Coskun, M.E.; Isman, N.E. Effect of Er:YAG laser pulse duration on shear bond strength of metal brackets bonded to a porcelain surface. Photomed. Laser Surg. 2013, 31, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Yassaei, S.; Moradi, F.; Aghili, H.; Kamran, M.H. Shear bond strength of orthodontic brackets bonded to porcelain following etching with Er:YAG laser versus hydrofluoric acid. Orthod. Chic. 2013, 14, e82–e87. [Google Scholar] [CrossRef] [PubMed]
- Akpinar, Y.Z.; Irgin, C.; Yavuz, T.; Aslan, M.A.; Kilic, H.S.; Usumez, A. Effect of femtosecond laser treatment on the shear bond strength of a metal bracket to prepared porcelain surface. Photomed. Laser Surg. 2015, 33, 206–212. [Google Scholar] [CrossRef]
- Hosseini, M.H.; Sobouti, F.; Etemadi, A.; Chiniforush, N.; Shariati, M. Shear bond strength of metal brackets to feldspathic porcelain treated by Nd:YAG laser and hydrofluoric acid. Lasers Med. Sci. 2015, 30, 837–841. [Google Scholar] [CrossRef] [PubMed]
- Poosti, M.; Jahanbin, A.; Mahdavi, P.; Mehrnoush, S. Porcelain conditioning with Nd:YAG and Er:YAG laser for bracket bonding in orthodontics. Lasers Med. Sci. 2012, 27, 321–324. [Google Scholar] [CrossRef] [PubMed]
- Gracis, S.; Thompson, V.P.; Ferencz, J.L.; Silva, N.R.; Bonfante, E.A. A new classification system for all-ceramic and ceramic-like restorative materials. Int. J. Prosthodont. 2015, 28, 227–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chavali, R.; Nejat, A.H.; Lawson, N.C. Machinability of CAD-CAM materials. J.Prosthet. Dent. 2017, 118, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Spohr, A.M.; Borges, G.A.; Júnior, L.H.; Mota, E.G.; Oshima, H.M. Surface modification of In-Ceram Zirconia ceramic by Nd:YAG laser, Rocatec system, or aluminum oxide sandblasting and its bond strength to a resin cement. Photomed. Laser Surg. 2019, 26, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Gomes, A.L.; Oyagüe, R.C.; Lynch, C.D.; Montero, J.; Albaladejo, A. Influence of sandblasting granulometry and resin cement composition on microtensile bond strength to zirconia ceramic for dental prosthetic frameworks. J. Dent. 2013, 41, 31–41. [Google Scholar] [CrossRef]
- Mosharraf, R.; Rismanchian, M.; Savabi, O.; Ashtiani, A.H. Influence of surface modification techniques on shear bond strength between different zirconia cores and veneering ceramics. J. Adv. Prosthodont. 2011, 3, 221–228. [Google Scholar] [CrossRef] [Green Version]
- Cavalcanti, A.N.; Foxton, R.M.; Watson, T.F.; Oliveira, M.T.; Giannini, M.; Marchi, G.M. Bond strength of resin cements to a zirconia ceramic with different surface treatments. Oper. Dent. 2009, 34, 280–287. [Google Scholar] [CrossRef] [Green Version]
- Akin, H.; Ozkurt, Z.; Kımalı, O.; Kazazoglu, E.; Ozdemir, A. Shear bond strength of resin cement to zirconia ceramic after aluminium oxide sandblasting and various laser treatments. Photomed. Laser Surg. 2011, 29, 797–802. [Google Scholar] [CrossRef]
- Paranhos, M.P.; Burnett, L.H., Jr.; Magne, P. Effect of Nd:YAG laser and CO2 laser treatment on the resin bond strength to zirconia ceramic. Quintessence Int. 2011, 42, 79–89. [Google Scholar]
- Gomes, A.L.; Ramos, J.C.; Santos-del Riego, S.; Montero, J.; Albaladejo, A. Thermocycling effect on microshear bond strength to zirconia ceramic using Er:YAG and tribochemical silica coating as surface conditioning. Lasers Med. Sci. 2015, 30, 787–795. [Google Scholar] [CrossRef] [Green Version]
- Mirhashemi, A.; Sharifi, N.; Moharrami, M.; Chiniforush, N. Evaluation of Different Types of Lasers in Surface Conditioning of Porcelains: A Review Article. Lasers Med. Sci. 2017, 8, 101–111. [Google Scholar] [CrossRef] [Green Version]
Laser Classification | ||
---|---|---|
Operating mode | Continuous | |
Pulse | Q-switching mode-locking pulsed pumping (FS) | |
Lasing medium | Gas laser | Argon 488–515 nm CO2 laser 9.3, 9.6, 10.6 nm |
Solid laser | Nd:YAG 1064 µm Er: YAG 2790–2940 nm Er:CrYSGG 2780 nm Ti: Sapphire 650–1180 nm | |
Semiconductor | Crystals Diode 812–1064 nm | |
Tissue type | Hard | CO2 laser Nd:YAG Er:YAG |
Soft | Diode laser Argon |
No Ref. | Ceramic Type | Samples No | Bracket Type | Laser Type | Adhesion Type | Results | Additional Examination |
---|---|---|---|---|---|---|---|
[12] | Zirconia | 180 | Metallic | Ti:sapphire Femtosecond | Control/air particle abrasion/femtosecond laser 300 mW, 60 μm/Fs laser 200 mW, 100 um/FS laser 40 mW, 60 μm/FS laser 200 mW, 60 μm | FS laser 300 mW, 60 μm and FS laser 200 mW, 60 μm higher SBS, 200 mW, 60 μm ideal FS settings | |
[13] | Zirconia | 300 | Metallic and ceramic | Ti:sapphire Femtosecond | Control/APA/silica coating and silane (SC)/femtosecond laser (FS)/APA+FS | SBS sgn higher for ceramic brackets in all groups APA+FS > APA > FS > SC > control Metallic brackets, groups SC, FS, APA+FS sgn higher SBS than other groups. FS increases SBS to metallic and ceramic | Thermal imaging camera for temperature changes |
[14] | Feldspathic, IPS Empress e-Max | 150 | Metallic | Ti:sapphire, Er:YAG, Nd:YAG | Ti:sapphire/Er:YAG/Nd:YAG, sandblasting/HF, light cure adhesive | Feldspathic similar to IPS Empress e-Max Ti:sapphire>sandblasting>HF ER:YAG similar to Nd:YAG, lower values | Thermocycling, SEM SEM showed regular surfaces obtained for Ti:Sapphire |
[15] | Feldspathic | 80 | Metallic | Fractional CO2 laser | Fractional CO2 laser for 10 s 10 mJ, 200 Hz and powers of 10 W/15 W/20 W/9.6% HF 2 min.silane for all, deglazing for half of specimens | Deglazing sgn increased SBS of laser treated porcelain surfaces, but no sgn effect on SBS when using HF. SBSs 10 W and 15 W laser groups sgn higher than HF group | |
[16] | Feldspathic | 48 | Metallic | Nd:YAG | Control/HF/grooved/0.75 W laser/1.05 W/1.45 W | Nd:YAG 1.05 W and HF could increase the bonding SBS and TBS, SBS and TBS—correlated | |
[17] | Feldspathic | 60 | Metallic | Er:YAG Er:CrYSGG | 9% HF 2 min/9% HF 2 min + Er:CrYSGG laser/9% HF 2 min + Er:YAG laser/Er:CrYSGG laser/Er:YAG laser. Transbond XT primer + adhesive for all | Sgn difference in SBS between the first three groups and the two laser groups. Er:YAG laser 3-W power, 10-Hz frequency for 10 s is not an alternative to HF. Er:CrYSGG laser, met minimal criteria 6–8 MPa | Thermocycling 5000 cycles SEM |
[18] | Feldspathic | 42 | Metallic | Er:YAG | APA/9.6% HF/Er:YAG irradiation (2 W, 10 Hz for 10 s). | Er:Yag = HF > APA | |
[19] | Feldspathic | 150 | Metallic | Er:YAG short pulse and super short pulse | 5 groups RelyX U 200, 5 groups Transbond XT. APA/Er:YAG short pulse SP/Er:YAG laser super short pulse SSP/sandblasted+SP/sandblasted+SSP | Er:YAG laser did not allow the elimination of HF. RelyX U 200 an alternative to Transbond XT on sandblasted porcelain. Highest SBS sandblasting and Transbond XT. | |
[20] | Feldspathic | 100 | Metallic | Er:YAG lasers | Deglazing, silane for all, 9.6% HF/Er:YAG lasers of 1.6, 2, and 3.2 W | Mean SBS in the laser group with power of 1.6 W > HF, 2-W power, 3.2-W power groups, but not sgn | |
[21] | Feldspathic | 80 | Metallic | Ti:sapphire femtosecond, Nd:YAG laser | Ti:sapphire femtosecond/APA/9.6% HF/Nd:YAG laser, silane for all | Group Nd:YAGsgn lower than the other groups, no sgn differences between the other groups. | Thermocycling 500 cycles |
[22] | Feldspathic | 72 | Metallic | Nd:YAG | 9.6% HF 4 min/0.75-, 1-, 1.25-, 1.5-, and 2-W Nd:YAG for 10 s. | No sgn differences between HF lasers with power of 1.5 or 2 W; no sgn difference between all test groups in ARI scores | Thermocycling 500 cycles |
[23] | Feldspathic | 100 | Metallic | Nd:YAGEr:YAG | Diamond bur/9.6% HF 4 min/0.8-W Nd:YAG/2-W Er:YAG/3-W Er:YAG laser for 10 s | SBS in groups HF and 0.8-W Nd:YAGsgn higher |
Type of Ceramic | Clinical Indications | Etchable (Yes/No) | |
---|---|---|---|
Glass matrix ceramics | Feldspathic | Veneer restoration | Y |
Leucite-based | Veneer restoration, partial crowns and anterior full crowns | Y | |
Licthium disilicate | Veneer restoration, partial crowns and anterior and posterior full crowns | Y | |
Alumina | Anterior and posterior full crowns | Y | |
Alumina and magnesium spinel | Anterior full crowns | Y | |
Alumina and zirconia | Anterior and posterior full crowns | Y | |
Polycrystalline ceramics | Alumina | Veneer restoration, anterior and posterior full crowns | N |
Stabilised zirconia | Partial crowns and anterior and posterior full crowns | N | |
Zirconia-toughed alumina Alumina-toughened zirconia | Partial crowns and anterior and posterior full crowns | N |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Labunet, A.; Kui, A.; Sava, S. Laser Use in Creating Orthodontic Adhesion to Ceramic Surfaces. Appl. Sci. 2021, 11, 2512. https://doi.org/10.3390/app11062512
Labunet A, Kui A, Sava S. Laser Use in Creating Orthodontic Adhesion to Ceramic Surfaces. Applied Sciences. 2021; 11(6):2512. https://doi.org/10.3390/app11062512
Chicago/Turabian StyleLabunet, Anca, Andreea Kui, and Sorina Sava. 2021. "Laser Use in Creating Orthodontic Adhesion to Ceramic Surfaces" Applied Sciences 11, no. 6: 2512. https://doi.org/10.3390/app11062512
APA StyleLabunet, A., Kui, A., & Sava, S. (2021). Laser Use in Creating Orthodontic Adhesion to Ceramic Surfaces. Applied Sciences, 11(6), 2512. https://doi.org/10.3390/app11062512