Personalized Bone Reconstruction and Regeneration in the Treatment of Craniosynostosis
Abstract
:Featured Application
Abstract
1. Introduction
1.1. Craniosynostosis: A Heterogeneous Condition
Syndrome(s) or Phenotype | OMIM ID and/or PubMed Reference | Involved Suture(s) | Gene Symbol |
---|---|---|---|
3C SYNDROME-LIKE PHENOTYPE | 603527 | Sagittal | DPH1 |
3MC SYNDROME 3 | 248340 | Lambdoid | COLEC10 |
3MC1 SYNDROME 1 | 257920 | Lambdoid, coronal | MASP1 |
ACROCEPHALOPOLYDACTYLOUS DYSPLASIA | 200995 | - | - |
ACROCEPHALOPOLYSYNDACTYLY TYPE III | 101120 | - | - |
ACROMELIC FRONTONASAL DYSOSTOSIS | 603671 | Coronal, lambdoid | ZSWIM6 |
ALAGILLE SYNDROME 1 | 118450 | Coronal | JAG1 |
ANTLEY-BIXLER SYNDROME WITH GENITAL ANOMALIES AND DISORDERED STEROIDOGENESIS, ABS1 | 201750 | Coronal, lambdoid | POR |
ANTLEY-BIXLER SYNDROME WITHOUT GENITAL ANOMALIES AND DISORDERED STEROIDOGENESIS, ABS2 | 207410 | Coronal, lambdoid | FGFR2 |
APERT SYNDROME | 101200 | Multisuture | FGFR2 |
ARTHROGRYPOSIS, CLEFT PALATE, CRANIOSYNOSTOSIS, AND IMPAIRED INTELLECTUAL DEVELOPMENT | 618265 | Coronal | PPP3CA |
ATYPICAL MARFANOID SYNDROME WITH CRANIOSYNOSTOSIS | 616914 | Sagittal | FBN1 |
AU-KLINE SYNDROME | 616580 | Sagittal, metopic, multisuture | HNRNPK |
AUROCEPHALOSYNDACTYLY | 109050 | - | - |
B3GAT3-RELETED DISORDER | 606374 | Multisuture | B3GAT3 |
BALLER-GEROLD SYNDROME | 218600 | Multisuture | RECQL4 |
BEARE-STEVENSON CUTIS GYRATA SYNDROME | 123790 | Multisuture | FGFR2 |
BENT BONE DYSPLASIA SYNDROME | 614592 | Coronal | FGFR2 |
BOHRING-OPITZ SYNDROME | 605039 | Metopic | ASXL1 |
BRACHYCEPHALY, DEAFNESS, CATARACT, MICROSTOMIA, AND MENTAL RETARDATION | % 601353 | Coronal, lambdoid | - |
BRACHYDACTYLY, TYPE C | 113100 | Variable | GDF5 |
BRAIN MALFORMATIONS WITH OR WITHOUT URINARY TRACT DEFECTS | 613735 | Sagittal, lambdoid | NFIA |
CARDIO-FACIO-CUTANEOUS SYNDROME | 115150 | Sagittal | BRAF |
CARNEVALE SYNDROME | 265050 | Coronal | COLEC11 |
CARPENTER SYNDROME 1 | 201000 | Sagittal, lambdoid, coronal | RAB23 |
CARPENTER SYNDROME 2 | 614976 | Multisuture | MEGF8 |
CEBALID SYNDROME | 618774 | Variable | MN1 |
CEREBROOCULONASAL SYNDROME | % 605627 | - | - |
CHAR SYNDROME | 169100 | Lambdoid | TFAP2B |
CHERUBISM | 118400 | Sagittal, coronal | SH3BP2 |
CHONDRODYSPLASIA WITH JOINT DISLOCATIONS, GRAPP TYPE | 614078 | Coronal | IMPAD1 |
CHROMOSOME 10Q26 DELETION SYNDROME | 609625 | Metopic | 10q26a |
CHROMOSOME 19P13.13 DELETION SYNDROME | 613638 | Coronal, lambdoid, parieto-temporal | (9p13.2–p13.13) a |
CHROMOSOME 5P13 DUPLICATION SYNDROME | 613174 | - | 5p13 a |
CHROMOSOME 9P DELETION SYNDROME | 158170 | Metopic | 9p a |
COFFIN-SIRIS SYNDROME 7 | 618027 | Sagittal, metopic | DPF2 |
COLE-CARPENTER SYNDROME 1 | 112240 | Multisuture | P4HB |
COLE-CARPENTER SYNDROME 2 | 616294 | Sagittal | SEC24D |
CONGENITAL DISORDER OF GLYCOSYLATION, TYPE IIn | 616721 | Coronal, lambdoid | SLC39A8 |
CONTRACTURES, PTERYGIA, AND SPONDYLOCARPOTARSAL FUSION SYNDROME 1A | 178110 | - | MYH3 |
CORNELIA DE LANGE SYNDROME 1 | 122470 | - | NIPBL |
CRANIOECTODERMAL DYSPLASIA 1 | 218330 | Sagittal | IFT122 |
CRANIOECTODERMAL DYSPLASIA 2 SYNDROME | 613610 | Sagittal | WDR35 |
CRANIOECTODERMAL DYSPLASIA 3 | 614099 | Sagittal | IFT43 |
CRANIOECTODERMAL DYSPLASIA 4 SYNDROME (FRONTAL BOSSING) | 614378 | Sagittal | WDR19 |
CRANIOFACIAL DYSMORPHISM, SKELETAL ANOMALIES, AND MENTAL RETARDATION SYNDROME | 213980 | Multisuture | TMCO1 |
CRANIOFACIAL DYSSYNOSTOSIS WITH SHORT STATURE | [33] (218350) | Sagittal, lambdoid, coronal | SOX6 |
CRANIOFACIAL-SKELETAL-DERMATOLOGIC DYSPLASIA | 101600 | Multisuture | FGFR2 |
CRANIOFACIOCUTANEOUS SYNDROME | 164757 | Sagittal, lambdoid | BRAF |
CRANIOFRONTONASAL SYNDROME | 304110 | Coronal | EFNB1 |
CRANIOMICROMELIC SYNDROME | 602558 | Coronal | - |
CRANIORHINY | 123050 | - | - |
CRANIOSTENOSIS, SAGITTAL, WITH CONGENITAL HEART DISEASE, MENTAL DEFICIENCY, AND MANDIBULAR ANKYLOSIS | 218450 | Sagittal | - |
CRANIOSYNOSTOSIS 1 | 123100 | Coronal, sagittal | TWIST1 |
CRANIOSYNOSTOSIS 2 (BOSTON-TYPE) | 604757 | Multisuture | MSX2 |
CRANIOSYNOSTOSIS 3 | 615314 | Coronal, sagittal | TCF12 |
CRANIOSYNOSTOSIS 4 | 600775 | Sagittal, lambdoid, coronal, metopic or multisuture | ERF |
CRANIOSYNOSTOSIS 5 | 615529 | Sagittal | ALX4 |
CRANIOSYNOSTOSIS 6 | 616602 | Coronal | ZIC1 |
CRANIOSYNOSTOSIS 7 | 617439 | Sagittal, metopic | SMAD6 |
CRANIOSYNOSTOSIS AND DENTAL ANOMALIES | 614188 | Metopic, coronal, sagittal and/or lambdoid | IL11RA |
CRANIOSYNOSTOSIS SYNDROME, AUTOSOMAL RECESSIVE | 606529 | Variable | - |
CRANIOSYNOSTOSIS WITH ANOMALIES OF THE CRANIAL BASE AND DIGITS | 218530 | Coronal, lambdoid | - |
CRANIOSYNOSTOSIS WITH ECTOPIA LENTIS | 603595 | Coronal or multisuture | ADAMTSL4 |
CRANIOSYNOSTOSIS WITH FIBULAR APLASIA | 281550 | Coronal, sagittal | - |
CRANIOSYNOSTOSIS WITH OCULAR ABNORMALITIES AND HALLUCAL DEFECTS | 608279 | Coronal, sagittal | - |
CRANIOSYNOSTOSIS WITH RADIOHUMERAL FUSIONS AND OTHER SKELETAL AND CRANIOFACIAL ANOMALIES | 614416 | Coronal, lambdoid, multisuture | CYP26B1 |
CRANIOSYNOSTOSIS, ADELAIDE TYPE; CRSA | % 600593 | - | MSX1, FGFR3 (4p16 a) |
CRANIOSYNOSTOSIS, CALCIFICATION OF BASAL GANGLIA, AND FACIAL DYSMORPHISM | 608432 | - | - |
CRANIOSYNOSTOSIS-MENTAL RETARDATION SYNDROME OF LIN AND GETTIG | 218649 | Sagittal, lambdoid, metopic | - |
CRANIOSYNOSTOSIS-MENTAL RETARDATION-CLEFTING SYNDROME | 218650 | - | - |
CRANIOTELENCEPHALIC DYSPLASIA | 218670 | - | - |
CROUZON SYNDROME | 123500 | Multisuture | FGFR2 |
CROUZON WITH ACANTHOSIS NIGRICANS SYNDROME | 612247 | Coronal, multisuture | FGFR3 |
CURRY-JONES SYNDROME | 601707 | Coronal | SMOH |
DEVELOPMENTAL DELAY WITH SHORT STATURE, DYSMORPHIC FEATURES, AND SPARSE HAIR | 616901 | Sagittal, metopic | DPH1 |
DEVELOPMENTAL DELAY WITH VARIABLE INTELLECTUAL IMPAIRMENT AND BEHAVIORAL ABNORMALITIES | 618430 | Coronal, metopic, multisuture | TCF20 |
DIABETES MELLITUS, NEONATAL, WITH CONGENITAL HYPOTHYROIDISM | 610199 | Sagittal | GLIS3 |
DISTAL CHROMOSOME 7Q11.23 DELETION SYNDROME | 613729 | - | 7q11.23 a |
DUBOWITZ SYNDROME | % 223370 | - | - |
ELLIS VAN CREVELD SYNDROME | 225500 | Sagittal | EVC |
ENDOSTEAL HYPEROSTOSIS | 144750 | Multisuture | LRP5 |
FONTAINE PROGEROID SYNDROME | 612289 | Coronal | SLC25A24 |
FRANK-TER HAAR SYNDROME | 249420 | Sagittal | SH3PXD2B |
FRONTONASAL DYSPLASIA 1 | 136760 | Coronal | ALX3 |
FRONTONASAL DYSPLASIA 2 | 613451 | Coronal | ALX4 |
FRONTONASAL DYSPLASIA VARIANT | [34] | Sagittal, multisuture | SIX2 |
FRONTOOCULAR SYNDROME | 605321 | Coronal, metopic | - |
FRYNS MICROPHTHALMIA SYNDROME | 600776 | - | - |
GABRIELE-DE VRIES SYNDROME | 617557 | - | YY1 |
GOLDBERG-SHPRINTZEN MEGACOLON SYNDROME | 609460 | Variable | KIAA1279 |
GOMEZ-LOPEZ-HERNANDEZ SYNDROME | %601583 | Lambdoid | - |
GRACILE BONE DYSPLASIA | 602361 | Skull base, multisuture | FAM111A |
GREIG CEPHALOPOLYSYNDACTYLY SYNDROME | 175700 | Sagittal, metopic | GLI3 |
GROWTH RETARDATION, DEVELOPMENTAL DELAY, FACIAL DYSMORPHISM | 612938 | Coronal | FTO |
HAMAMY SYNDROME | 611174 | Metopic | IRX5 |
HARTSFIELD SYNDROME | 615465 | - | FGFR1 |
HENNEKAM LYMPHANGIECTASIA-LYMPHEDEMA SYNDROME 1 | 235510 | Coronal | CCBE1 |
HOLOPROSENCEPHALY, SEMILOBAR, WITH CRANIOSYNOSTOSIS | 601370 | Coronal, lamboid | - |
HUNTER-MCALPINE CRANIOSYNOSTOSIS SYNDROME | 601379 | - | - |
HYPER-IGE RECURRENT INFECTION SYNDROME | 147060 | Multisuture | STAT3 |
HYPER-IGE RECURRENT INFECTION SYNDROME 4, AUTOSOMAL RECESSIVE | 618523 | Multisuture | IL6ST |
HYPERTELORISM, TEEBI TYPE | 145420 | Sagittal, coronal | SPECC1L |
HYPOPHOSPHATASIA, INFANTILE | 241500 | - | ALPL |
HYPOPHOSPHATEMIC RICKETS, X-LINKED DOMINANT | 307800 | Sagittal | PHEX |
IMAGE SYNDROME | 614732 | Sagittal, metopic | CDKN1C |
IMMUNOSKELETAL DYSPLASIA WITH NEURODEVELOPMENTAL ABNORMALITIES | 617425 | Multisuture | EXTL3 |
JACKSON-WEISS SYNDROME | 123150 | Multisuture | FGFR1 |
JACKSON-WEISS SYNDROME | 123150 | Multisuture | FGFR2 |
JOUBERT SYNDROME 2 | 608091 | Sagittal | TMEM216 |
KABUKI SYNDROME | 147920 | Multisuture | KMT2D |
KAKUBI SYNDROME/AU-KLINE SYNDROME | 600712 | Metopic | HNRNPK |
KLEEBLATTSCHAEDEL | 148800 | - | - |
LACRIMOAURICULODENTODIGITAL (LEVY-HOLLISTER) SYNDROME | 149730 | Sagittal | FGF10 |
LIN-GETTING SYNDROME-LIKE CSO/GENITOPATELLAR SYNDROME/SAY BARBER BIESECKER YOUNG SIMPSON SYNDROME | 605880 | Sagittal | KAT6B |
LOEYS-DIETZ SYNDROME 1 | 609192 | Multisuture | TGFBR1 |
LOEYS-DIETZ SYNDROME 2 | 610168 | Multisuture | TGFBR2 |
LOEYS-DIETZ SYNDROME 3 | 613795 | Variable | SMAD3 |
LOEYS-DIETZ SYNDROME 4 | 614816 | Sagittal, metopic, multisuture | TGFB2 |
MEIER-GORLIN SYNDROME (ATYPICAL) | 224690 | Coronal | CDC45 |
MEIER-GORLIN SYNDROME 1 | 224690 | Variable | ORC1 |
MEIER-GORLIN SYNDROME 7 | 617063 | Coronal, multisure | CDC45L |
MENTAL RETARDATION, AR 41 | 615637 | Sagittal | KPTN |
MENTAL RETARDATION, AUTOSOMAL DOMINANT 32 | 616268 | Coronal | KAT6A |
MENTAL RETARDATION, AUTOSOMAL DOMINANT 57 | 618050 | Coronal, sagittal, metopic, multisuture | TLK2 |
MENTAL RETARDATION, X-LINKED, SYNDROMIC, TURNER TYPE | 309590 | Metopic | HUWE1 |
METAPHYSEAL ACROSCYPHODYSPLASIA | % 250215 | - | - |
METOPIC/PANSYNOSTOSIS (DUPLICATION) | [5] | Metopic, multisuture | RUNX2 |
MICROCEPHALY 1, PRIMARY, AUTOSOMAL RECESSIVE | 251200 | Variable | MCPH1 |
MICROCEPHALY WITH CHEMOTACTIC DEFECT AND TRANSIENT HYPOGAMMAGLOBULINEMIA | 251240 | - | - |
MICROCEPHALY, SHORT STATURE, AND POLYMICROGYRIA WITH OR WITHOUT SEIZURES | 614833 | - | RTTN |
MICROCEPHALY-MICROMELIA SYNDROME | 251230 | - | DONSON |
MICROPHTHALMIA, SYNDROMIC 6 | 607932 | Lambdoid | BMP4 |
MOSAIC VARIEGATED ANEUPLOIDY SYNDROME 2 | 614114 | Sagittal | CEP57 |
MOWAT-WILSON SYNDROME | 235730 | Coronal | ZEB2 |
MUCOLIPIDOSIS II | 252500 | Multisuture | GNPTAB |
MUENKE NONSYNDROMIC CORONAL CRANIOSYNOSTOSIS | 602849 | Coronal | FGFR3 |
MUENKE SYNDROME | 602849 | Coronal, multisuture | FGFR3 |
MULTIPLE SYNOSTOSES SYNDROME 3 | 612961 | Variable | FGF9 |
NABLUS MASK-LIKE FACIAL SYNDROME | 608156 | - | 8q22.1 a |
NAIL-PATELLA SYNDROME | 161200 | Coronal | LMX1B |
NOONAN SYNDROME | 176876 | Sagittal | PTPN11 |
NOONAN SYNDROME 3 | 609942 | Sagittal | KRAS |
NOONAN SYNDROME-LIKE DISORDER WITH LOOSE ANAGEN HAIR 2 | 617506 | Sagittal, coronal | PPP1CB |
OBESITY, HYPERPHAGIA, AND DEVELOPMENTAL DELAY | 613886 | Coronal | NTRK2 |
OPITZ C SYNDROME | 211750 | Metopic | CD96 |
OPITZ GBBB SYNDROME TYPE II | 145410 | Metopic, sagittal | SPECCL1 |
OPITZ-KAVEGGIA SYNDROME | 305450 | Lambdoid, sagittal, multisuture | MED12 |
OSTEOGENESIS IMPERFECTA, TYPE VII | 610682 | Lambdoid, coronal, multisuture | CRTAP |
OSTEOGLOPHONIC DYSPLASIA | 166250 | Coronal, multisuture | FGFR1 |
OSTEOPETROSIS, AUTOSOMAL RECESSIVE 5 | 259720 | Sagitall, coronal, multisuture | OSTM1 |
OTOPALATODIGITAL SPECTRUM DISORDERS WITH CS | 300017 | Skull base, Multisuture | FLNA |
PFEIFFER SYNDROME | 101600 | Multisuture | FGFR1 |
PFEIFFER SYNDROME | 101600 | Multisuture | FGFR2 |
PHOSPHOSERINE AMINOTRANSFERASE DEFICIENCY | 610992 | Multisuture | PSAT1 |
PSEUDOHYPOPARATHYROIDISM TYPE 1 | 103580 | Coronal, metopic and sagittal | GNAS |
PYCNODYSOSTOSIS (ATYPICAL) | 265800 | Coronal | CTSK |
RAINE SYNDROME | 259775 | Coronal or multisuture | FAM20C |
RETINITIS PIGMENTOSA WITH OR WITHOUT SKELETAL ANOMALIES | 250410 | - | CWC27 |
ROBERTS SYNDROME | 268300 | Multisuture | ESCO2 |
ROBINOW-SORAUF SYNDROME | 180750 | Coronal | TWIST1 |
SAETHRE-CHOTZEN SYNDROME | 101400 | Coronal, multisuture | FGFR2 |
SAETHRE-CHOTZEN SYNDROME WITH OR WITHOUT EYELID ANOMALIES | 101400 | Coronal, multisuture | TWIST1 |
SC PHOCOMELIA SYNDROME | 269000 | - | ESCO2 |
SCAPHOCEPHALY, MAXILLARY RETRUSION, AND MENTAL RETARDATION SYNDROME | 609579 | Sagittal | FGFR2 |
SEVERE COMBINED IMMUNODEFICIENCY WITH MICROCEPHALY, GROWTH RETARDATION, AND SENSITIVITY TO IONIZING RADIATION | 611291 | Multisuture | NHEJ1 |
SHORT-RIB THORACIC DYSPLASIA 13 WITH OR WITHOUT POLYDACTYLY | 616300 | Coronal | CEP120 |
SHORT-RIB THORACIC DYSPLASIA 6 WITH OR WITHOUT POLYDACTYLY | 263520 | Coronal | NEK1 |
SHORT-RIB THORACIC DYSPLASIA 9 WITH OR WITHOUT POLYDACTYLY SYNDROME | 266920 | Sagittal | IFT140 |
SHPRINTZEN-GOLDBERG CRANIOSYNOSTOSIS SYNDROME | 182212 | Coronal, sagittal or lambdoid | SKI |
SPONDYLOEPIMETAPHYSEAL DYSPLASIA, FADEN-ALKURAYA TYPE | 616723 | Coronal | RSPRY1 |
SPONDYLOEPIPHYSEAL DYSPLASIA WITH CORONAL CRANIOSYNOSTOSIS, CATARACTS, CLEFT PALATE, AND MENTAL RETARDATION | 602611 | Coronal | - |
STRUCTURAL BRAIN ANOMALIES WITH IMPAIRED INTELLECTUAL DEVELOPMENT AND CRANIOSYNOSTOSIS | 618736 | Coronal | ZIC1 |
SUMMITT SYNDROME | 272350 | - | - |
SWEENEY-COX SYNDROME | 617746 | Variable | TWIST1 |
SYNDACTYLY, TYPE 1, WITH OR WITHOUT CRANIOSYNOSTOSIS | 185900 | Sagittal | IHH |
TETRASOMY 15Q26 | 614846 | Metopic, coronal, multisuture | 15q26-qter a |
THANATOPHORIC DYSPLASIA, TYPE I | 187600 | - | FGFR3 |
TOE SYNDACTYLY, TELECANTHUS, AND ANOGENITAL AND RENAL MALFORMATIONS | 300707 | - | FAM58A |
TREACHER COLLINS SYNDROME 1 | 154500 | Multisuture | TCOF1 |
TRICHOTHIODYSTROPHY 6, NONPHOTOSENSITIVE | 616943 | Coronal | GTF2E2 |
TRIGONOCEPHALY 1 | 190440 | Multisuture | FGFR1 |
TRIGONOCEPHALY 2 | 614485 | Metopic | FREM1 |
TRIGONOCEPHALY WITH SHORT STATURE AND DEVELOPMENTAL DELAY | 314320 | Metopic | - |
UNDEFINITED/UNCLEAR | 600921 | Sagittal | FGF9 |
UNDEFINITED/UNCLEAR | 610966 | Multisuture | FTO |
UNDEFINITED/UNCLEAR | 147370 | Sagittal, coronal | IGF1R |
UNDEFINITED/UNCLEAR | 600727 | Metopic | NFIA |
UNDEFINITED/UNCLEAR | 611909 | - | FNDC3B |
VAN DEN ENDE-GUPTA SYNDROME | 600920 | Multisuture | SCARF2 |
WEISS-KRUSZKA SYNDROME | 618619 | Metopic | ZNF462 |
WILLIAMS-BEUREN SYNDROME | 194050 | Sagittal | 7q11.23 a |
ZTTK SYNDROME | 617140 | Metopic, sagittal, multisuture | SON |
Syndrome(s) or Phenotype | OMIM ID/ Reference | Involved Suture(s) | Gene Symbol |
---|---|---|---|
Craniosynostosis, nonsyndromic unicoronal | [35] | Coronal | FGFR2 |
Nonsyndromic craniosynostosis | [36] | - | SNAI1a |
Nonsyndromic craniosynostosis | [37] | - | PTH2R (intron break) |
Nonsyndromic craniosynostosis | [17] | Coronal | EFNB1a |
Nonsyndromic craniosynostosis | [17] | Sagittal | ALX4a |
Nonsyndromic craniosynostosis | [17] | Sagittal, coronal | TWIST1a (c.435G>C) |
Nonsyndromic craniosynostosis | [17] | Coronal | TWIST1a (c.421G>C) |
Nonsyndromic craniosynostosis | [17] | Sagittal | ADCK1a |
Nonsyndromic craniosynostosis | [17] | Sagittal | ALPLa |
Nonsyndromic craniosynostosis | [17] | Sagittal | BMPERa |
Nonsyndromic craniosynostosis | [17] | Sagittal, coronal | FREM1a |
Nonsyndromic craniosynostosis | [17] | Sagittal, coronal | FREM1a |
Nonsyndromic craniosynostosis | [17] | Coronal | JAG1a |
Nonsyndromic craniosynostosis | [17] | Coronal | NELL1a |
Nonsyndromic craniosynostosis | [17] | Sagittal | NOTCH 1a |
Nonsyndromic craniosynostosis | [17] | Sagittal | NOTCH2a |
Nonsyndromic craniosynostosis | [17] | Sagittal | PDILTa |
Nonsyndromic craniosynostosis | [17] | Sagittal | REQL4a |
Nonsyndromic craniosynostosis | [17] | Coronal | SHC4a |
Nonsyndromic craniosynostosis | [17] | Sagittal | TGFBR2a |
Nonsyndromic craniosynostosis | [38] | Metopic | RUNX2b |
Nonsyndromic midline craniosynostosis | [18] | Metopic | ARAP3 |
Nonsyndromic midline craniosynostosis | [18] | Sagittal | AXIN1 |
Nonsyndromic midline craniosynostosis | [18,39] (* 112261) | Sagittal, metopic | BMP2b |
Nonsyndromic midline craniosynostosis | [18] | Sagittal | DVL3 |
Nonsyndromic midline craniosynostosis | [18] | Sagittal | MESP1 |
Nonsyndromic midline craniosynostosis | [18] | Sagittal | NPHP4 |
Nonsyndromic midline craniosynostosis | [18] | Metopic | PSMC2 |
Nonsyndromic midline craniosynostosis | [18] | Metopic | PSMC5 |
Nonsyndromic midline craniosynostosis | [18] | Sagittal | RASAL2 |
Nonsyndromic midline craniosynostosis | [18,39] (* 602931) | Sagittal and metopic | SMAD6 |
Nonsyndromic midline craniosynostosis | [18] | Metopic | SMURF1 |
Nonsyndromic midline craniosynostosis | [18] (*602465) | Sagittal | SPRY1 |
Nonsyndromic midline craniosynostosis | [18] (* 607984) | Sagittal | SPRY4 |
Nonsyndromic midline craniosynostosis | [10] | Sagittal, metopic | BBS9a |
Nonsyndromic unicoronal synostosis | [40] | Coronal | EFNA4 |
Sagittal nonsyndromic craniosynostosis | [19] | Sagittal, lambdoid | FGFR2 |
Sagittal nonsyndromic craniosynostosis | [41] | Sagittal, metopic | FGFR3 |
Sagittal nonsyndromic craniosynostosis | [42] (* 147370) | Sagittal, metopic, coronal | IGF1R |
Sagittal nonsyndromic craniosynostosis | [43] | Sagittal, multisuture | LRIT3 |
Sagittal nonsyndromic craniosynostosis | [19] | Sagittal, coronal | TWIST1 (c.563 > T) |
1.2. Overview of Surgical Approaches and Skull Reconstructive Techniques
2. Biomaterials and Tissue Engineering Approaches
2.1. Biodegradable Rigid Fixation Systems
Commercial Fixation System | Composition | Post-Operative Infection Rate | References |
---|---|---|---|
LactoSorb® | 82% poly-l-lactic acid (PLLA), 18% polyglycolic acid (PGA) | 0–3% | [54,55,56,58,59,60,61,62,73] |
Biosorb® PDX | 80% PLLA 20% PGA | 4% | [63] |
PolyMax® RAPID | 85% PLLA, 15% PGA | None | [74] |
Inion® CPS baby | Trimethylene carbonate, PLA, PDLLA, Polyglycolide | 0–1.6% | [65,66,67,68] |
RapidSorb® | 85% PLLA, 15% PGA | 0–1.4% | [75,76] |
MacroPore® FRP | 85% PLLA, 15% PGA | 2–4% | [55,64] |
Resorb-X® | 50% PLLA, 50% PDLLA | 0–2.6% | [77,78] |
2.2. Tissue Engineering Strategies
Type of Polymer(s) | Synthesis Procedure/ Scaffold Assembly | Molecular Functionalization | Cell Types Implemented | Testing Model: In Vitro | Testing Model: In Vivo | Reference |
---|---|---|---|---|---|---|
PLGA (PLA:PGA 85:15) | Solvent casting + particulate leaching | - | ASC/ BM-MSC/ Calvarial osteoblasts/ dural cells | - | FBV mice | [105] |
GelMA + Matrigel + COL-I (M-GM) | Gelatin with methacrylamide (GelMA) side groups cross-linked by radical polymerization via photoinitiation mixed with Matrigel and COL-I | - | Gli1 + MSCs | - | Twist1+/ mice | [108] |
Bioactive glass + PLGA (PLA:PGA 80:20) | Fiber assembly scaffolds | - | - | Transgenic FGFR2C278F/wt murine osteoblasts; osteoprogenitor cells from CS patients | - | [111] |
PEG hydrogel-coated PCL | CAD extrusion 3D printing | - | - | MC3T3E1(C4) murine calvarial MSCs | - | [114] |
β-TCP scaffold | Custom-built, direct-write 3D printing | dipyridamole | - | - | Rabbit/ sheep calvarial defects | [120,121,122] |
PLGA nanoparticle | Solvent diffusion method | DEX | - | - | Sprague- Dawley rats | [132] |
Chitin-PLGA composite hydrogel | Chitin regeneration technique | CaSO4 and/or FGF-18 | - | Rat adipose derived stem cell (rADSCs) | Sprague- Dawley rats | [133] |
2.3. Bioactive Compounds and Delivery Systems
Delivery System Chemistry | Formulation | Bioactive Molecule(s) | Target Cells/ Compartments | In Vitro Testing | In Vivo Testing | Reference |
---|---|---|---|---|---|---|
Collagen | Slow-resorbing collagen vehicle | Noggin | Calvarial bone cells (suturectomy site) | - | white rabbits with bilateral coronal suture synostosis | [155] |
Collagen | Gelfoam scaffold | Noggin | Calvarial bone cells (suturectomy site) | - | C57BL/6J mice | [138] |
Collagen | Gel-like scaffold | TFβ-3 expression plasmid | Cranial suture | Rat calvarial organ culture | Sprague-Dawley rats | [157] |
Collagen | Gelatin- microporous sponge scaffold | rhBMP2 and dermal fibroblasts | Cranial suture (parietal defect) | - | New Zeland white rabbits | [158] |
Collagen— PLGA 50:50 copolymer | Microspheres | Murine BM-MSCs or human BM-MSCs + TFβ-3 | Cranial suture | culture of human BM-MSCs and BM-MSCs-derived osteoblasts | Rat craniosynostosis model | [168,169] |
DB-co-PEG/poly(TEGDMA) -co-(N3-TEGDMA) | Hydrogel | anti-VEGFAantibody and topotecan | Endothelial cells (posterior frontal suture) | Human aortic endothelial cell cultures | C57Bl/6J mice | [172] |
PEG | Hydrogel | rmGremlin1 | Cranial suture (posterior frontal suture) | MG63 cells | Murine model C57Bl/6J | [173] |
TNT/Ti | Nanotube | GPC1 or 3 | Cranial suture | C2C12 murine myoblast cell line | Crouzon murine model (Fgfr2c342y/+) | [177,178] |
CHP composed by hydrophilic polysaccharides partially modified with hydrophobic cholesteryl groups additioned with acryloyl | Nanogel | sFGFR2IIIcS252W | Cranial suture (coronal suture) | Calvarial coronal suture cells of Apert Syndrome mice | - | [179] |
PGC + laponite | Nanocomposite hydrogel (NC–organic hydrogel bone sealant NoBS) | Laponite+ Smoothened agonist (SAG) | Calvarial bone defect | Mouse BMSC line (D1 cell, CRL-12424) | CD-1 mice | [185] |
β-tricalcium phosphate/ hydroxyl apatite | Particles | CAPE | Calvarial bone defect | - | Sprague-Dawley rats | [186] |
3. Cell-Based Disease Modelling: From 2D to 3D Culture Systems
4. Clinical Perspectives and Actual Clinical Translation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Wilkie, A.O.M.; Johnson, D.; Wall, S.A. Clinical genetics of craniosynostosis. Curr. Opin. Pediatr. 2017, 29, 622–628. [Google Scholar] [CrossRef]
- Panetta, N.J.; Gupta, D.M.; Slater, B.J.; Kwan, M.D.; Liu, K.J.; Longaker, M.T. Tissue engineering in cleft palate and other congenital malformations. Pediatr. Res. 2008, 63, 545–551. [Google Scholar] [CrossRef] [PubMed]
- Delashaw, J.B.; Persing, J.A.; Broaddus, W.C.; Jane, J.A. Cranial vault growth in craniosynostosis. J. Neurosurg. 1989, 70, 159–165. [Google Scholar] [CrossRef] [Green Version]
- Armand, T.; Schaefer, E.; Di Rocco, F.; Edery, P.; Collet, C.; Rossi, M. Genetic bases of craniosynostoses: An update. Neurochirurgie 2019, 65, 196–201. [Google Scholar] [CrossRef]
- Lattanzi, W.; Barba, M.; Di Pietro, L.; Boyadjiev, S.A. Genetic advances in craniosynostosis. Am. J. Med. Genet. A 2017, 173, 1406–1429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, D.; Wilkie, A.O. Craniosynostosis. Eur. J. Hum. Genet. 2011, 19, 369–376. [Google Scholar] [CrossRef] [Green Version]
- Timberlake, A.T.; Persing, J.A. Genetics of Nonsyndromic Craniosynostosis. Plast. Reconstr. Surg. 2018, 141, 1508–1516. [Google Scholar] [CrossRef]
- Greenwood, J.; Flodman, P.; Osann, K.; Boyadjiev, S.A.; Kimonis, V. Familial incidence and associated symptoms in a population of individuals with nonsyndromic craniosynostosis. Genet. Med. 2014, 16, 302–310. [Google Scholar] [CrossRef] [Green Version]
- Apostolopoulou, D.; Kaxira, O.S.; Hatzaki, A.; Panagopoulos, K.P.; Alexandrou, K.; Stratoudakis, A.; Kollia, P.; Aleporou, V. Genetic Analysis of Syndromic and Nonsyndromic Patients With Craniosynostosis Identifies Novel Mutations in the TWIST1 and EFNB1 Genes. Cleft Palate Craniofac. J. 2018, 55, 1092–1102. [Google Scholar] [CrossRef] [PubMed]
- Barba, M.; Di Pietro, L.; Massimi, L.; Geloso, M.C.; Frassanito, P.; Caldarelli, M.; Michetti, F.; Della Longa, S.; Romitti, P.A.; Di Rocco, C.; et al. BBS9 gene in nonsyndromic craniosynostosis: Role of the primary cilium in the aberrant ossification of the suture osteogenic niche. Bone 2018, 112, 58–70. [Google Scholar] [CrossRef] [PubMed]
- Clarke, C.M.; Fok, V.T.; Gustafson, J.A.; Smyth, M.D.; Timms, A.E.; Frazar, C.D.; Smith, J.D.; Birgfeld, C.B.; Lee, A.; Ellenbogen, R.G.; et al. Single suture craniosynostosis: Identification of rare variants in genes associated with syndromic forms. Am. J. Med. Genet. A 2018, 176, 290–300. [Google Scholar] [CrossRef] [PubMed]
- Cuellar, A.; Bala, K.; Di Pietro, L.; Barba, M.; Yagnik, G.; Liu, J.L.; Stevens, C.; Hur, D.J.; Ingersoll, R.G.; Justice, C.M.; et al. Gain-of-function variants and overexpression of RUNX2 in patients with nonsyndromic midline craniosynostosis. Bone 2020, 137, 115395. [Google Scholar] [CrossRef] [PubMed]
- Gustafson, J.A.; Park, S.S.; Cunningham, M.L. Calvarial osteoblast gene expression in patients with craniosynostosis leads to novel polygenic mouse model. PLoS ONE 2019, 14, e0221402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Justice, C.M.; Cuellar, A.; Bala, K.; Sabourin, J.A.; Cunningham, M.L.; Crawford, K.; Phipps, J.M.; Zhou, Y.; Cilliers, D.; Byren, J.C.; et al. A genome-wide association study implicates the BMP7 locus as a risk factor for nonsyndromic metopic craniosynostosis. Hum. Genet. 2020, 139, 1077–1090. [Google Scholar] [CrossRef] [PubMed]
- Lattanzi, W.; Barba, M.; Novegno, F.; Massimi, L.; Tesori, V.; Tamburrini, G.; Galgano, S.; Bernardini, C.; Caldarelli, M.; Michetti, F.; et al. Lim mineralization protein is involved in the premature calvarial ossification in sporadic craniosynostoses. Bone 2013, 52, 474–484. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.; Le, T.; Zhu, Y.; Elakis, G.; Turner, A.; Lo, W.; Venselaar, H.; Verrenkamp, C.A.; Snow, N.; Mowat, D.; et al. A craniosynostosis massively parallel sequencing panel study in 309 Australian and New Zealand patients: Findings and recommendations. Genet. Med. 2018, 20, 1061–1068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sewda, A.; White, S.R.; Erazo, M.; Hao, K.; Garcia-Fructuoso, G.; Fernandez-Rodriguez, I.; Heuze, Y.; Richtsmeier, J.T.; Romitti, P.A.; Reva, B.; et al. Nonsyndromic craniosynostosis: Novel coding variants. Pediatr. Res. 2019, 85, 463–468. [Google Scholar] [CrossRef] [PubMed]
- Timberlake, A.T.; Furey, C.G.; Choi, J.; Nelson-Williams, C.; Yale Center for Genome, A.; Loring, E.; Galm, A.; Kahle, K.T.; Steinbacher, D.M.; Larysz, D.; et al. De novo mutations in inhibitors of Wnt, BMP, and Ras/ERK signaling pathways in non-syndromic midline craniosynostosis. Proc. Natl. Acad. Sci. USA 2017, 114, E7341–E7347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, X.; Guilmatre, A.; Reva, B.; Peter, I.; Heuze, Y.; Richtsmeier, J.T.; Fox, D.J.; Goedken, R.J.; Jabs, E.W.; Romitti, P.A. Mutation Screening of Candidate Genes in Patients with Nonsyndromic Sagittal Craniosynostosis. Plast Reconstr. Surg. 2016, 137, 952–961. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Gu, Y. Signaling Mechanisms Underlying Genetic Pathophysiology of Craniosynostosis. Int. J. Biol. Sci. 2019, 15, 298–311. [Google Scholar] [CrossRef]
- Di Pietro, L.; Barba, M.; Prampolini, C.; Ceccariglia, S.; Frassanito, P.; Vita, A.; Guadagni, E.; Bonvissuto, D.; Massimi, L.; Tamburrini, G.; et al. GLI1 and AXIN2 Are Distinctive Markers of Human Calvarial Mesenchymal Stromal Cells in Nonsyndromic Craniosynostosis. Int. J. Mol. Sci. 2020, 21, 4356. [Google Scholar] [CrossRef]
- Lattanzi, W.; Parolisi, R.; Barba, M.; Bonfanti, L. Osteogenic and Neurogenic Stem Cells in Their Own Place: Unraveling Differences and Similarities Between Niches. Front. Cell Neurosci. 2015, 9, 455. [Google Scholar] [CrossRef] [Green Version]
- Durham, E.; Howie, R.N.; Larson, N.; LaRue, A.; Cray, J. Pharmacological exposures may precipitate craniosynostosis through targeted stem cell depletion. Stem Cell Res. 2019, 40, 101528. [Google Scholar] [CrossRef]
- Park, C.; Wormald, J.; Miranda, B.H.; Ong, J.; Hare, A.; Eccles, S. Perioperative Blood Loss and Transfusion in Craniosynostosis Surgery. J. Craniofac. Surg. 2018, 29, 112–115. [Google Scholar] [CrossRef] [PubMed]
- Kurnik, N.M.; Bristol, R.; Maneri, C.; Singhal, R.; Singh, D.J. Open Craniosynostosis Surgery: Effect of Early Intraoperative Blood Transfusion on Postoperative Course. J. Craniofac. Surg. 2017, 28, e505–e510. [Google Scholar] [CrossRef]
- Bruce, W.J.; Chang, V.; Joyce, C.J.; Cobb, A.N.; Maduekwe, U.I.; Patel, P.A. Age at Time of Craniosynostosis Repair Predicts Increased Complication Rate. Cleft Palate Craniofac. J. 2018, 55, 649–654. [Google Scholar] [CrossRef]
- Bennett, K.G.; Vick, A.D.; Ettinger, R.E.; Archer, S.M.; Vercler, C.J.; Buchman, S.R. Age at Craniosynostosis Surgery and Its Impact on Ophthalmologic Diagnoses: A Single-Center Retrospective Review. Plast Reconstr. Surg. 2019, 144, 696–701. [Google Scholar] [CrossRef]
- Bergquist, C.S.; Nauta, A.C.; Selden, N.R.; Kuang, A.A. Age at the Time of Surgery and Maintenance of Head Size in Nonsyndromic Sagittal Craniosynostosis. Plast Reconstr. Surg. 2016, 137, 1557–1565. [Google Scholar] [CrossRef] [PubMed]
- Mandela, R.; Bellew, M.; Chumas, P.; Nash, H. Impact of surgery timing for craniosynostosis on neurodevelopmental outcomes: A systematic review. J. Neurosurg. Pediatr. 2019, 23, 442–454. [Google Scholar] [CrossRef]
- Massimi, L.; Caldarelli, M.; Tamburrini, G.; Paternoster, G.; Di Rocco, C. Isolated sagittal craniosynostosis: Definition, classification, and surgical indications. Childs Nerv. Syst. 2012, 28, 1311–1317. [Google Scholar] [CrossRef] [PubMed]
- Wilkie, A.O.; Byren, J.C.; Hurst, J.A.; Jayamohan, J.; Johnson, D.; Knight, S.J.; Lester, T.; Richards, P.G.; Twigg, S.R.; Wall, S.A. Prevalence and complications of single-gene and chromosomal disorders in craniosynostosis. Pediatrics 2010, 126, e391–e400. [Google Scholar] [CrossRef] [Green Version]
- Wenger, T.L.; Hopper, R.A.; Rosen, A.; Tully, H.M.; Cunningham, M.L.; Lee, A. A genotype-specific surgical approach for patients with Pfeiffer syndrome due to W290C pathogenic variant in FGFR2 is associated with improved developmental outcomes and reduced mortality. Genet. Med. 2019, 21, 471–476. [Google Scholar] [CrossRef] [PubMed]
- Tagariello, A.; Heller, R.; Greven, A.; Kalscheuer, V.M.; Molter, T.; Rauch, A.; Kress, W.; Winterpacht, A. Balanced translocation in a patient with craniosynostosis disrupts the SOX6 gene and an evolutionarily conserved non-transcribed region. J. Med. Genet. 2006, 43, 534–540. [Google Scholar] [CrossRef]
- Hufnagel, R.B.; Zimmerman, S.L.; Krueger, L.A.; Bender, P.L.; Ahmed, Z.M.; Saal, H.M. A new frontonasal dysplasia syndrome associated with deletion of the SIX2 gene. Am. J. Med. Genet. A 2016, 170A, 487–491. [Google Scholar] [CrossRef]
- Johnson, D.; Iseki, S.; Wilkie, A.O.; Morriss-Kay, G.M. Expression patterns of Twist and Fgfr1, -2 and -3 in the developing mouse coronal suture suggest a key role for twist in suture initiation and biogenesis. Mech. Dev. 2000, 91, 341–345. [Google Scholar] [CrossRef]
- Twigg, S.R.; Wilkie, A.O. A Genetic-Pathophysiological Framework for Craniosynostosis. Am. J. Hum. Genet. 2015, 97, 359–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.; Won, H.H.; Kim, Y.; Choi, J.R.; Yu, N.; Lee, K.A. Breakpoint mapping by whole genome sequencing identifies PTH2R gene disruption in a patient with midline craniosynostosis and a de novo balanced chromosomal rearrangement. J. Med. Genet. 2015, 52, 706–709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Justice, C.M.; Yagnik, G.; Kim, Y.; Peter, I.; Jabs, E.W.; Erazo, M.; Ye, X.; Ainehsazan, E.; Shi, L.; Cunningham, M.L.; et al. A genome-wide association study identifies susceptibility loci for nonsyndromic sagittal craniosynostosis near BMP2 and within BBS9. Nat. Genet. 2012, 44, 1360–1364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Timberlake, A.T.; Choi, J.; Zaidi, S.; Lu, Q.; Nelson-Williams, C.; Brooks, E.D.; Bilguvar, K.; Tikhonova, I.; Mane, S.; Yang, J.F.; et al. Two locus inheritance of non-syndromic midline craniosynostosis via rare SMAD6 and common BMP2 alleles. Elife 2016, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ting, M.C.; Wu, N.L.; Roybal, P.G.; Sun, J.; Liu, L.; Yen, Y.; Maxson, R.E., Jr. EphA4 as an effector of Twist1 in the guidance of osteogenic precursor cells during calvarial bone growth and in craniosynostosis. Development 2009, 136, 855–864. [Google Scholar] [CrossRef] [Green Version]
- Barroso, E.; Perez-Carrizosa, V.; Garcia-Recuero, I.; Glucksman, M.J.; Wilkie, A.O.; Garcia-Minaur, S.; Heath, K.E. Mild isolated craniosynostosis due to a novel FGFR3 mutation, p.Ala334Thr. Am. J. Med. Genet. A 2011, 155A, 3050–3053. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, M.L.; Horst, J.A.; Rieder, M.J.; Hing, A.V.; Stanaway, I.B.; Park, S.S.; Samudrala, R.; Speltz, M.L. IGF1R variants associated with isolated single suture craniosynostosis. Am. J. Med. Genet. A 2011, 155A, 91–97. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.D.; Liu, J.L.; Roscioli, T.; Buckley, M.F.; Yagnik, G.; Boyadjiev, S.A.; Kim, J. Leucine-rich repeat, immunoglobulin-like and transmembrane domain 3 (LRIT3) is a modulator of FGFR1. FEBS Lett. 2012, 586, 1516–1521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Rocco, C.; Frassanito, P.; Pelo, S.; Tamburrini, G. Syndromic Craniosynostosis. In Pediatric Neurosurgery: Tricks of the Trade; Cohen, A.R., Ed.; Thieme: New York, NY, USA, 2016. [Google Scholar] [CrossRef]
- Massimi, L.; Di Rocco, C. Mini-invasive surgical technique for sagittal craniosynostosis. Childs Nerv. Syst. 2012, 28, 1341–1345. [Google Scholar] [CrossRef]
- Goodrich, J.T.; Sandler, A.L.; Tepper, O. A review of reconstructive materials for use in craniofacial surgery bone fixation materials, bone substitutes, and distractors. Childs Nerv. Syst. 2012, 28, 1577–1588. [Google Scholar] [CrossRef]
- Ilizarov, G.A. The tension-stress effect on the genesis and growth of tissues: Part II. The influence of the rate and frequency of distraction. Clin. Orthop. Relat. Res. 1989, 239, 263–285. [Google Scholar] [CrossRef]
- Ilizarov, G.A. The tension-stress effect on the genesis and growth of tissues. Part I. The influence of stability of fixation and soft-tissue preservation. Clin. Orthop. Relat. Res. 1989, 238, 249–281. [Google Scholar] [CrossRef]
- Mundinger, G.S.; Rehim, S.A.; Johnson, O., 3rd; Zhou, J.; Tong, A.; Wallner, C.; Dorafshar, A.H. Distraction Osteogenesis for Surgical Treatment of Craniosynostosis: A Systematic Review. Plast Reconstr. Surg. 2016, 138, 657–669. [Google Scholar] [CrossRef] [PubMed]
- Noto, M.; Imai, K.; Masuoka, T.; Sakahara, D.; Kunihiro, N. Complications Due to Cranial Distraction for Craniosynostosis. J. Craniofac. Surg. 2021, 32, 322–324. [Google Scholar] [CrossRef] [PubMed]
- Imola, M.J.; Hamlar, D.D.; Shao, W.; Chowdhury, K.; Tatum, S. Resorbable plate fixation in pediatric craniofacial surgery: Long-term outcome. Arch. Facial. Plast Surg. 2001, 3, 79–90. [Google Scholar] [CrossRef] [PubMed]
- Kosaka, M.; Miyanohara, T.; Wada, Y.; Kamiishi, H. Intracranial migration of fixation wires following correction of craniosynostosis in an infant. J. Craniomaxillofac. Surg. 2003, 31, 15–19. [Google Scholar] [CrossRef]
- Afnan, M.A.M.; Saxena, A.K. Tissue repair in neonatal and paediatric surgery: Analysis of infection in surgical implantation of synthetic resorbable biomaterials. Biomed. Mater. Eng. 2018, 29, 799–808. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, N.; Lyles, J.; Panchal, J.; Deschamps-Braly, J. Outcomes and complications based on experience with resorbable plates in pediatric craniosynostosis patients. J. Craniofac. Surg. 2008, 19, 855–860. [Google Scholar] [CrossRef] [PubMed]
- Branch, L.G.; Crantford, C.; Cunningham, T.; Bharti, G.; Thompson, J.; Couture, D.; David, L.R. Long-Term Outcomes of Pediatric Cranial Reconstruction Using Resorbable Plating Systems for the Treatment of Craniosynostosis. J. Craniofac. Surg. 2017, 28, 26–29. [Google Scholar] [CrossRef] [PubMed]
- Burstein, F.; Eppley, B.; Hudgins, R.; Williams, J.; Boydston, W.; Reisner, A.; Stevenson, K. Application of the spanning plate concept to frontal orbital advancement: Techniques and clinical experience in 60 patients. J. Craniofac. Surg. 2006, 17, 241–245. [Google Scholar] [CrossRef]
- Eppley, B.L.; Morales, L.; Wood, R.; Pensler, J.; Goldstein, J.; Havlik, R.J.; Habal, M.; Losken, A.; Williams, J.K.; Burstein, F.; et al. Resorbable PLLA-PGA plate and screw fixation in pediatric craniofacial surgery: Clinical experience in 1883 patients. Plast Reconstr. Surg. 2004, 114, 850–856, discussion 857. [Google Scholar] [CrossRef]
- Eppley, B.L.; Sadove, A.M.; Havlik, R.J. Resorbable plate fixation in pediatric craniofacial surgery. Plast Reconstr. Surg. 1997, 100, 1–7, discussion 8–13. [Google Scholar] [CrossRef]
- Kumar, A.V.; Staffenberg, D.A.; Petronio, J.A.; Wood, R.J. Bioabsorbable plates and screws in pediatric craniofacial surgery: A review of 22 cases. J. Craniofac. Surg. 1997, 8, 97–99. [Google Scholar] [CrossRef]
- Kurpad, S.N.; Goldstein, J.A.; Cohen, A.R. Bioresorbable fixation for congenital pediatric craniofacial surgery: A 2-year follow-up. Pediatr. Neurosurg. 2000, 33, 306–310. [Google Scholar] [CrossRef]
- Munoz-Casado, M.J.; Romance, A.I.; Garcia-Recuero, J.I. Bioabsorbable osteofixation devices in craniosynostosis. Clinical experience in 216 cases. Neurocirugia 2009, 20, 255–261. [Google Scholar] [CrossRef] [Green Version]
- Tharanon, W.; Sinn, D.P.; Hobar, P.C.; Sklar, F.H.; Salomon, J. Surgical outcomes using bioabsorbable plating systems in pediatric craniofacial surgery. J. Craniofac. Surg. 1998, 9, 441–444, discussion 445–447. [Google Scholar] [CrossRef]
- Ashammakhi, N.; Renier, D.; Arnaud, E.; Marchac, D.; Ninkovic, M.; Donaway, D.; Jones, B.; Serlo, W.; Laurikainen, K.; Tormala, P.; et al. Successful use of biosorb osteofixation devices in 165 cranial and maxillofacial cases: A multicenter report. J. Craniofac. Surg. 2004, 15, 692–701, discussion 702. [Google Scholar] [CrossRef]
- Cohen, S.R.; Holmes, R.E.; Amis, P.; Fitchner, H.; Shusterman, E.M. Tacks: A new technique for craniofacial fixation. J. Craniofac. Surg. 2001, 12, 596–602. [Google Scholar] [CrossRef]
- Hormozi, A.K.; Shahverdiani, R.; Mohammadi, H.R.; Zali, A.; Mofrad, H.R. Surgical treatment of metopic synostosis. J. Craniofac. Surg. 2011, 22, 261–265. [Google Scholar] [CrossRef] [Green Version]
- Iatrou, I.T.-L.N.; Tzerbos, F.; Alexandridis, K. Biodegradable Plates in Oral and Maxillofacial Surgery in Children. Preliminary Report. In Proceedings of the XVIII Congress of the European Association for Cranio-Maxillo facial Surgery—EACMF, Barcelona, Spain, 12–15 September 2006. [Google Scholar]
- Nam, S.M.; Kim, Y.B.; Shin, H.S.; Park, E.S.; Jung, S.G. Distraction osteogenesis with pivot plate in the treatment of scaphocephaly. J. Craniofac. Surg. 2011, 22, 96–99. [Google Scholar] [CrossRef]
- Serlo, W.S.; Ylikontiola, L.P.; Vesala, A.L.; Kaarela, O.I.; Iber, T.; Sandor, G.K.; Ashammakhi, N. Effective correction of frontal cranial deformities using biodegradable fixation on the inner surface of the cranial bones during infancy. Childs Nerv. Syst. 2007, 23, 1439–1445. [Google Scholar] [CrossRef] [PubMed]
- Landes, C.A.; Kriener, S. Resorbable plate osteosynthesis of sagittal split osteotomies with major bone movement. Plast Reconstr. Surg. 2003, 111, 1828–1840. [Google Scholar] [CrossRef]
- Haers, P.E. Keeping oral and maxillofacial surgeons informed. Int. J. Oral Maxillofac. Surg. 2005, 34, 589. [Google Scholar] [CrossRef] [PubMed]
- Eckelt, U.; Nitsche, M.; Muller, A.; Pilling, E.; Pinzer, T.; Roesner, D. Ultrasound aided pin fixation of biodegradable osteosynthetic materials in cranioplasty for infants with craniosynostosis. J. Craniomaxillofac. Surg. 2007, 35, 218–221. [Google Scholar] [CrossRef] [PubMed]
- Eckelt, U.; Pilling, E.; Stelnicki, E. A new resorbable fixation technique in craniofacial surgery. Int. J. Oral Maxillofac. Surg. 2005, 34. [Google Scholar] [CrossRef]
- Goldstein, J.A.; Quereshy, F.A.; Cohen, A.R. Early experience with biodegradable fixation for congenital pediatric craniofacial surgery. J. Craniofac. Surg. 1997, 8, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Fairley, J.D.; Sackerer, D.; Zeilhofer, H.F.; Sturtz, G. Preliminary experience with a dynamic resorbable fixation device for craniosynostosis surgery. J. Craniofac. Surg. 2012, 23, e98–e100. [Google Scholar] [CrossRef] [PubMed]
- Guzman, R.; Looby, J.F.; Schendel, S.A.; Edwards, M.S. Fronto-orbital advancement using an en bloc frontal bone craniectomy. Oper. Neurosurg. 2011, 68, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Hayden Gephart, M.G.; Woodard, J.I.; Arrigo, R.T.; Lorenz, H.P.; Schendel, S.A.; Edwards, M.S.; Guzman, R. Using bioabsorbable fixation systems in the treatment of pediatric skull deformities leads to good outcomes and low morbidity. Childs Nerv. Syst. 2013, 29, 297–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freudlsperger, C.; Castrillon-Oberndorfer, G.; Baechli, H.; Hoffmann, J.; Mertens, C.; Engel, M. The value of ultrasound-assisted pinned resorbable osteosynthesis for cranial vault remodelling in craniosynostosis. J. Craniomaxillofac. Surg. 2014, 42, 503–507. [Google Scholar] [CrossRef]
- Konofaos, P.; Goubran, S.; Wallace, R.D. The Role of Resorbable Mesh as a Fixation Device in Craniosynostosis. J. Craniofac. Surg. 2016, 27, 105–108. [Google Scholar] [CrossRef]
- Noordzij, N.; Brouwer, R.; van der Horst, C. Incomplete Reossification After Craniosynostosis Surgery. J. Craniofac. Surg. 2016, 27, e105–e108. [Google Scholar] [CrossRef]
- Shastin, D.; Peacock, S.; Guruswamy, V.; Kapetanstrataki, M.; Bonthron, D.T.; Bellew, M.; Long, V.; Carter, L.; Smith, I.; Goodden, J.; et al. A proposal for a new classification of complications in craniosynostosis surgery. J. Neurosurg. Pediatr. 2017, 19, 675–683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frassanito, P.; Tamburrini, G.; Massimi, L.; Peraio, S.; Caldarelli, M.; Di Rocco, C. Problems of reconstructive cranioplasty after traumatic brain injury in children. Childs Nerv. Syst. 2017, 33, 1759–1768. [Google Scholar] [CrossRef] [PubMed]
- Skolnick, G.B.; Murthy, S.; Patel, K.B.; Huang, Z.; Naidoo, S.D.; Ju, T.; Smyth, M.D.; Woo, A.S. Long-Term Characterization of Cranial Defects After Surgical Correction for Single-Suture Craniosynostosis. Ann. Plast. Surg. 2019, 82, 679–685. [Google Scholar] [CrossRef]
- Massimi, L.; Rapisarda, A.; Bianchi, F.; Frassanito, P.; Tamburrini, G.; Pelo, S.; Caldarelli, M. Piezosurgery in Pediatric Neurosurgery. World Neurosurg. 2019, 126, e625–e633. [Google Scholar] [CrossRef]
- Savolainen, M.; Ritvanen, A.; Hukki, J.; Vuola, P.; Telkka, J.; Leikola, J. Promoting ossification of calvarial defects in craniosynostosis surgery by demineralized bone plate and bone dust in different age groups. J. Plast. Reconstr. Aesthet. Surg. 2017, 70, 110–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aydin, S.; Kucukyuruk, B.; Abuzayed, B.; Aydin, S.; Sanus, G.Z. Cranioplasty: Review of materials and techniques. J. Neurosci. Rural Pract. 2011, 2, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Leao, R.S.; Maior, J.R.S.; Lemos, C.A.A.; Vasconcelos, B.; Montes, M.; Pellizzer, E.P.; Moraes, S.L.D. Complications with PMMA compared with other materials used in cranioplasty: A systematic review and meta-analysis. Br. Oral Res. 2018, 32, e31. [Google Scholar] [CrossRef] [Green Version]
- Morales-Gomez, J.A.; Garcia-Estrada, E.; Leos-Bortoni, J.E.; Delgado-Brito, M.; Flores-Huerta, L.E.; De La Cruz-Arriaga, A.A.; Torres-Diaz, L.J.; de Leon, A.R.M. Cranioplasty with a low-cost customized polymethylmethacrylate implant using a desktop 3D printer. J. Neurosurg. 2018, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pikis, S.; Goldstein, J.; Spektor, S. Potential neurotoxic effects of polymethylmethacrylate during cranioplasty. J. Clin. Neurosci. 2015, 22, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.M.; Jung, H.; Skirboll, S. Materials used in cranioplasty: A history and analysis. Neurosurg. Focus 2014, 36, E19. [Google Scholar] [CrossRef]
- Cacciotti, I. Cationic and anionic substitutions in hydroxyapatite. In Handbook of Bioceramics and Biocomposites; Antoniac, I.V., Ed.; Springer: Berlin, Germany, 2016. [Google Scholar]
- Cacciotti, I. Multisubstituted hydroxyapatite powders and coatings: The influence of the codoping on the hydroxyapatite performances. Int. J. Appl. Ceram. Technol. 2019, 16, 1864–1884. [Google Scholar] [CrossRef]
- Lindner, D.; Schlothofer-Schumann, K.; Kern, B.C.; Marx, O.; Muns, A.; Meixensberger, J. Cranioplasty using custom-made hydroxyapatite versus titanium: A randomized clinical trial. J. Neurosurg. 2017, 126, 175–183. [Google Scholar] [CrossRef] [Green Version]
- Frassanito, P.; Massimi, L.; Tamburrini, G.; Bianchi, F.; Nataloni, A.; Canella, V.; Caldarelli, M. Custom-made hydroxyapatite for cranial repair in a specific pediatric age group (7-13 years old): A multicenter post-marketing surveillance study. Childs Nerv. Syst. 2018, 34, 2283–2289. [Google Scholar] [CrossRef]
- Frassanito, P.; Tamburrini, G.; Massimi, L.; Di Rocco, C.; Nataloni, A.; Fabbri, G.; Caldarelli, M. Post-marketing surveillance of CustomBone Service implanted in children under 7 years old. Acta Neurochir. 2015, 157, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Frassanito, P.; Bianchi, F.; Pennisi, G.; Massimi, L.; Tamburrini, G.; Caldarelli, M. The growth of the neurocranium: Literature review and implications in cranial repair. Childs Nerv. Syst. 2019, 35, 1459–1465. [Google Scholar] [CrossRef]
- Albrektsson, T.; Johansson, C. Osteoinduction, osteoconduction and osseointegration. Eur. Spine J. 2001, 10 (Suppl. 2), S96–S101. [Google Scholar] [CrossRef] [Green Version]
- Campana, V.; Milano, G.; Pagano, E.; Barba, M.; Cicione, C.; Salonna, G.; Lattanzi, W.; Logroscino, G. Bone substitutes in orthopaedic surgery: From basic science to clinical practice. J. Mater. Sci. Mater. Med. 2014, 25, 2445–2461. [Google Scholar] [CrossRef] [PubMed]
- Eppley, B.L.; Platis, J.M.; Sadove, A.M. Experimental effects of bone plating in infancy on craniomaxillofacial skeletal growth. Cleft Palate Craniofac. J. 1993, 30, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Fearon, J.A.; Munro, I.R.; Bruce, D.A. Observations on the use of rigid fixation for craniofacial deformities in infants and young children. Plast. Reconstr. Surg. 1995, 95, 634–637, discussion 638. [Google Scholar] [CrossRef]
- Schmidt, B.L.; Perrott, D.H.; Mahan, D.; Kearns, G. The removal of plates and screws after Le Fort I osteotomy. J. Oral Maxillofac. Surg. 1998, 56, 184–188. [Google Scholar] [CrossRef]
- Orringer, J.S.; Barcelona, V.; Buchman, S.R. Reasons for removal of rigid internal fixation devices in craniofacial surgery. J. Craniofac. Surg. 1998, 9, 40–44. [Google Scholar] [CrossRef]
- Gunatillake, P.A.; Adhikari, R. Biodegradable synthetic polymers for tissue engineering. Eur. Cell Mater. 2003, 5, 1–16, discussion 16. [Google Scholar] [CrossRef]
- Oksiuta, Z.; Jalbrzykowski, M.; Mystkowska, J.; Romanczuk, E.; Osiecki, T. Mechanical and Thermal Properties of Polylactide (PLA) Composites Modified with Mg, Fe, and Polyethylene (PE) Additives. Polymers 2020, 12, 2939. [Google Scholar] [CrossRef]
- Labet, M.; Thielemans, W. Synthesis of polycaprolactone: A review. Chem. Soc. Rev. 2009, 38, 3484–3504. [Google Scholar] [CrossRef] [PubMed]
- Cowan, C.M.; Shi, Y.Y.; Aalami, O.O.; Chou, Y.F.; Mari, C.; Thomas, R.; Quarto, N.; Contag, C.H.; Wu, B.; Longaker, M.T. Adipose-derived adult stromal cells heal critical-size mouse calvarial defects. Nat. Biotechnol. 2004, 22, 560–567. [Google Scholar] [CrossRef]
- Barba, M.; Di Taranto, G.; Lattanzi, W. Adipose-derived stem cell therapies for bone regeneration. Expert Opin. Biol. Ther. 2017, 17, 677–689. [Google Scholar] [CrossRef]
- Parrilla, C.; Saulnier, N.; Bernardini, C.; Patti, R.; Tartaglione, T.; Fetoni, A.R.; Pola, E.; Paludetti, G.; Michetti, F.; Lattanzi, W. Undifferentiated human adipose tissue-derived stromal cells induce mandibular bone healing in rats. Arch. Otolaryngol. Head Neck Surg. 2011, 137, 463–470. [Google Scholar] [CrossRef] [Green Version]
- Yu, M.; Ma, L.; Yuan, Y.; Ye, X.; Montagne, A.; He, J.; Ho, T.V.; Wu, Y.; Zhao, Z.; Sta Maria, N.; et al. Cranial Suture Regeneration Mitigates Skull and Neurocognitive Defects in Craniosynostosis. Cell 2021, 184, 243–256.e218. [Google Scholar] [CrossRef]
- Noshadi, I.; Hong, S.; Sullivan, K.E.; Shirzaei Sani, E.; Portillo-Lara, R.; Tamayol, A.; Shin, S.R.; Gao, A.E.; Stoppel, W.L.; Black, L.D., III; et al. In vitro and in vivo analysis of visible light crosslinkable gelatin methacryloyl (GelMA) hydrogels. Biomater. Sci. 2017, 5, 2093–2105. [Google Scholar] [CrossRef]
- Zhao, H.; Feng, J.; Ho, T.V.; Grimes, W.; Urata, M.; Chai, Y. The suture provides a niche for mesenchymal stem cells of craniofacial bones. Nat. Cell Biol. 2015, 17, 386–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos-Ruiz, L.; Mowatt, D.J.; Marguerie, A.; Tukiainen, D.; Kellomaki, M.; Tormala, P.; Suokas, E.; Arstila, H.; Ashammakhi, N.; Ferretti, P. Potential use of craniosynostotic osteoprogenitors and bioactive scaffolds for bone engineering. J. Tissue Eng. Regen. Med. 2007, 1, 199–210. [Google Scholar] [CrossRef] [PubMed]
- Hutmacher, D. Scaffolds in tissue engineering bone and cartilage. Biomaterials 2000, 21, 15. [Google Scholar] [CrossRef]
- Morrison, R.J.; Hollister, S.J.; Niedner, M.F.; Mahani, M.G.; Park, A.H.; Mehta, D.K.; Ohye, R.G.; Green, G.E. Mitigation of tracheobronchomalacia with 3D-printed personalized medical devices in pediatric patients. Sci. Transl. Med. 2015, 7, 285ra264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fedore, C.W.; Tse, L.Y.L.; Nam, H.K.; Barton, K.L.; Hatch, N.E. Analysis of polycaprolactone scaffolds fabricated via precision extrusion deposition for control of craniofacial tissue mineralization. Orthod. Craniofac. Res. 2017, 20 (Suppl. 1), 12–17. [Google Scholar] [CrossRef]
- Bianco, A.; Di Federico, E.; Cacciotti, I. Electrospun poly(ε-caprolactone)-based composites using synthesized β-tricalcium phosphate. Polym. Adv. Technol. 2011, 22, 1832–1841. [Google Scholar] [CrossRef]
- Kweon, H.; Yoo, M.K.; Park, I.K.; Kim, T.H.; Lee, H.C.; Lee, H.S.; Oh, J.S.; Akaike, T.; Cho, C.S. A novel degradable polycaprolactone networks for tissue engineering. Biomaterials 2003, 24, 801–808. [Google Scholar] [CrossRef]
- Williams, J.M.; Adewunmi, A.; Schek, R.M.; Flanagan, C.L.; Krebsbach, P.H.; Feinberg, S.E.; Hollister, S.J.; Das, S. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 2005, 26, 4817–4827. [Google Scholar] [CrossRef]
- Woodruff, M.A.; Hutmacher, D.W. The return of a forgotten polymer—Polycaprolactone in the 21st century. Prog. Polym. Sci. 2010, 35, 39. [Google Scholar] [CrossRef] [Green Version]
- Ulery, B.D.; Nair, L.S.; Laurencin, C.T. Biomedical Applications of Biodegradable Polymers. J. Polym. Sci. B Polym. Phys. 2011, 49, 832–864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maliha, S.G.; Lopez, C.D.; Coelho, P.G.; Witek, L.; Cox, M.; Meskin, A.; Rusi, S.; Torroni, A.; Cronstein, B.N.; Flores, R.L. Bone Tissue Engineering in the Growing Calvaria Using Dipyridamole-Coated, Three-Dimensionally-Printed Bioceramic Scaffolds: Construct Optimization and Effects on Cranial Suture Patency. Plast. Reconstr. Surg. 2020, 145, 337e–347e. [Google Scholar] [CrossRef]
- Wang, M.M.; Flores, R.L.; Witek, L.; Torroni, A.; Ibrahim, A.; Wang, Z.; Liss, H.A.; Cronstein, B.N.; Lopez, C.D.; Maliha, S.G.; et al. Dipyridamole-loaded 3D-printed bioceramic scaffolds stimulate pediatric bone regeneration in vivo without disruption of craniofacial growth through facial maturity. Sci. Rep. 2019, 9, 18439. [Google Scholar] [CrossRef] [Green Version]
- Bekisz, J.M.; Flores, R.L.; Witek, L.; Lopez, C.D.; Runyan, C.M.; Torroni, A.; Cronstein, B.N.; Coelho, P.G. Dipyridamole enhances osteogenesis of three-dimensionally printed bioactive ceramic scaffolds in calvarial defects. J. Craniomaxillofac. Surg. 2018, 46, 237–244. [Google Scholar] [CrossRef]
- Lee, J.; Cuddihy, M.J.; Kotov, N.A. Three-dimensional cell culture matrices: State of the art. Tissue Eng. Part. B Rev. 2008, 14, 61–86. [Google Scholar] [CrossRef] [Green Version]
- Hou, Q.; De Bank, P.A.; Shakesheff, K.M. Injectable scaffolds for tissue regeneration. J. Mater. Chem. 2004, 14, 1915–1923. [Google Scholar] [CrossRef]
- Ciocci, M.; Cacciotti, I.; Seliktar, D.; Melino, S. Injectable silk fibroin hydrogels functionalized with microspheres as adult stem cells-carrier systems. Int. J. Biol. Macromol. 2018, 108, 960–971. [Google Scholar] [CrossRef]
- Ceci, C.; Graziani, G.; Faraoni, I.; Cacciotti, I. Strategies to improve ellagic acid bioavailability: From natural or semisynthetic derivatives to nanotechnological approaches based on innovative carriers. Nanotechnology 2020, 31, 382001. [Google Scholar] [CrossRef]
- Bajpai, A.K.; Shukla, S.K.; Bhanu, S.; Kankane, S. Responsive Polymers in Controlled Drug Delivery. Prog. Polym. Sci. 2008, 33, 1088–1118. [Google Scholar] [CrossRef]
- Artzi, N.; Shazly, T.; Baker, A.B.; Bon, A.; Edelman, E.R. Aldehyde-amine chemistry enables modulated biosealants with tissue-specific adhesion. Adv. Mater. 2009, 21, 3399–3403. [Google Scholar] [CrossRef] [Green Version]
- Chronopoulou, L.; Cacciotti, I.; Amalfitano, A.; Di Nitto, A.; D’Arienzo, V.; Nocca, G.; Palocci, C. Biosynthesis of innovative calcium phosphate/hydrogel composites: Physicochemical and biological characterisation. Nanotechnology 2021, 32, 95102. [Google Scholar] [CrossRef]
- Avery, R.K.; Albadawi, H.; Akbari, M.; Zhang, Y.S.; Duggan, M.J.; Sahani, D.V.; Olsen, B.D.; Khademhosseini, A.; Oklu, R. An injectable shear-thinning biomaterial for endovascular embolization. Sci. Transl. Med. 2016, 8, 365ra156. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.; Altunbas, A.; Yucel, T.; Nagarkar, R.P.; Schneider, J.P.; Pochan, D.J. Injectable solid hydrogel: Mechanism of shear-thinning and immediate recovery of injectable beta-hairpin peptide hydrogels. Soft. Matter. 2010, 6, 5143–5156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Wang, J.; Lu, Q.; Detamore, M.S.; Berkland, C. Injectable PLGA based colloidal gels for zero-order dexamethasone release in cranial defects. Biomaterials 2010, 31, 4980–4986. [Google Scholar] [CrossRef] [Green Version]
- Sivashanmugam, A.; Charoenlarp, P.; Deepthi, S.; Rajendran, A.; Nair, S.V.; Iseki, S.; Jayakumar, R. Injectable Shear-Thinning CaSO4/FGF-18-Incorporated Chitin-PLGA Hydrogel Enhances Bone Regeneration in Mice Cranial Bone Defect Model. ACS Appl. Mater. Interfaces 2017, 9, 42639–42652. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.; Li, D.; Xu, L.; Duan, H.; Yuan, J.; Wei, M. Recombinant mouse periostin ameliorates coronal sutures fusion in Twist1(+/−) mice. J. Transl. Med. 2018, 16, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shukla, V.; Coumoul, X.; Wang, R.H.; Kim, H.S.; Deng, C.X. RNA interference and inhibition of MEK-ERK signaling prevent abnormal skeletal phenotypes in a mouse model of craniosynostosis. Nat. Genet. 2007, 39, 1145–1150. [Google Scholar] [CrossRef]
- Luo, F.; Xie, Y.; Wang, Z.; Huang, J.; Tan, Q.; Sun, X.; Li, F.; Li, C.; Liu, M.; Zhang, D.; et al. Adeno-Associated Virus-Mediated RNAi against Mutant Alleles Attenuates Abnormal Calvarial Phenotypes in an Apert Syndrome Mouse Model. Mol. Ther. Nucleic Acids 2018, 13, 291–302. [Google Scholar] [CrossRef] [Green Version]
- Eswarakumar, V.P.; Ozcan, F.; Lew, E.D.; Bae, J.H.; Tome, F.; Booth, C.J.; Adams, D.J.; Lax, I.; Schlessinger, J. Attenuation of signaling pathways stimulated by pathologically activated FGF-receptor 2 mutants prevents craniosynostosis. Proc. Natl. Acad. Sci. USA 2006, 103, 18603–18608. [Google Scholar] [CrossRef] [Green Version]
- Cooper, G.M.; Usas, A.; Olshanski, A.; Mooney, M.P.; Losee, J.E.; Huard, J. Ex vivo Noggin gene therapy inhibits bone formation in a mouse model of postoperative resynostosis. Plast. Reconstr. Surg. 2009, 123, 94S–103S. [Google Scholar] [CrossRef] [PubMed]
- Ohbayashi, N.; Shibayama, M.; Kurotaki, Y.; Imanishi, M.; Fujimori, T.; Itoh, N.; Takada, S. FGF18 is required for normal cell proliferation and differentiation during osteogenesis and chondrogenesis. Genes Dev. 2002, 16, 870–879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quarto, N.; Longaker, M.T. FGF-2 inhibits osteogenesis in mouse adipose tissue-derived stromal cells and sustains their proliferative and osteogenic potential state. Tissue Eng. 2006, 12, 1405–1418. [Google Scholar] [CrossRef]
- Mooney, M.P.; Moursi, A.M.; Opperman, L.A.; Siegel, M.I. Cytokine therapy for craniosynostosis. Expert Opin. Biol. Ther. 2004, 4, 279–299. [Google Scholar] [CrossRef]
- Zhu, L.; Luo, D.; Liu, Y. Effect of the nano/microscale structure of biomaterial scaffolds on bone regeneration. Int. J. Oral Sci. 2020, 12, 6. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, M.; Langer, R.; Jia, X. Nanostructured materials for applications in drug delivery and tissue engineering. J. Biomater. Sci. Polym. Ed. 2007, 18, 241–268. [Google Scholar] [CrossRef] [Green Version]
- Rabinow, B.E. Nanosuspensions in drug delivery. Nat. Rev. Drug Discov. 2004, 3, 785–796. [Google Scholar] [CrossRef]
- Webster, T.J. (Ed.) Bioinspired Nanocomposites for Orthopedic Applications. In Nanotechnology for the Regeneration of Hard and Soft Tissues; World Scientific: Singapore, 2007; pp. 1–51. [Google Scholar]
- Yang, L.; Webster, T.J. Nanotechnology controlled drug delivery for treating bone diseases. Expert Opin. Drug Deliv. 2009, 6, 851–864. [Google Scholar] [CrossRef]
- Balasundaram, G.; Webster, T.J. An overview of nano-polymers for orthopedic applications. Macromol. Biosci. 2007, 7, 635–642. [Google Scholar] [CrossRef]
- Liu, H.; Webster, T.J. Nanomedicine for implants: A review of studies and necessary experimental tools. Biomaterials 2007, 28, 354–369. [Google Scholar] [CrossRef] [PubMed]
- Sato, M.; Webster, T.J. Nanobiotechnology: Implications for the future of nanotechnology in orthopedic applications. Expert Rev. Med. Devices 2004, 1, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Mansouri, S.; Cuie, Y.; Winnik, F.; Shi, Q.; Lavigne, P.; Benderdour, M.; Beaumont, E.; Fernandes, J.C. Characterization of folate-chitosan-DNA nanoparticles for gene therapy. Biomaterials 2006, 27, 2060–2065. [Google Scholar] [CrossRef] [PubMed]
- Friess, W. Collagen—biomaterial for drug delivery. Eur. J. Pharm. Biopharm. 1998, 45, 113–146. [Google Scholar] [CrossRef]
- Lee, C.H.; Singla, A.; Lee, Y. Biomedical applications of collagen. Int. J. Pharm. 2001, 221, 1–22. [Google Scholar] [CrossRef]
- Warren, S.M.; Brunet, L.J.; Harland, R.M.; Economides, A.N.; Longaker, M.T. The BMP antagonist noggin regulates cranial suture fusion. Nature 2003, 422, 625–629. [Google Scholar] [CrossRef]
- Katsianou, M.A.; Adamopoulos, C.; Vastardis, H.; Basdra, E.K. Signaling mechanisms implicated in cranial sutures pathophysiology: Craniosynostosis. BBA Clin. 2016, 6, 165–176. [Google Scholar] [CrossRef] [Green Version]
- Cooper, G.M.; Curry, C.; Barbano, T.E.; Burrows, A.M.; Vecchione, L.; Caccamese, J.F.; Norbutt, C.S.; Costello, B.J.; Losee, J.E.; Moursi, A.M.; et al. Noggin inhibits postoperative resynostosis in craniosynostotic rabbits. J. Bone Miner. Res. 2007, 22, 1046–1054. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, P.P.; Grose, R.H.; Filmus, J.; Hii, C.S.; Xian, C.J.; Anderson, P.J.; Powell, B.C. Regulation of bone morphogenetic protein signalling and cranial osteogenesis by Gpc1 and Gpc3. Bone 2013, 55, 367–376. [Google Scholar] [CrossRef]
- Premaraj, S.; Moursi, A.M. Delivery of Transforming Growth Factor-beta3 Plasmid in a Collagen Gel Inhibits Cranial Suture Fusion in Rats. Cleft Palate Craniofac. J. 2013, 50, e47–e60. [Google Scholar] [CrossRef] [PubMed]
- Hong, L.; Mao, J.J. Tissue-engineered rabbit cranial suture from autologous fibroblasts and BMP2. J. Dent. Res. 2004, 83, 751–756. [Google Scholar] [CrossRef] [PubMed]
- James, A.W.; LaChaud, G.; Shen, J.; Asatrian, G.; Nguyen, V.; Zhang, X.; Ting, K.; Soo, C. A Review of the Clinical Side Effects of Bone Morphogenetic Protein-2. Tissue Eng. Part. B Rev. 2016, 22, 284–297. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Gao, M.; Syed, S.; Zhuang, J.; Xu, X.; Zhang, X.Q. Bioactive hydrogels for bone regeneration. Bioact. Mater. 2018, 3, 401–417. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, M.; Tabata, Y.; Hong, L.; Miyamoto, S.; Hashimoto, N.; Ikada, Y. Bone regeneration by transforming growth factor beta1 released from a biodegradable hydrogel. J. Control. Release 2000, 64, 133–142. [Google Scholar] [CrossRef]
- Cacciotti, I.; Chronopoulou, L.; Palocci, C.; Amalfitano, A.; Cantiani, M.; Cordaro, M.; Lajolo, C.; Calla, C.; Boninsegna, A.; Lucchetti, D.; et al. Controlled release of 18-beta-glycyrrhetic acid by nanodelivery systems increases cytotoxicity on oral carcinoma cell line. Nanotechnology 2018, 29, 285101. [Google Scholar] [CrossRef] [PubMed]
- Isogai, N.; Landis, W.; Kim, T.H.; Gerstenfeld, L.C.; Upton, J.; Vacanti, J.P. Formation of phalanges and small joints by tissue-engineering. J. Bone Jt. Surg. Am. 1999, 81, 306–316. [Google Scholar] [CrossRef]
- Landes, C.A.; Ballon, A.; Roth, C. Maxillary and mandibular osteosyntheses with PLGA and P(L/DL)LA implants: A 5-year inpatient biocompatibility and degradation experience. Plast. Reconstr. Surg. 2006, 117, 2347–2360. [Google Scholar] [CrossRef]
- Landes, C.A.; Ballon, A.; Roth, C. In-patient versus in vitro degradation of P(L/DL)LA and PLGA. J. Biomed. Mater. Res. B Appl. Biomater. 2006, 76, 403–411. [Google Scholar] [CrossRef]
- Moioli, E.K.; Hong, L.; Guardado, J.; Clark, P.A.; Mao, J.J. Sustained release of TGFbeta3 from PLGA microspheres and its effect on early osteogenic differentiation of human mesenchymal stem cells. Tissue Eng. 2006, 12, 537–546. [Google Scholar] [CrossRef] [Green Version]
- Yoshimoto, H.; Shin, Y.M.; Terai, H.; Vacanti, J.P. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 2003, 24, 2077–2082. [Google Scholar] [CrossRef]
- Moioli, E.K.; Clark, P.A.; Xin, X.; Lal, S.; Mao, J.J. Matrices and scaffolds for drug delivery in dental, oral and craniofacial tissue engineering. Adv. Drug Deliv. Rev. 2007, 59, 308–324. [Google Scholar] [CrossRef] [Green Version]
- Moioli, E.K.; Clark, P.A.; Sumner, D.R.; Mao, J.J. Autologous stem cell regeneration in craniosynostosis. Bone 2008, 42, 332–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moioli, E.K.; Hong, L.; Mao, J.J. Inhibition of osteogenic differentiation of human mesenchymal stem cells. Wound Repair Regen. 2007, 15, 413–421. [Google Scholar] [CrossRef]
- Kim, J.H.; Marques, D.R.; Faller, G.J.; Collares, M.V.; Rodriguez, R.; Santos, L.A.d.; Dias, D.d.S. Experimental comparative study of the histotoxicity of poly(lactic-co-glycolic acid) copolymer and poly(lactic-co-glycolic acid)-poly(isoprene) blend. Polímeros 2014, 24, 529–535. [Google Scholar] [CrossRef] [Green Version]
- Hyzy, S.L.; Kajan, I.; Wilson, D.S.; Lawrence, K.A.; Mason, D.; Williams, J.K.; Olivares-Navarrete, R.; Cohen, D.J.; Schwartz, Z.; Boyan, B.D. Inhibition of angiogenesis impairs bone healing in an in vivo murine rapid resynostosis model. J. Biomed. Mater. Res. Part. A 2017, 105, 2742–2749. [Google Scholar] [CrossRef] [PubMed]
- Hermann, C.D.; Wilson, D.S.; Lawrence, K.A.; Ning, X.; Olivares-Navarrete, R.; Williams, J.K.; Guldberg, R.E.; Murthy, N.; Schwartz, Z.; Boyan, B.D. Rapidly polymerizing injectable click hydrogel therapy to delay bone growth in a murine re-synostosis model. Biomaterials 2014, 35, 9698–9708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bariana, M.; Dwivedi, P.; Ranjitkar, S.; Kaidonis, J.A.; Losic, D.; Anderson, P.J. Glypican-based drug releasing titania implants to regulate BMP2 bioactivity as a potential approach for craniosynostosis therapy. Nanomedicine 2018, 14, 2365–2374. [Google Scholar] [CrossRef] [PubMed]
- Cray, J., Jr.; Burrows, A.M.; Vecchione, L.; Caccamese, J.F., Jr.; Losee, J.E.; Moursi, A.M.; Siegel, M.I.; Cooper, G.M.; Mooney, M.P. Blocking bone morphogenetic protein function using in vivo noggin therapy does not rescue premature suture fusion in rabbits with delayed-onset craniosynostosis. Plast. Reconstr. Surg. 2011, 127, 1163–1172. [Google Scholar] [CrossRef] [PubMed]
- Springer, I.N.; Warnke, P.H.; Terheyden, H.; Acil, Y.; Bulhoff, A.; Kuchenbecker, S.; Bolte, H.; Russo, P.A.; Vairaktaris, E.G.; Wiltfang, J. Craniectomy and noggin application in an infant model. J. Craniomaxillofac. Surg. 2007, 35, 177–184. [Google Scholar] [CrossRef]
- Bariana, M.; Dwivedi, P.; Ranjitkar, S.; Kaidonis, J.A.; Losic, D.; Anderson, P.J. Biological response of human suture mesenchymal cells to Titania nanotube-based implants for advanced craniosynostosis therapy. Colloids Surf. B Biointerfaces 2017, 150, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Bariana, M.; Kaidonis, J.A.; Losic, D.; Ranjitkar, S.; Anderson, P.J. Titania nanotube-based protein delivery system to inhibit cranial bone regeneration in Crouzon model of craniosynostosis. Int. J. Nanomed. 2019, 14, 6313–6324. [Google Scholar] [CrossRef] [Green Version]
- Yokota, M.; Kobayashi, Y.; Morita, J.; Suzuki, H.; Hashimoto, Y.; Sasaki, Y.; Akiyoshi, K.; Moriyama, K. Therapeutic effect of nanogel-based delivery of soluble FGFR2 with S252W mutation on craniosynostosis. PLoS ONE 2014, 9, e101693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujioka-Kobayashi, M.; Ota, M.S.; Shimoda, A.; Nakahama, K.; Akiyoshi, K.; Miyamoto, Y.; Iseki, S. Cholesteryl group- and acryloyl group-bearing pullulan nanogel to deliver BMP2 and FGF18 for bone tissue engineering. Biomaterials 2012, 33, 7613–7620. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, Y.; Akiyoshi, K. Nanogel engineering for new nanobiomaterials: From chaperoning engineering to biomedical applications. Chem. Rec. 2010, 10, 366–376. [Google Scholar] [CrossRef] [PubMed]
- Shimoda, A.; Sawada, S.; Kano, A.; Maruyama, A.; Moquin, A.; Winnik, F.M.; Akiyoshi, K. Dual crosslinked hydrogel nanoparticles by nanogel bottom-up method for sustained-release delivery. Colloids Surf. B Biointerfaces 2012, 99, 38–44. [Google Scholar] [CrossRef]
- Joseph, J.; Sundar, R.; John, A.; Abraham, A. Phytochemical Incorporated Drug Delivery Scaffolds for Tissue Regeneration. Regen. Eng. Transl. Med. 2018, 4, 167–176. [Google Scholar] [CrossRef]
- Ryu, J.H.; Messersmith, P.B.; Lee, H. Polydopamine Surface Chemistry: A Decade of Discovery. ACS Appl. Mater. Interfaces 2018, 10, 7523–7540. [Google Scholar] [CrossRef]
- Lee, C.S.; Hwang, H.S.; Kim, S.; Fan, J.; Aghaloo, T.; Lee, M. Inspired by nature: Facile design of nanoclay-organic hydrogel bone sealant with multifunctional properties for robust bone regeneration. Adv. Funct. Mater. 2020, 30. [Google Scholar] [CrossRef]
- Ucan, M.C.; Koparal, M.; Agacayak, S.; Gunay, A.; Ozgoz, M.; Atilgan, S.; Yaman, F. Influence of caffeic acid phenethyl ester on bone healing in a rat model. J. Int. Med. Res. 2013, 41, 1648–1654. [Google Scholar] [CrossRef]
- Cornille, M.; Dambroise, E.; Komla-Ebri, D.; Kaci, N.; Biosse-Duplan, M.; Di Rocco, F.; Legeai-Mallet, L. Animal models of craniosynostosis. Neurochirurgie 2019, 65, 202–209. [Google Scholar] [CrossRef]
- Barreto, S.; González-Vázquez, A.; Cameron, A.R.; O’Brien, F.J.; Murray, D.J. Identification of stiffness-induced signalling mechanisms in cells from patent and fused sutures associated with craniosynostosis. Sci. Rep. 2017, 7, 11494. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, K.; Tanabe, K.; Ohnuki, M.; Narita, M.; Ichisaka, T.; Tomoda, K.; Yamanaka, S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007, 131, 861–872. [Google Scholar] [CrossRef] [Green Version]
- Yamanaka, S. Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell 2007, 1, 39–49. [Google Scholar] [CrossRef] [Green Version]
- Rowe, R.G.; Daley, G.Q. Induced pluripotent stem cells in disease modelling and drug discovery. Nat. Rev. Genet. 2019, 20, 377–388. [Google Scholar] [CrossRef]
- Bassett, A.R. Editing the genome of hiPSC with CRISPR/Cas9: Disease models. Mamm. Genome 2017, 28, 348–364. [Google Scholar] [CrossRef] [Green Version]
- Matheus, F.; Rusha, E.; Rehimi, R.; Molitor, L.; Pertek, A.; Modic, M.; Feederle, R.; Flatley, A.; Kremmer, E.; Geerlof, A.; et al. Pathological ASXL1 Mutations and Protein Variants Impair Neural Crest Development. Stem Cell Rep. 2019, 12, 861–868. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Wang, Y.; Zhang, Z.; Hsu, B.; Jabs, E.W.; Elisseeff, J.H. The study of abnormal bone development in the Apert syndrome Fgfr2+/S252W mouse using a 3D hydrogel culture model. Bone 2008, 43, 55–63. [Google Scholar] [CrossRef] [Green Version]
- Bicer, M.; Cottrell, G.S.; Widera, D. Impact of 3D cell culture on bone regeneration potential of mesenchymal stromal cells. Stem Cell Res. Ther. 2021, 12, 31. [Google Scholar] [CrossRef]
- Ma, H.; Feng, C.; Chang, J.; Wu, C. 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy. Acta Biomater. 2018, 79, 37–59. [Google Scholar] [CrossRef]
- Lam, S.; Kuether, J.; Fong, A.; Reid, R. Cranioplasty for large-sized calvarial defects in the pediatric population: A review. Craniomaxillofac. Trauma Reconstr. 2015, 8, 159–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tevlin, R.; McArdle, A.; Atashroo, D.; Walmsley, G.G.; Senarath-Yapa, K.; Zielins, E.R.; Paik, K.J.; Longaker, M.T.; Wan, D.C. Biomaterials for craniofacial bone engineering. J. Dent. Res. 2014, 93, 1187–1195. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.; Fisher, J.P. Biomaterial scaffolds in pediatric tissue engineering. Pediatr. Res. 2008, 63, 497–501. [Google Scholar] [CrossRef] [PubMed]
- Biskup, N.I.; Singh, D.J.; Beals, S.; Joganic, E.F.; Manwaring, K. Pediatric cranial vault defects: Early experience with beta-tricalcium phosphate bone graft substitute. J. Craniofac. Surg. 2010, 21, 358–362. [Google Scholar] [CrossRef]
- Moreau, J.L.; Caccamese, J.F.; Coletti, D.P.; Sauk, J.J.; Fisher, J.P. Tissue engineering solutions for cleft palates. J. Oral Maxillofac. Surg. 2007, 65, 2503–2511. [Google Scholar] [CrossRef] [PubMed]
- Caballero, M.; Jones, D.C.; Shan, Z.; Soleimani, S.; van Aalst, J.A. (*) Tissue Engineering Strategies to Improve Osteogenesis in the Juvenile Swine Alveolar Cleft Model. Tissue Eng. Part. C Methods 2017, 23, 889–899. [Google Scholar] [CrossRef]
- Schoenbrunner, A.; Sarac, B.; Gosman, A.; Janis, J.E. Considerations for Pediatric Craniofacial Surgeons During the COVID-19 Outbreak. J. Craniofac. Surg. 2020, 31, e618–e620. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tiberio, F.; Cacciotti, I.; Frassanito, P.; Nocca, G.; Tamburrini, G.; Arcovito, A.; Lattanzi, W. Personalized Bone Reconstruction and Regeneration in the Treatment of Craniosynostosis. Appl. Sci. 2021, 11, 2649. https://doi.org/10.3390/app11062649
Tiberio F, Cacciotti I, Frassanito P, Nocca G, Tamburrini G, Arcovito A, Lattanzi W. Personalized Bone Reconstruction and Regeneration in the Treatment of Craniosynostosis. Applied Sciences. 2021; 11(6):2649. https://doi.org/10.3390/app11062649
Chicago/Turabian StyleTiberio, Federica, Ilaria Cacciotti, Paolo Frassanito, Giuseppina Nocca, Gianpiero Tamburrini, Alessandro Arcovito, and Wanda Lattanzi. 2021. "Personalized Bone Reconstruction and Regeneration in the Treatment of Craniosynostosis" Applied Sciences 11, no. 6: 2649. https://doi.org/10.3390/app11062649
APA StyleTiberio, F., Cacciotti, I., Frassanito, P., Nocca, G., Tamburrini, G., Arcovito, A., & Lattanzi, W. (2021). Personalized Bone Reconstruction and Regeneration in the Treatment of Craniosynostosis. Applied Sciences, 11(6), 2649. https://doi.org/10.3390/app11062649