A Novel 1-D CCANet for ECG Classification
Abstract
:1. Introduction and Related Work
Our Contribution
- We have designed a novel one-dimensional canonical correlation analysis network (1-D CCANet) to exploit two-lead ECGs for automatic classification of heartbeats that outperforms the state of the art;
- We have explored the use of handcrafted features in combination with a 1-D CCANet for ECG classification;
- Our proposal outperforms a solution based on a suitable one-dimensional ResNet that we have implemented for the sake of comparison.
2. Materials
2.1. MIT-BIH Database
2.2. INCART Database
3. Proposed Method
3.1. Hand-Crafted Feature Extraction
3.1.1. One-Dimensional Spectrogram
3.1.2. Autoregressive Modeling
3.1.3. Time-Domain Features
3.2. Neural Feature Extraction
3.2.1. First Convolutional Layer
3.2.2. First Extraction Stage
3.2.3. Second Convolution Layer and Extraction Stage
3.2.4. Final Output and PCA
4. Experiments
4.1. Experimental Setup
1-D ResNet
- Initial layer: the input of the network undergoes an initial convolution with 2 input channels (one for each lead) and 16 output channels. This convolution is followed by a max-pooling step. This initial layer is followed by 4 identical residual blocks.
- Residual blocks: each of them contains two convolutional layers and, for each block, the output of the second convolutional layer is finally added to the block’s input. For each block, the first convolution doubles the number of channels, while the second convolution has the same number of input and output channels. Consequently, the last convolution has 256 output channels. The output of the last block then undergoes average-pooling to obtain the feature vector.
- Classification layer: the feature vector, of size 256 serves as the input of a fully connected neural network. The classification is then performed thanks to the Softmax function. The loss used is the cross-entropy.
4.2. Evaluation Metrics
4.3. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rim, B.; Sung, N.J.; Min, S.; Hong, M. Deep Learning in Physiological Signal Data: A Survey. Sensors 2020, 20, 969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hannun, A.Y.; Rajpurkar, P.; Haghpanahi, M.; Tison, G.H.; Bourn, C.; Turakhia, M.P.; Ng, A.Y. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat. Med. 2019, 25, 65. [Google Scholar] [CrossRef] [PubMed]
- Bhirud, B.; Pachghare, V. Arrhythmia detection using ECG signal: A survey. In Proceeding of the International Conference on Computational Science and Applications, Pune, India, 7–9 August 2019; pp. 329–341. [Google Scholar]
- Mathews, S.M.; Kambhamettu, C.; Barner, K.E. A novel application of deep learning for single-lead ECG classification. Comput. Biol. Med. 2018, 99, 53–62. [Google Scholar] [CrossRef]
- Elhaj, F.A.; Salim, N.; Harris, A.R.; Swee, T.T.; Ahmed, T. Arrhythmia recognition and classification using combined linear and nonlinear features of ECG signals. Comput. Methods Programs Biomed. 2016, 127, 52–63. [Google Scholar] [CrossRef] [PubMed]
- Martis, R.J.; Acharya, U.R.; Min, L.C. ECG beat classification using PCA, LDA, ICA and discrete wavelet transform. Biomed. Signal Process. Control 2013, 8, 437–448. [Google Scholar] [CrossRef]
- Venkatesan, C.; Karthigaikumar, P.; Paul, A.; Satheeskumaran, S.; Kumar, R. ECG signal preprocessing and SVM classifier-based abnormality detection in remote healthcare applications. IEEE Access 2018, 6, 9767–9773. [Google Scholar] [CrossRef]
- Alonso-Atienza, F.; Morgado, E.; Fernandez-Martinez, L.; García-Alberola, A.; Rojo-Alvarez, J.L. Detection of life-threatening arrhythmias using feature selection and support vector machines. IEEE Trans. Biomed. Eng. 2013, 61, 832–840. [Google Scholar] [CrossRef]
- Xia, Y.; Zhang, H.; Xu, L.; Gao, Z.; Zhang, H.; Liu, H.; Li, S. An automatic cardiac arrhythmia classification system with wearable electrocardiogram. IEEE Access 2018, 6, 16529–16538. [Google Scholar] [CrossRef]
- Hammad, M.; Maher, A.; Wang, K.; Jiang, F.; Amrani, M. Detection of abnormal heart conditions based on characteristics of ECG signals. Measurement 2018, 125, 634–644. [Google Scholar] [CrossRef]
- Soria, M.L.; Martínez, J. Analysis of multidomain features for ECG classification. In Proceedings of the 2009 36th Annual Computers in Cardiology Conference (CinC), Park City, UT, USA, 13–16 September 2009; pp. 561–564. [Google Scholar]
- De Lannoy, G.; François, D.; Delbeke, J.; Verleysen, M. Weighted conditional random fields for supervised interpatient heartbeat classification. IEEE Trans. Biomed. Eng. 2011, 59, 241–247. [Google Scholar] [CrossRef]
- Pławiak, P. Novel methodology of cardiac health recognition based on ECG signals and evolutionary-neural system. Expert Syst. Appl. 2018, 92, 334–349. [Google Scholar] [CrossRef]
- Huang, H.; Liu, J.; Zhu, Q.; Wang, R.; Hu, G. A new hierarchical method for inter-patient heartbeat classification using random projections and RR intervals. Biomed. Eng. Online 2014, 13, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Dong, J.; Luo, X.; Choi, K.S.; Wu, X. Heartbeat classification using disease-specific feature selection. Comput. Biol. Med. 2014, 46, 79–89. [Google Scholar] [CrossRef]
- Zhang, Z.; Luo, X. Heartbeat classification using decision level fusion. Biomed. Eng. Lett. 2014, 4, 388–395. [Google Scholar] [CrossRef]
- Llamedo, M.; Martínez, J.P. Heartbeat classification using feature selection driven by database generalization criteria. IEEE Trans. Biomed. Eng. 2010, 58, 616–625. [Google Scholar] [CrossRef]
- Pławiak, P.; Acharya, U.R. Novel deep genetic ensemble of classifiers for arrhythmia detection using ECG signals. Neural Comput. Appl. 2020, 32, 11137–11161. [Google Scholar] [CrossRef] [Green Version]
- Park, K.; Cho, B.; Lee, D.; Song, S.; Lee, J.; Chee, Y.; Kim, I.Y.; Kim, S. Hierarchical support vector machine based heartbeat classification using higher order statistics and hermite basis function. In Proceedings of the 2008 Computers in Cardiology, Bologna, Italy, 14–17 September 2008; pp. 229–232. [Google Scholar]
- Yang, W.; Si, Y.; Wang, D.; Zhang, G. A novel approach for multi-lead ECG classification using DL-CCANet and TL-CCANet. Sensors 2019, 19, 3214. [Google Scholar] [CrossRef] [Green Version]
- Dohare, A.K.; Kumar, V.; Kumar, R. Detection of myocardial infarction in 12 lead ECG using support vector machine. Appl. Soft Comput. 2018, 64, 138–147. [Google Scholar] [CrossRef]
- Rajagopal, R.; Ranganathan, V. Evaluation of effect of unsupervised dimensionality reduction techniques on automated arrhythmia classification. Biomed. Signal Process. Control 2017, 34, 1–8. [Google Scholar] [CrossRef]
- Li, Q.; Rajagopalan, C.; Clifford, G.D. Ventricular fibrillation and tachycardia classification using a machine learning approach. IEEE Trans. Biomed. Eng. 2013, 61, 1607–1613. [Google Scholar]
- Yang, W.; Si, Y.; Wang, D.; Guo, B. Automatic recognition of arrhythmia based on principal component analysis network and linear support vector machine. Comput. Biol. Med. 2018, 101, 22–32. [Google Scholar] [CrossRef]
- Shimpi, P.; Shah, S.; Shroff, M.; Godbole, A. A machine learning approach for the classification of cardiac arrhythmia. In Proceedings of the 2017 International Conference on Computing Methodologies and Communication (ICCMC), Erode, India, 18–19 July 2017; pp. 603–607. [Google Scholar]
- Park, J.; Kim, J.k.; Jung, S.; Gil, Y.; Choi, J.I.; Son, H.S. ECG-signal multi-classification model based on squeeze-and-excitation residual neural networks. Appl. Sci. 2020, 10, 6495. [Google Scholar] [CrossRef]
- Nurmaini, S.; Umi Partan, R.; Caesarendra, W.; Dewi, T.; Naufal Rahmatullah, M.; Darmawahyuni, A.; Bhayyu, V.; Firdaus, F. An automated ECG beat classification system using deep neural networks with an unsupervised feature extraction technique. Appl. Sci. 2019, 9, 2921. [Google Scholar] [CrossRef] [Green Version]
- Zubair, M.; Kim, J.; Yoon, C. An automated ECG beat classification system using convolutional neural networks. In Proceedings of the 2016 6th International Conference on IT Convergence and Security (ICITCS), Prague, Czech Republic, 26 September 2016; pp. 1–5. [Google Scholar]
- Li, J.; Si, Y.; Lang, L.; Liu, L.; Xu, T. A spatial pyramid pooling-based deep convolutional neural network for the classification of electrocardiogram beats. Appl. Sci. 2018, 8, 1590. [Google Scholar] [CrossRef] [Green Version]
- Acharya, U.R.; Oh, S.L.; Hagiwara, Y.; Tan, J.H.; Adam, M.; Gertych, A.; San Tan, R. A deep convolutional neural network model to classify heartbeats. Comput. Biol. Med. 2017, 89, 389–396. [Google Scholar] [CrossRef]
- Yıldırım, Ö.; Pławiak, P.; Tan, R.S.; Acharya, U.R. Arrhythmia detection using deep convolutional neural network with long duration ECG signals. Comput. Biol. Med. 2018, 102, 411–420. [Google Scholar] [CrossRef]
- Li, H.; Yuan, D.; Ma, X.; Cui, D.; Cao, L. Genetic algorithm for the optimization of features and neural networks in ECG signals classification. Sci. Rep. 2017, 7, 41011. [Google Scholar] [CrossRef]
- Yang, X.; Liu, W.; Tao, D.; Cheng, J. Canonical correlation analysis networks for two-view image recognition. Inf. Sci. 2017, 385, 338–352. [Google Scholar] [CrossRef]
- Yang, X.; Liu, W.; Liu, W. Tensor canonical correlation analysis networks for multi-view remote sensing scene recognition. IEEE Trans. Knowl. Data Eng. 2020. [Google Scholar] [CrossRef]
- Hong, S.; Zhou, Y.; Shang, J.; Xiao, C.; Sun, J. Opportunities and challenges of deep learning methods for electrocardiogram data: A systematic review. Comput. Biol. Med. 2020, 122, 103801. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Bianco, S.; Cadene, R.; Celona, L.; Napoletano, P. Benchmark analysis of representative deep neural network architectures. IEEE Access 2018, 6, 64270–64277. [Google Scholar] [CrossRef]
- Ge, D.; Srinivasan, N.; Krishnan, S.M. Cardiac arrhythmia classification using autoregressive modeling. Biomed. Eng. Online 2002, 1, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.N.; Byeon, Y.H.; Pan, S.B.; Kwak, K.C. An EigenECG network approach based on PCANet for personal identification from ECG signal. Sensors 2018, 18, 4024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Type | Name | Quantity |
---|---|---|
r | Rhythm change | 200 |
N | Normal beat | 1000 |
A | Atrial premature beat | 200 |
V | Premature ventricular | 200 |
P | Paced beat | 200 |
x | Non-conducted P-wave | 100 |
F | Fusion of ventricular contraction | 200 |
j | Nodal (junction) escape beat | 200 |
L | Left bundle branch block beat | 200 |
a | Aberrated atrial premature beat | 100 |
J | Nodal (junction) premature beat | 50 |
R | Left bundle branch block beat | 200 |
! | Ventricular flutter | 200 |
E | Ventricular escape beat | 100 |
f | Fusion of paced and normal beat | 200 |
Tot | 3350 |
Type | Name | Quantity |
---|---|---|
N | Normal beat | 500 |
A | Atrial premature beat | 200 |
V | Premature ventricular | 500 |
n | Supraventricular escape beat | 30 |
F | Fusion of ventricular contraction | 200 |
j | Nodal (junction) escape beat | 90 |
R | Left bundle branch block beat | 200 |
Tot | 1720 |
Database | Sampling Rate (Hz) | ||
---|---|---|---|
MIT-BIH | 360 | 160 | 200 |
INCART | 257 | 120 | 136 |
Layer 1 | Layer 2 | Layer 3 | Layer 4 |
---|---|---|---|
Output Size | Layers | |
---|---|---|
MIT-BIH | INCART | Initial Layer |
Conv (kernel size = 7, stride = 1, padding = 3) | ||
BatchNorm | ||
ReLU | ||
MaxPool (kernel size = 5, stride = 2, padding = 0) | ||
ResBlock (kernel size = 5, stride = 1, padding = 2) | ||
ResBlock (kernel size = 5, stride = 1, padding = 2) | ||
ResBlock (kernel size = 5, stride = 1, padding = 2) | ||
ResBlock (kernel size = 5, stride = 1, padding = 2) | ||
AvgPool | ||
15 | 7 | Fully Connected Network |
Method | OACC | MACC | SPE | SENS | PPV | AVG |
---|---|---|---|---|---|---|
DL-CCANet [20] | 95.25 | 99.40 | 99.60 | 94.60 | 96.30 | 97.03 |
94.01 | 98.31 | 98.85 | 90.89 | 94.11 | 95.23 | |
1-D ResNet | 91.88 | 98.92 | 99.36 | 90.11 | 90.14 | 94.08 |
86.25 | 96.07 | 97.55 | 85.05 | 80.66 | 89.12 | |
1-D CCANet-SVD | 94.75 | 99.30 | 99.57 | 93.77 | 95.81 | 96.64 |
(w/o SVD) | 93.60 | 98.17 | 98.80 | 90.63 | 93.33 | 94.91 |
1-D CCANet-SVD | 95.40 | 99.39 | 99.62 | 94.43 | 96.54 | 97.08 |
(w/o time-domain feat.) | 95.35 | 98.67 | 99.11 | 93.26 | 96.22 | 96.52 |
1-D CCANet-SVD | 95.22 | 99.36 | 99.6 | 94.03 | 96.61 | 96.96 |
(w/o 1D-spec) | 94.77 | 98.50 | 99.02 | 92.66 | 94.59 | 95.91 |
1-D CCANet-SVD | 95.43 | 99.39 | 99.62 | 94.53 | 96.73 | 97.14 |
(w/o ar) | 95.12 | 98.60 | 99.09 | 93.68 | 95.13 | 96.32 |
1-D CCANet-SVD | 94.99 | 99.33 | 99.59 | 93.85 | 96.21 | 96.79 |
(w/o stack) | 94.83 | 98.52 | 99.03 | 92.43 | 94.95 | 95.95 |
1-D CCANet-SVD | 95.52 | 99.40 | 99.63 | 94.60 | 96.65 | 97.16 |
(proposed) | 95.70 | 98.77 | 99.19 | 93.78 | 95.89 | 96.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanoh, I.-C.; Napoletano, P. A Novel 1-D CCANet for ECG Classification. Appl. Sci. 2021, 11, 2758. https://doi.org/10.3390/app11062758
Tanoh I-C, Napoletano P. A Novel 1-D CCANet for ECG Classification. Applied Sciences. 2021; 11(6):2758. https://doi.org/10.3390/app11062758
Chicago/Turabian StyleTanoh, Ian-Christopher, and Paolo Napoletano. 2021. "A Novel 1-D CCANet for ECG Classification" Applied Sciences 11, no. 6: 2758. https://doi.org/10.3390/app11062758
APA StyleTanoh, I. -C., & Napoletano, P. (2021). A Novel 1-D CCANet for ECG Classification. Applied Sciences, 11(6), 2758. https://doi.org/10.3390/app11062758