Is Digital Twin Technology Supporting Safety Management? A Bibliometric and Systematic Review
Abstract
:1. Introduction
2. Background
3. Methodology
3.1. Search Protocol and Datasets
3.2. Bibliometric and Content Analysis Methods
4. Results
4.1. The Digital Twin Research Field
4.2. Bibliometric Results on the Intersection between the DT and Safety Research Fields
4.3. Cluster Content Results for the Intersection between the DT and Safety Research Fields
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Jacoby, M.; Usländer, T. Digital Twin and Internet of Things—Current Standards Landscape. Appl. Sci. 2020, 10, 6519. [Google Scholar] [CrossRef]
- Culot, G.; Nassimbeni, G.; Orzes, G.; Sartor, M. Behind the definition of Industry 4.0. Analysis and open questions. Int. J. Prod. Econ. 2020, 226, 107617. [Google Scholar] [CrossRef]
- Turel, M.; Akis, E. Industry 4.0 and Competitiveness. Res. J. Bus. Manag. 2019, 6, 204–212. [Google Scholar] [CrossRef]
- Florescu, A.; Barabaș, S.A. Modeling and Simulation of a Flexible Manufacturing System—A Basic Component of Industry 4.0. Appl. Sci. 2020, 10, 8300. [Google Scholar] [CrossRef]
- Lezzi, M.; Lazoi, M.; Corallo, A. Cybersecurity for Industry 4.0 in the current literature: A reference framework. Comput. Ind. 2018, 103, 97–110. [Google Scholar] [CrossRef]
- Negri, E.; Fumagalli, L.; Macchi, M. A review of the roles of digital twin in CPS-based production systems. Procedia Manuf. 2017, 11, 939–948. [Google Scholar] [CrossRef]
- De Miranda, S.S.-F.; Aguayo-González, F.; Salguero-Gómez, J.; Ávila-Gutiérrez, M.J. Life cycle engineering 4.0: A proposal to conceive manufacturing systems for industry 4.0 centred on the human factor (DfHFinI4. 0). Appl. Sci. 2020, 10, 4442. [Google Scholar] [CrossRef]
- Wang, X.; Ong, S.K.; Nee, A.Y.C. A comprehensive survey of augmented reality assembly research. Adv. Manuf. 2016, 4, 1–22. [Google Scholar] [CrossRef]
- Khalek, I.A.; Chalhoub, J.M.; Ayer, S.K. Augmented reality for identifying maintainability concerns during design. Adv. Civ. Eng. 2019, 3, 8547928. [Google Scholar] [CrossRef]
- Li, Y.; Guldenmund, F.W. Safety management systems: A broad overview of the literature. Saf. Sci. 2018, 103, 94–123. [Google Scholar] [CrossRef]
- Huang, L.; Wu, C.; Wang, B.; Ouyang, Q. Big-data-driven safety decision-making: A conceptual framework and its influencing factors. Saf. Sci. 2018, 109, 46–56. [Google Scholar] [CrossRef]
- Gobbo, J.A., Jr.; Busso, C.M.; Gobbo, S.C.O.; Carreão, H. Making the links among environmental protection, process safety, and industry 4.0. Process Saf. Environ. Prot. 2018, 117, 372–382. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Wu, C.; Wang, B. Challenges, opportunities and paradigm of applying big data to production safety management: From a theoretical perspective. J. Clean. Prod. 2019, 231, 592–599. [Google Scholar] [CrossRef]
- Wang, B.; Wu, C.; Huang, L.; Kang, L. Using data-driven safety decision-making to realize smart safety management in the era of big data: A theoretical perspective on basic questions and their answers. J. Clean. Prod. 2019, 210, 1595–1604. [Google Scholar] [CrossRef]
- Lee, J.; Cameron, I.; Hassall, M. Improving process safety: What roles for Digitalization and Industry 4.0? Process Saf. Environ. Prot. 2019, 132, 325–339. [Google Scholar] [CrossRef]
- Wang, B. Safety intelligence as an essential perspective for safety management in the era of Safety 4.0: From a theoretical to a practical framework. Process Saf. Environ. Prot. 2021, 148, 189–199. [Google Scholar] [CrossRef]
- Gattullo, M.; Scurati, G.W.; Evangelista, A.; Ferrise, F.; Fiorentino, M.; Uva, A.E. Informing the use of visual assets in industrial augmented reality. In Proceedings of the International Conference on Design Tools and Methods in Industrial Engineering, Modena, Italy, 9–10 September 2020. [Google Scholar]
- Martinettia, A.; Rajabalinejada, M.; van Dongena, L. Shaping the future maintenance operations: Reflections on the adoptions of augmented reality through problems and opportunities. Procedia CIRP 2017, 59, 4–17. [Google Scholar] [CrossRef]
- Siew, C.Y.; Ong, S.K.; Nee, A.Y.C. Improving maintenance efficiency and safety through a human-centric approach. Adv. Manuf. 2021, 9, 104–114. [Google Scholar] [CrossRef]
- Grieves, M.W. Product lifecycle management: The new paradigm for enterprises. Int. J. Prod. Dev. 2005, 2, 71–84. [Google Scholar] [CrossRef]
- Shafto, M.; Conroy, M.; Doyle, R.; Glaessgen, E.; Kemp, C.; LeMoigne, J.; Wang, L. Modeling, Simulation, Information Technology & Processing Roadmap; National Aeronautics and Space Administration: Washington, DC, USA, 2012.
- Boschert, S.; Rosen, R. Digital twin—The simulation aspect. In Mechatronic Futures; Hehenberger, P., Bradley, D., Eds.; Springer: Cham, Switzerland, 2016; pp. 59–74. [Google Scholar] [CrossRef]
- Lee, J.; Lapira, E.; Bagheri, B.; Kao, H.A. Recent advances and trends in predictive manufacturing systems in big data environment. Manuf. Lett. 2013, 1, 38–41. [Google Scholar] [CrossRef]
- Rosen, R.; Von Wichert, G.; Lo, G.; Bettenhausen, K.D. About the importance of autonomy and digital twins for the future of manufacturing. IFAC PapersOnLine 2015, 48, 567–572. [Google Scholar] [CrossRef]
- Chen, Y. Integrated and intelligent manufacturing: Perspectives and enablers. Engineering 2017, 3, 588–595. [Google Scholar] [CrossRef]
- Zheng, Y.; Yang, S.; Cheng, H. An application framework of digital twin and its case study. J. Ambient Intell. Humaniz. Comput. 2019, 10, 1141–1153. [Google Scholar] [CrossRef]
- Vrabič, R.; Erkoyuncu, J.A.; Butala, P.; Roy, R. Digital twins: Understanding the added value of integrated models for through-life engineering services. Procedia Manuf. 2018, 16, 139–146. [Google Scholar] [CrossRef]
- Madni, A.M.; Madni, C.C.; Lucero, S.D. Leveraging digital twin technology in model-based systems engineering. Systems 2019, 7, 7. [Google Scholar] [CrossRef] [Green Version]
- Tao, F.; Qi, Q.; Wang, L.; Nee, A.Y.C. Digital twins and cyber–physical systems toward smart manufacturing and industry 4.0: Correlation and comparison. Engineering 2019, 5, 653–661. [Google Scholar] [CrossRef]
- Tao, F.; Liu, A.; Hu, T.; Nee, A.Y.C. Digital Twin Driven Smart Design; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Pang, T.Y.; Restrepo, J.D.P.; Cheng, C.T.; Yasin, A.; Lim, H.; Miletic, M. Developing a digital twin and digital thread framework for an ‘Industry 4.0’ Shipyard. Appl. Sci. 2021, 11, 1097. [Google Scholar] [CrossRef]
- Fera, M.; Greco, A.; Caterino, M.; Gerbino, S.; Caputo, F.; Macchiaroli, R.; D’Amato, E. Towards digital twin implementation for assessing production line performance and balancing. Sensors 2020, 20, 97. [Google Scholar] [CrossRef] [Green Version]
- Greco, A.; Caterino, M.; Fera, M.; Gerbino, S. Digital Twin for Monitoring Ergonomics during Manufacturing Production. Appl. Sci. 2020, 10, 7758. [Google Scholar] [CrossRef]
- Merigó, J.M.; Blanco-Mesa, F.; Gil-Lafuente, A.M.; Yager, R.R. Thirty years of the International Journal of Intelligent Systems: A bibliometric review. Int. J. Intell. Syst. 2017, 32, 526–554. [Google Scholar] [CrossRef] [Green Version]
- Tranfield, D.; Denyer, D.; Smart, P. Towards a methodology for developing evidence-informed management knowledge by means of systematic review. Br. J. Manag. 2003, 14, 207–222. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donohue, J.C. Understanding Scientific Literature: A Bibliographic Approach; The MIT Press: Cambridge, UK, 1973. [Google Scholar]
- Valente, D.; Miglietta, P.P.; Porrini, D.; Pasimeni, M.R.; Zurlini, G.; Petrosillo, I. A first analysis on the need to integrate ecological aspects into financial insurance. Ecol. Model. 2019, 392, 117–127. [Google Scholar] [CrossRef]
- Waltman, L.; Van Eck, N.J.; Noyons, E.C. A unified approach to mapping and clustering of bibliometric networks. J. Informetr. 2010, 4, 629–635. [Google Scholar] [CrossRef] [Green Version]
- Waltman, L.; Van Eck, N.J. A smart local moving algorithm for large-scale modularity-based community detection. Eur. Phys. J. B 2013, 86, 1–14. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. How to normalize cooccurrence data? An analysis of some well-known similarity measures. J. Am. Soc. Inf. Sci. Technol. 2009, 60, 1635–1651. [Google Scholar] [CrossRef] [Green Version]
- Sung, T.K. Industry 4.0: A Korea perspective. Technol. Forecast. Soc. Chang. 2018, 132, 40–45. [Google Scholar] [CrossRef]
- Kuo, C.C.; Shyu, J.Z.; Ding, K. Industrial revitalization via industry 4.0—A comparative policy analysis among China, Germany and the USA. Global Transit. 2019, 1, 3–14. [Google Scholar] [CrossRef]
- Rojko, A. Industry 4.0 concept: Background and overview. Int. J. Interact. Mob. Technol. 2017, 11, 77–90. [Google Scholar] [CrossRef] [Green Version]
- Manesh, M.F.; Pellegrini, M.M.; Marzi, G.; Dabic, M. Knowledge management in the fourth industrial revolution: Mapping the literature and scoping future avenues. IEEE Trans. Eng. Manag. 2020, 68, 289–300. [Google Scholar] [CrossRef] [Green Version]
- Pichard, R.; Philippot, A.; Saddem, R.; Riera, B. Safety of manufacturing systems controllers by logical constraints with safety filter. IEEE Trans. Control Syst. Technol. 2018, 27, 1659–1667. [Google Scholar] [CrossRef]
- Paez, A. Gray literature: An important resource in systematic reviews. J. Evid. Based Med. 2017, 10, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Agnusdei, G.P.; Elia, V.; Gnoni, M.G. A classification proposal of digital twin applications in the safety domain. Comput. Ind. Eng. 2021, 107137. [Google Scholar] [CrossRef]
- Federmeccanica. Final Report INDUSTRY 4EU—Industry 4.0 for the Future of Manufacturing in Europe. Available online: http://adapt.it/Industry4EU/INDUSTRY%204EU_final_report.pdf (accessed on 24 February 2021).
- Cimino, C.; Negri, E.; Fumagalli, L. Review of digital twin applications in manufacturing. Comput. Ind. 2019, 113, 103130. [Google Scholar] [CrossRef]
- Oyekan, J.O.; Hutabarat, W.; Tiwari, A.; Grech, R.; Aung, M.H.; Mariani, M.P.; López-Dávalos, L.; Ricaud, T.; Singh, S.; Dupuis, C. The effectiveness of virtual environments in developing collaborative strategies between industrial robots and humans. Robot. Comput. Integr. Manuf. 2019, 55, 41–54. [Google Scholar] [CrossRef]
- Nåfors, D.; Berglund, J.; Gong, L.; Johansson, B.; Sandberg, T.; Birberg, J. Application of a Hybrid Digital Twin Concept for Factory Layout Planning. Smart Sustain. Manuf. Syst. 2020, 4, 231–244. [Google Scholar] [CrossRef]
- Brewer, T.; Knight, D.; Noiray, G.; Naik, H. Digital twin technology in the field reclaims offshore resources. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 6–9 May 2019. [Google Scholar]
- Anderson, S.; Barvik, S.; Rabitoy, C. Innovative digital inspection methods. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 6–9 May 2019. [Google Scholar]
- Boje, C.; Guerriero, A.; Kubicki, S.; Rezgui, Y. Towards a semantic Construction Digital Twin: Directions for future research. Autom. Constr. 2020, 114, 103179. [Google Scholar] [CrossRef]
- Yuan, X.; Anumba, C.J. Cyber-Physical Systems for Temporary Structures Monitoring. In Cyber-Physical Systems in the Built Environment; Anumba, C.J., Roofigari-Esfahan, N., Eds.; Springer: Cham, Switzerland, 2020; pp. 107–138. [Google Scholar] [CrossRef]
- Wanasinghe, T.R.; Wroblewski, L.; Petersen, B.; Gosine, R.G.; James, L.A.; De Silva, O.; Mann, G.K.I.; Warrian, P.J. Digital twin for the oil and gas industry: Overview, research trends, opportunities, and challenges. IEEE Access 2020, 8, 104175–104197. [Google Scholar] [CrossRef]
- Malik, A.A.; Masood, T.; Bilberg, A. Virtual reality in manufacturing: Immersive and collaborative artificial-reality in design of human-robot workspace. Int. J. Comput. Integr. Manuf. 2020, 33, 22–37. [Google Scholar] [CrossRef]
- Eckhart, M.; Ekelhart, A.; Weippl, E. Enhancing cyber situational awareness for cyber-physical systems through digital twins. In Proceedings of the 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Zaragoza, Spain, 10–13 September 2019; pp. 1222–1225. [Google Scholar]
- Zohdi, T.I. A digital twin framework for machine learning optimization of aerial firefighting and pilot safety. Comput. Methods Appl. Mech. Eng. 2021, 373, 113446. [Google Scholar] [CrossRef]
- Scheuermann, C.; Binderberger, T.; von Frankenberg, N.; Werner, A. Digital twin: A machine learning approach to predict individual stress levels in extreme environments. In Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers, Cancùn, Mexico, 12–16 September 2020; pp. 657–664. [Google Scholar]
- Dröder, K.; Bobka, P.; Germann, T.; Gabriel, F.; Dietrich, F. A machine learning-enhanced digital twin approach for human-robot-collaboration. Procedia CIRP 2018, 76, 187–192. [Google Scholar] [CrossRef]
- Zandi, K.; Ransom, E.H.; Topac, T.; Chen, R.; Beniwal, S.; Blomfors, M.; Shu, J.; Chang, F.-K. A Framework for Digital Twin of Civil Infrastructure—Challenges & Opportunities. Struct. Health Monit. 2019. [Google Scholar] [CrossRef]
- Bottani, E.; Vignali, G.; Tancredi, G.P.C. A digital twin model of a pasteurization system for food beverages: Tools and architecture. In Proceedings of the 2020 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC), Cardiff, UK, 15–17 June 2020; pp. 1–8. [Google Scholar]
- Perez, G.C.; Korth, B. Digital Twin for Legal Requirements in Production and Logistics based on the Example of the Storage of Hazardous Substances. In Proceedings of the 2020 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Singapore, 14–17 December 2020; pp. 1093–1097. [Google Scholar]
- Li, W.; Rentemeister, M.; Badeda, J.; Jöst, D.; Schulte, D.; Sauer, D.U. Digital twin for battery systems: Cloud battery management system with online state-of-charge and state-of-health estimation. J. Energy Storage 2020, 30, 101557. [Google Scholar] [CrossRef]
Country | Number of Documents |
---|---|
Germany | 492 |
United States | 477 |
China | 434 |
United Kingdom | 241 |
Russian Federation | 205 |
Italy | 164 |
France | 144 |
India | 116 |
Spain | 95 |
South Korea | 89 |
Keyword | Frequency |
---|---|
Digital twin | 1404 |
Life cycle | 333 |
Manufacture | 325 |
Embedded systems | 248 |
Internet of things | 206 |
Industry 4.0 | 200 |
Decision making | 179 |
Cyber–physical system | 169 |
Virtual reality | 153 |
Digital storage | 151 |
Country | Number of Documents |
---|---|
United States | 40 |
Germany | 25 |
China | 21 |
United Kingdom | 16 |
Italy | 13 |
Russian Federation | 10 |
Austria | 9 |
Sweden | 8 |
India | 7 |
Norway | 6 |
Keyword | Frequency |
---|---|
Digital twin | 93 |
Life cycle | 32 |
Safety engineering | 21 |
Accident prevention | 19 |
Virtual reality | 19 |
Internet of Things | 17 |
Embedded systems | 17 |
Manufacture | 16 |
Offshore oil well production | 12 |
Offshore technology | 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agnusdei, G.P.; Elia, V.; Gnoni, M.G. Is Digital Twin Technology Supporting Safety Management? A Bibliometric and Systematic Review. Appl. Sci. 2021, 11, 2767. https://doi.org/10.3390/app11062767
Agnusdei GP, Elia V, Gnoni MG. Is Digital Twin Technology Supporting Safety Management? A Bibliometric and Systematic Review. Applied Sciences. 2021; 11(6):2767. https://doi.org/10.3390/app11062767
Chicago/Turabian StyleAgnusdei, Giulio Paolo, Valerio Elia, and Maria Grazia Gnoni. 2021. "Is Digital Twin Technology Supporting Safety Management? A Bibliometric and Systematic Review" Applied Sciences 11, no. 6: 2767. https://doi.org/10.3390/app11062767