The Importance of Annual Plants and Multi-Scalar Analysis for Understanding Coastal Dune Stabilization Process in the Mediterranean
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Study Design and Fieldwork
2.3. Statistical Analysis
- Environmental effects on vegetation cover (first row in Figure 2) were evaluated by fitting mixed effects linear models with random effects of the dune identity (e.g., M1 = mobile dune #1, etc.) and sampling year (e.g., 2007) to take into account unmeasured sources of variation affecting plant cover across spatial locations and sampling time periods. Significance levels of differences between estimated marginal means of the groups were corrected using the Bonferroni method.
- Environmental effects on species richness (i.e., count of unique species) (second row in Figure 2) were evaluated with the same approach as in case (1), only using mixed effects generalized linear models, with a Poisson distribution, instead of mixed effects linear models, since the dependent variable was the species count. Significance levels of differences between estimated marginal means of the groups were corrected using the Bonferroni method.
- Environmental effects on beta diversity (third row in Figure 2) were evaluated using Anderson’s PERMDISP2 procedure for the analysis of multivariate homogeneity of group dispersions [52], where the distances of group members to the group centroid are subject to ANOVA. Samples were placed in multivariate space using the [53,54] measure of dissimilarity. Significance levels of differences between group means were corrected using Tukey’s “Honest Significant Difference“ method.
- Environmental effects on species composition were evaluated using redundancy Analysis (RDA) ordination (Figure 3), separately for each pair of groups being compared, followed by a permutation test to assess the significance of the constraints, corrected using the Bonferroni method.
- Comparing dune types,
- Comparing dune type/slope combinations, and
- Comparing dune type/patch combinations.
2.4. Software
3. Results
3.1. Overview
3.2. Dune Scale
3.3. Slope Scale
3.4. Patch Scale
4. Discussion
4.1. Overview
4.2. Dune Scale
4.3. Slope Scale
4.4. Patch Scale
4.5. Synthesis
4.6. Implementation for Biodiversity Conservation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
M | Mobile (dune) |
F | Fixed (dune) |
W | Windward (slope) |
C | Crest (slope) |
S | Slipface (slope) |
O | Open (patch) |
B | Bush (patch) |
References
- Levin, S.A. The problem of pattern and scale in ecology: The Robert H. MacArthur award lecture. Ecology 1992, 73, 1943–1967. [Google Scholar] [CrossRef]
- Wiens, J.A. Spatial scaling in ecology. Funct. Ecol. 1989, 3, 385–397. [Google Scholar] [CrossRef]
- Sale, P.F. Appropriate spatial scales for studies of reef-fish ecology. Aust. J. Ecol. 1998, 23, 202–208. [Google Scholar] [CrossRef]
- Auestad, I.; Rydgren, K.; Økland, R.H. Scale-dependence of vegetation-environment relationships in semi-natural grasslands. J. Veg. Sci. 2008, 19, 139–148. [Google Scholar] [CrossRef] [Green Version]
- Wheatley, M.; Johnson, C. Factors limiting our understanding of ecological scale. Ecol. Complex. 2009, 6, 150–159. [Google Scholar] [CrossRef]
- Bisigato, A.J.; Villagra, P.E.; Ares, J.O.; Rossi, B.E. Vegetation heterogeneity in Monte Desert ecosystems: A multi-scale approach linking patterns and processes. J. Arid Environ. 2009, 73, 182–191. [Google Scholar] [CrossRef]
- McGill, B.J. Matters of scale. Science 2010, 328, 575–576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrier, S. Mapping spatial pattern in biodiversity for regional conservation planning: Where to from here? Syst. Biol. 2002, 51, 331–363. [Google Scholar] [CrossRef]
- Carboni, M.; Carranza, M.L.; Acosta, A. Assessing conservation status on coastal dunes: A multiscale approach. Landsc. Urban Plan. 2009, 91, 17–25. [Google Scholar] [CrossRef]
- Zuo, X.; Zhao, X.; Zhao, H.; Zhang, T.; Yulin, L.; Wang, S.; Li, W.; Powers, R. Scale dependent effects of environmental factors on vegetation pattern and composition in Horqin Sandy Land, Northern China. Geoderma 2012, 173, 1–9. [Google Scholar] [CrossRef]
- Yizhaq, H.; Ashkenazy, Y.; Tsoar, H. Why do active and stabilized dunes coexist under the same climatic conditions? Phys. Rev. Lett. 2007, 98, 188001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kutiel, P.; Danin, A.; Orshan, G. Vegetation of the sandy soils near Caesarea, Israel. I. Plant communities, environment and succession. Isr. J. Plant Sci. 1979, 28, 20–35. [Google Scholar]
- Kutiel, P.; Danin, A. Annual-species diversity and aboveground phytomass in relation to some soil properties in the sand dunes of the northern Sharon Plains, Israel. Vegetatio 1987, 70, 45–49. [Google Scholar]
- Danin, A.; Nukrian, R. Dynamics of dune vegetation in the southern coastal area of Israel since 1945. Doc. Phytosociol. 1991, 13, 281–296. [Google Scholar]
- Kutiel, P. Conservation and management of the Mediterranean coastal sand dunes in Israel. J. Coast. Conserv. 2001, 7, 183–192. [Google Scholar] [CrossRef]
- Kutiel, P.; Cohen, O.; Shoshany, M.; Shub, M. Vegetation establishment on the southern Israeli coastal sand dunes between the years 1965 and 1999. Landsc. Urban Plan. 2004, 67, 141–156. [Google Scholar] [CrossRef]
- Levin, N.; Ben-Dor, E. Monitoring sand dune stabilization along the coastal dunes of Ashdod-Nizanim, Israel, 1945–1999. J. Arid Environ. 2004, 58, 335–355. [Google Scholar] [CrossRef]
- Levin, N.; Kidron, G.J.; Ben-Dor, E. A field quantification of coastal dune perennial plants as indicators of surface stability, erosion or deposition. Sedimentology 2008, 55, 751–772. [Google Scholar] [CrossRef]
- Bird, T.L.; Dorman, M.; Ramot, A.; Bouskila, A.; Bar, P.; Groner, E. Shrub encroachment effects on habitat heterogeneity and beetle diversity in a Mediterranean coastal dune system. Land Degrad. Dev. 2017, 28, 2553–2562. [Google Scholar] [CrossRef]
- Bird, T.L.F.; Bouskila, A.; Groner, E.; Bar Kutiel, P. Can Vegetation Removal Successfully Restore Coastal Dune Biodiversity? Appl. Sci. 2020, 10, 2310. [Google Scholar] [CrossRef] [Green Version]
- Martínez, M.L.; Psuty, N.P. Coastal Dunes; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Viles, H.; Spencer, T. Coastal Problems: Geomorphology, Ecology and Society at the Coast; Edward Arnold: London, UK, 1995; 350p; ISBN 978 0340531976. [Google Scholar]
- Lesica, P.; Cooper, S.V. Succession and disturbance in sandhills vegetation: Constructing models for managing biological diversity. Conserv. Biol. 1999, 13, 293–302. [Google Scholar] [CrossRef]
- Bray, H.E.; Stokes, S. Chronologies for Late Quaternary barchan dune reactivation in the southeastern Arabian Peninsula. Quat. Sci. Rev. 2003, 22, 1027–1033. [Google Scholar] [CrossRef]
- Stokes, S.; Bailey, R.; Fedoroff, N.; O’Marah, K. Optical dating of aeolian dynamism on the West African Sahelian margin. Geomorphology 2004, 59, 281–291. [Google Scholar] [CrossRef]
- Hugenholtz, C.H.; Wolfe, S.A. Recent stabilization of active sand dunes on the Canadian prairies and relation to recent climate variations. Geomorphology 2005, 68, 131–147. [Google Scholar] [CrossRef]
- Thomas, D.S.; Knight, M.; Wiggs, G.F. Remobilization of southern African desert dune systems by twenty-first century global warming. Nature 2005, 435, 1218–1221. [Google Scholar] [CrossRef] [PubMed]
- Tsoar, H. Sand dunes mobility and stability in relation to climate. Phys. A Stat. Mech. Its Appl. 2005, 357, 50–56. [Google Scholar] [CrossRef]
- Sun, J.; Li, S.H.; Han, P.; Chen, Y. Holocene environmental changes in the central Inner Mongolia, based on single-aliquot-quartz optical dating and multi-proxy study of dune sands. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 233, 51–62. [Google Scholar] [CrossRef]
- Liu, S.; Wang, T. Aeolian desertification from the mid-1970s to 2005 in Otindag Sandy Land, Northern China. Environ. Geol. 2007, 51, 1057–1064. [Google Scholar] [CrossRef]
- Le Houérou, H.N. Man-made deserts: Desertization processes and threats. Arid Land Res. Manag. 2002, 16, 1–36. [Google Scholar] [CrossRef]
- Goudie, A. Parabolic dunes: Distribution, form, morphology and change. Ann. Arid Zone 2011, 50, 1–7. [Google Scholar]
- Lichter, J. Colonization constraints during primary succession on coastal Lake Michigan sand dunes. J. Ecol. 2000, 88, 825–839. [Google Scholar] [CrossRef]
- Dech, J.P.; Maun, M.A. Zonation of vegetation along a burial gradient on the leeward slopes of Lake Huron sand dunes. Can. J. Bot. 2005, 83, 227–236. [Google Scholar] [CrossRef]
- Kutiel, P.B.; Katz, O.; Ziso-Cohen, V.; Divinsky, I.; Katra, I. Water availability in sand dunes and its implications for the distribution of Artemisia monosperma. Catena 2016, 137, 144–151. [Google Scholar] [CrossRef]
- Olff, H.; Huisman, J.; Van Tooren, B. Species dynamics and nutrient accumulation during early primary succession in coastal sand dunes. J. Ecol. 1993, 81, 693–706. [Google Scholar] [CrossRef] [Green Version]
- Nichols, W.F.; Killingbeck, K.T.; August, P.V. The influence of geomorphological heterogeneity on biodiversity II. A landscape perspective. Conserv. Biol. 1998, 12, 371–379. [Google Scholar] [CrossRef] [Green Version]
- Tsoar, H.; Blumberg, D.G. Formation of parabolic dunes from barchan and transverse dunes along Israel’s Mediterranean coast. Earth Surf. Process. Landf. 2002, 27, 1147–1161. [Google Scholar] [CrossRef]
- Malkinson, D.; Kadmon, R.; Cohen, D. Pattern analysis in successional communities–an approach for studying shifts in ecological interactions. J. Veg. Sci. 2003, 14, 213–222. [Google Scholar] [CrossRef]
- Yu, S.; Bell, D.; Kutiel, P.B. Impact of microhabitats on the heterogeneity of seedling emergence in a Mediterranean coastal sand dunes community. Ecoscience 2009, 16, 369–378. [Google Scholar] [CrossRef]
- Rubinstein, Y.; Groner, E.; Yizhaq, H.; Svoray, T.; Bar, P. An eco-spatial index for evaluating stabilization state of sand dunes. Aeolian Res. 2013, 9, 75–87. [Google Scholar] [CrossRef]
- Holzapfel, C.; Mahall, B.E. Bidirectional facilitation and interference between shrubs and annuals in the Mojave Desert. Ecology 1999, 80, 1747–1761. [Google Scholar] [CrossRef]
- Shumway, S.W. Facilitative effects of a sand dune shrub on species growing beneath the shrub canopy. Oecologia 2000, 124, 138–148. [Google Scholar] [CrossRef]
- Tielbörger, K.; Kadmon, R. Temporal environmental variation tips the balance between facilitation and interference in desert plants. Ecology 2000, 81, 1544–1553. [Google Scholar] [CrossRef]
- El-Bana, M.I.; Nijs, I.; Kockelbergh, F. Microenvironmental and vegetational heterogeneity induced by phytogenic nebkhas in an arid coastal ecosystem. Plant Soil 2002, 247, 283–293. [Google Scholar] [CrossRef]
- Maestre, F.T.; Bautista, S.; Cortina, J. Positive, negative, and net effects in grass–shrub interactions in Mediterranean semiarid grasslands. Ecology 2003, 84, 3186–3197. [Google Scholar] [CrossRef] [Green Version]
- Franks, S.J. Facilitation in multiple life-history stages: Evidence for nucleated succession in coastal dunes. Plant Ecol. 2003, 168, 1–11. [Google Scholar] [CrossRef]
- Sternberg, M.; Yu, S.L.; Bar, P. Soil seed banks, habitat heterogeneity, and regeneration strategies in a Mediterranean coastal sand dune. Isr. J. Plant Sci. 2004, 52, 213–221. [Google Scholar] [CrossRef] [Green Version]
- Perry, M. Perennial Plants Impact on Annual Plant Diversity in Sand Dunes at Different Spatial Scales. Master’s Thesis, Ben Gurion University of the Negev, Be’er Sheva, Israel, 2008. [Google Scholar]
- Kutiel, P. Annual vegetation of the coastal sand dunes of the northern Sharon, Israel. Isr. J. Plant Sci. 1998, 46, 287–298. [Google Scholar] [CrossRef]
- Katz, O.; Bar Kutiel, P. The ecology of Artemisia monosperma Delile: A desert keystone species in sandy ecosystems in the Middle East. In Artemisia: Classification, Cultivation and Use; Roe, J.M., Ed.; Nova Science Publishers: New York, NY, USA, 2020; pp. 1–29. [Google Scholar]
- Anderson, M.J.; Ellingsen, K.E.; McArdle, B.H. Multivariate dispersion as a measure of beta diversity. Ecol. Lett. 2006, 9, 683–693. [Google Scholar] [CrossRef]
- Koleff, P.; Gaston, K.J.; Lennon, J.J. Measuring beta diversity for presence–absence data. J. Anim. Ecol. 2003, 72, 367–382. [Google Scholar] [CrossRef] [Green Version]
- Wilson, M.V.; Shmida, A. Measuring beta diversity with presence-absence data. J. Ecol. 1984, 72, 1055–1064. [Google Scholar] [CrossRef]
- Dufrêne, M.; Legendre, P. Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecol. Monogr. 1997, 67, 345–366. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means; 2020; R Package Version 1.5.2-1. Available online: https://rdrr.io/cran/emmeans/ (accessed on 20 February 2021).
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Vegan: Community Ecology Package. 2020. R Package Version 2.5-7. Available online: https://cran.r-project.org/web/packages/vegan/index.html (accessed on 20 February 2021).
- Kindt, R.; Coe, R. Tree Diversity Analysis: A Manual and Software for Common Statistical Methods for Ecological and Biodiversity Studies; World Agroforestry Centre (ICRAF): Nairobi, Kenya, 2005; ISBN 92-9059-179-X. [Google Scholar]
- De Caceres, M.; Legendre, P. Associations between species and groups of sites: Indices and statistical inference. Ecology 2009, 90, 3566–3574. [Google Scholar] [CrossRef] [PubMed]
- Danin, A. Plant species diversity and plant succession in a sandy area in the Northern Negev. Flora 1978, 167, 409–422. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, J.; Lei, J.; Zhang, W.; Qian, Y. Distribution of ephemeral plants and their significance in dune stabilization in Gurbantunggut Desert. J. Geogr. Sci. 2003, 13, 323–330. [Google Scholar]
- Cid-Benevento, C.R.; Werner, P.A. Local distributions of old-field and woodland annual plant species: Demography, physiological tolerances and allocation of biomass of five species grown in experimental light and soil-moisture gradients. J. Ecol. 1986, 74, 857–880. [Google Scholar] [CrossRef]
- Halligan, J.P. Toxicity of Artemisia californica to four associated herb species. Am. Midl. Nat. 1976, 95, 406–421. [Google Scholar] [CrossRef]
- Weaver, T.; Klarich, D. Allelopathic effects of volatile substances from Artemisia tridentata Nutt. Am. Midl. Nat. 1977, 97, 508–512. [Google Scholar] [CrossRef]
- Melkania, N.; Singh, J.; Bisht, K. Allelopathic potential of Artemisia vulgaris L. and Pinus roxburghii Sargent: A bioassay study. Proc. Indian Nat. Sci. Acad. B 1982, 48, 685–688. [Google Scholar]
- Kil, B.S.; Yun, K.W. Allelopathic effects of water extracts of Artemisia princeps var. orientalis on selected plant species. J. Chem. Ecol. 1992, 18, 39–51. [Google Scholar] [CrossRef]
- Lydon, J.; Teasdale, J.R.; Chen, P.K. Allelopathic activity of annual wormwood (Artemisia annua) and the role of artemisinin. Weed Sci. 1997, 45, 807–811. [Google Scholar] [CrossRef]
- Escudero, A.; Albert, M.J.; Pita, J.M.; Pérez-García, F. Inhibitory effects of Artemisia herba-alba on the germination of the gypsophyte Helianthemum squamatum. Plant Ecol. 2000, 148, 71–80. [Google Scholar] [CrossRef]
- Barney, J.N.; Hay, A.G.; Weston, L.A. Isolation and characterization of allelopathic volatiles from mugwort (Artemisia vulgaris). J. Chem. Ecol. 2005, 31, 247–265. [Google Scholar] [CrossRef]
Level | Effect | Cover | Richness | Assemblages | Beta |
---|---|---|---|---|---|
Type | M-F | −10.43 ** | −0.90 *** | *** | 0.01 NS |
Type + Slope | MW-FW | −8.85 ** | −0.95 *** | * | 0.04 NS |
Type + Slope | MC-FC | −10.77 *** | −1.01 *** | * | −0.01 NS |
Type + Slope | MS-FS | −11.63 *** | −0.75 *** | * | −0.02 NS |
Type + Slope | MW-MC | −0.52 NS | −0.14 NS | NS | 0.02 NS |
Type + Slope | MW-MS | −1.32 NS | −0.44 ** | NS | 0.04 NS |
Type + Slope | MC-MS | −0.81 NS | −0.30 NS | NS | 0.03 NS |
Type + Slope | FW-FC | −2.44 NS | −0.20 NS | NS | −0.04 NS |
Type + Slope | FW-FS | −4.11 NS | −0.23 * | NS | −0.02 NS |
Type + Slope | FC-FS | −1.67 NS | −0.04 NS | NS | 0.02 NS |
Type + Patch | MO-FO | −15.26 *** | −0.81 *** | ** | 0.00 NS |
Type + Patch | MB-FB | −5.66 NS | −1.03 *** | ** | 0.01 NS |
Type + Patch | MO-MB | 1.08 NS | 0.41 *** | NS | −0.02 NS |
Type + Patch | FO-FB | 10.68 *** | 0.18 * | ** | −0.02 NS |
Level | Ind. | Species |
---|---|---|
Type | M | Trisetaria koelerioides |
Type | F | Anagallis arvensis, Arenaria leptoclados, Asphodelus tenuifolius, Avena barbata, Brassica tournefortii, Bromus rigidus, Bromus sterilis, Campanula sulphurea, Daucus glaber, Erodium laciniatum, Galium aparine, Geranium robertianum, Hormuzakia sp., Lagurus ovatus, Lotus halophilus, Lupinus angustifolius, Lupinus palaestinus, Maresia pulchella, Ononis serrata, Phleum exaratum, Plantago sarcophylla, Rumex bucephalophorus, Rumex pictus, Torilis arvensis, Urospermum picroides |
Type + Slope | MW | Crepis aculeata, Cutandia memphitica, Trisetaria koelerioides |
Type + Slope | MC | Cutandia memphitica, Trisetaria koelerioides |
Type + Slope | MS | Corynephorus articulatus, Crepis aculeata, Launaea fragilis, Lotus halophilus, Trisetaria koelerioides |
Type + Slope | FW | Asphodelus tenuifolius, Avena barbata, Brassica tournefortii, Bromus rigidus, Corynephorus articulatus, Crepis aculeata, Daucus glaber, Galium aparine, Hormuzakia sp., Lotus halophilus, Maresia pulchella, Rumex bucephalophorus, Rumex pictus |
Type + Slope | FC | Anagallis arvensis, Asphodelus tenuifolius, Avena barbata, Brassica tournefortii, Bromus rigidus, Campanula sulphurea, Corynephorus articulatus, Crepis aculeata, Cutandia memphitica, Daucus glaber, Erodium laciniatum, Galium aparine, Geranium robertianum, Hormuzakia sp., Lotus halophilus, Lupinus palaestinus, Maresia pulchella, Plantago sarcophylla, Rumex bucephalophorus, Rumex pictus, Trisetaria koelerioides, Urospermum picroides |
Type + Slope | FS | Anagallis arvensis, Arenaria leptoclados, Asphodelus tenuifolius, Avena barbata, Brassica tournefortii, Bromus rigidus, Campanula sulphurea, Corynephorus articulatus, Crepis aculeata, Daucus glaber, Erodium laciniatum, Galium aparine, Geranium robertianum, Hormuzakia sp., Lotus halophilus, Lupinus palaestinus, Ononis serrata, Rumex bucephalophorus, Rumex pictus, Trisetaria koelerioides, Urospermum picroides, Vicia sativa |
Type + Patch | MO | Crepis aculeata, Ifloga sp., Lotus halophilus, Polycarpon succulentum, Trisetaria koelerioides |
Type + Patch | MB | Launaea fragilis, Trisetaria koelerioides |
Type + Patch | FO | Anagallis arvensis, Arenaria leptoclados, Asphodelus tenuifolius, Brassica tournefortii, Bromus rigidus, Bromus sterilis, Campanula sulphurea, Crepis aculeata, Daucus glaber, Erodium laciniatum, Galium aparine, Hormuzakia sp., Ifloga sp., Lotus halophilus, Lupinus angustifolius, Lupinus palaestinus, Maresia pulchella, Neurada procumbens, Ononis serrata, Phleum exaratum, Plantago sarcophylla, Polycarpon succulentum, Rumex bucephalophorus, Rumex pictus, Torilis arvensis, Trifolium tomentosum, Trisetaria koelerioides, Urospermum picroides |
Type + Patch | FB | Anagallis arvensis, Asphodelus tenuifolius, Avena barbata, Brassica tournefortii, Bromus rigidus, Campanula sulphurea, Crepis aculeata, Daucus glaber, Erodium laciniatum, Galium aparine, Geranium robertianum, Hormuzakia sp., Lagurus ovatus, Lotus halophilus, Maresia pulchella, Plantago sarcophylla, Polycarpon succulentum, Rumex bucephalophorus, Rumex pictus, Sonchus tenerrimus, Urospermum picroides |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bar Kutiel, P.; Dorman, M. The Importance of Annual Plants and Multi-Scalar Analysis for Understanding Coastal Dune Stabilization Process in the Mediterranean. Appl. Sci. 2021, 11, 2821. https://doi.org/10.3390/app11062821
Bar Kutiel P, Dorman M. The Importance of Annual Plants and Multi-Scalar Analysis for Understanding Coastal Dune Stabilization Process in the Mediterranean. Applied Sciences. 2021; 11(6):2821. https://doi.org/10.3390/app11062821
Chicago/Turabian StyleBar Kutiel, Pua, and Michael Dorman. 2021. "The Importance of Annual Plants and Multi-Scalar Analysis for Understanding Coastal Dune Stabilization Process in the Mediterranean" Applied Sciences 11, no. 6: 2821. https://doi.org/10.3390/app11062821
APA StyleBar Kutiel, P., & Dorman, M. (2021). The Importance of Annual Plants and Multi-Scalar Analysis for Understanding Coastal Dune Stabilization Process in the Mediterranean. Applied Sciences, 11(6), 2821. https://doi.org/10.3390/app11062821