Figure 1.
Confinement effect of fiber-reinforced polymer (FRP).
Figure 1.
Confinement effect of fiber-reinforced polymer (FRP).
Figure 2.
Compressive behavior of CFFT [
21].
Figure 2.
Compressive behavior of CFFT [
21].
Figure 3.
Tension test setup of pultruded FRP (PFRP).
Figure 3.
Tension test setup of pultruded FRP (PFRP).
Figure 4.
Setup of the filament winding FRP (FFRP) tensile test: (a) specimen, (b) attachment of strain gauge.
Figure 4.
Setup of the filament winding FRP (FFRP) tensile test: (a) specimen, (b) attachment of strain gauge.
Figure 5.
Setup for the split disk test: (a) specimens, and (b) test setup.
Figure 5.
Setup for the split disk test: (a) specimens, and (b) test setup.
Figure 6.
Cross-section of the hybrid-FRP.
Figure 6.
Cross-section of the hybrid-FRP.
Figure 7.
Manufacturing process of the hybrid−FRP member: (a) pultrusion process; (b) filament winding process.
Figure 7.
Manufacturing process of the hybrid−FRP member: (a) pultrusion process; (b) filament winding process.
Figure 8.
Compressive strength experiment of PFRP−FFRP. (a) Compression tester with a capacity of 30,000 kN. (b) Experimental PFRP-FFRP specimen of φ300 × 600. (c) Experimental test setup.
Figure 8.
Compressive strength experiment of PFRP−FFRP. (a) Compression tester with a capacity of 30,000 kN. (b) Experimental PFRP-FFRP specimen of φ300 × 600. (c) Experimental test setup.
Figure 9.
Fracture mode of PFRP−FFRP.
Figure 9.
Fracture mode of PFRP−FFRP.
Figure 10.
Load–displacement relationship of PFRP−FFRP. (a) P−F−2.8. (b) P−F−4.2. (c) P−F−5.6.
Figure 10.
Load–displacement relationship of PFRP−FFRP. (a) P−F−2.8. (b) P−F−4.2. (c) P−F−5.6.
Figure 11.
Stress–strain relationship of PFRP−FFRP. (a) P−F−2.8. (b) P−F−4.2. (c) P−F−5.6.
Figure 11.
Stress–strain relationship of PFRP−FFRP. (a) P−F−2.8. (b) P−F−4.2. (c) P−F−5.6.
Figure 12.
Specimen for compressive strength testing of the hybrid-CFFT.
Figure 12.
Specimen for compressive strength testing of the hybrid-CFFT.
Figure 13.
Compressive strength testing of the hybrid-CFFT: (a) gauge installation and (b) testing equipment.
Figure 13.
Compressive strength testing of the hybrid-CFFT: (a) gauge installation and (b) testing equipment.
Figure 14.
Compressive fracture types in the hybrid-CFFT. (a) FFRP delamination and (b) strand separation.
Figure 14.
Compressive fracture types in the hybrid-CFFT. (a) FFRP delamination and (b) strand separation.
Figure 15.
Load–displacement relationship of the hybrid-CFFT: (a) HC-21-2.8, (b) HC-21-4.2, (c) HC-21-5.6, (d) HC-30-2.8, (e) HC-30-4.2, (f) HC-30-5.6, (g) HC-40-2.8, (h) HC-40-4.2, and (i) HC-40-5.6.
Figure 15.
Load–displacement relationship of the hybrid-CFFT: (a) HC-21-2.8, (b) HC-21-4.2, (c) HC-21-5.6, (d) HC-30-2.8, (e) HC-30-4.2, (f) HC-30-5.6, (g) HC-40-2.8, (h) HC-40-4.2, and (i) HC-40-5.6.
Figure 16.
Stress–strain relationship of the hybrid−CFFT: (a) HC−21−2.8, (b) HC−21−4.2, (c) HC−21−5.6, (d) HC−30−2.8, (e) HC−30−4.2, (f) HC−30−5.6, (g) HC−40−2.8, (h) HC−40−4.2, and (i) HC−40−5.6.
Figure 16.
Stress–strain relationship of the hybrid−CFFT: (a) HC−21−2.8, (b) HC−21−4.2, (c) HC−21−5.6, (d) HC−30−2.8, (e) HC−30−4.2, (f) HC−30−5.6, (g) HC−40−2.8, (h) HC−40−4.2, and (i) HC−40−5.6.
Figure 17.
Average compressive strength of hybrid−CFFT with respect to the increase in the confinement ratio.
Figure 17.
Average compressive strength of hybrid−CFFT with respect to the increase in the confinement ratio.
Figure 18.
Average compressive strength of hybrid−CFFT with respect to the increase in the design strength of concrete.
Figure 18.
Average compressive strength of hybrid−CFFT with respect to the increase in the design strength of concrete.
Figure 19.
Relationship between strength ratio and confinement ratio of the hybrid−CFFT.
Figure 19.
Relationship between strength ratio and confinement ratio of the hybrid−CFFT.
Figure 20.
Finite element analysis (FEA) model for compressive behavior of the hybrid−CFFT.
Figure 20.
Finite element analysis (FEA) model for compressive behavior of the hybrid−CFFT.
Figure 21.
FEA of the hybrid−CFFT: (a) Concrete, (b) PFRP, and (c) FFRP.
Figure 21.
FEA of the hybrid−CFFT: (a) Concrete, (b) PFRP, and (c) FFRP.
Figure 22.
FEA of the center of the hybrid−CFFT: (a) overall, (b) concrete, (c) PFRP, and (d) FFRP.
Figure 22.
FEA of the center of the hybrid−CFFT: (a) overall, (b) concrete, (c) PFRP, and (d) FFRP.
Figure 23.
Hybrid−CFFT analysis results comparison (fco = 40 MPa).
Figure 23.
Hybrid−CFFT analysis results comparison (fco = 40 MPa).
Table 1.
Confinement effective coefficient of concrete-filled fiber-reinforced polymer tube (CFFT), k1.
Table 1.
Confinement effective coefficient of concrete-filled fiber-reinforced polymer tube (CFFT), k1.
Karbhari et al. [16] | Samaan et al. [17] | Miyauchi et al. [18] | Saafi et al. [19] | Toutanji [9] | Lam et al. [20] |
---|
2.10 (fl/fco)−0.12 | 6.00 fl−0.2 | 2.98 | 2.20 (fl/fco)−0.16 | 3.50 (fl/fco)−0.15 | 2.00 |
Table 2.
Test results of PFRP tensile test.
Table 2.
Test results of PFRP tensile test.
No. of Specimen | Tensile Strength (MPa) | Modulus of Elasticity (GPa) | Poisson Ratio |
---|
Inner arc | 263.53 | 22.47 | 0.44 |
Outer arc | 216.37 | 28.14 | 0.30 |
Rib | 394.18 | 30.80 | 0.35 |
Table 3.
Test results of FFRP tensile test.
Table 3.
Test results of FFRP tensile test.
No. of Specimen | Tensile Strength (MPa) | Modulus of Elasticity (GPa) | Poisson Ratio |
---|
F-150-28 | 67.53 | 11.48 | 0.33 |
F-150-42 | 63.11 | 11.16 | 0.36 |
F-150-56 | 58.59 | 10.01 | 0.35 |
F-300-28 | 63.23 | 9.88 | 0.35 |
F-300-42 | 56.27 | 8.77 | 0.36 |
F-300-56 | 50.19 | 9.07 | 0.39 |
Table 4.
Results of FFRP split disk test.
Table 4.
Results of FFRP split disk test.
No. of Specimen | Tensile Strength (MPa) | Modulus of Elasticity (GPa) |
---|
FFRP-150-28 | 321.21 | 21.69 |
FFRP-150-42 | 349.75 | 23.85 |
FFRP-150-56 | 335.19 | 23.24 |
FFRP-300-28 | 275.19 | 22.12 |
FFRP-300-42 | 300.52 | 22.47 |
FFRP-300-56 | 302.12 | 21.71 |
Table 5.
Experimental variables of the PFRP−FFRP specimen.
Table 5.
Experimental variables of the PFRP−FFRP specimen.
Diameter (D, mm) | Height (L, mm) | FFRP Thickness (tf, mm) | PFRP Thickness (tp) | Number of Specimens (EA) |
---|
300 | 600 | 2.8 | 1.0 tp | 5 |
4.2 | 1.0 tp | 5 |
5.6 | 1.0 tp | 5 |
Table 6.
Compressive strength testing result of PFRP−FFRP.
Table 6.
Compressive strength testing result of PFRP−FFRP.
Specimen Number | Max. Load (kN) | Max. Displacement (mm) | Avg. Load (kN) | Avg. Displacement (mm) | Failure Mode |
---|
P-F-2.8-1 | 1187 | 3.96 | 1109 | 4.49 | Interfacial fracture |
P-F-2.8-2 | 1357 | 4.69 | Interfacial fracture |
P-F-2.8-3 | 1127 | 3.82 | Interfacial fracture |
P-F-2.8-4 | 893 | 5.85 | Simultaneous fractures of PFRP and FFRP |
P-F-2.8-5 | 1013 | 4.15 | Simultaneous fractures of PFRP and FFRP |
P-F-4.2-1 | 1243 | 4.50 | 1369 | 4.32 | Local fracture |
P-F-4.2-2 | 1396 | 4.44 | Local fracture |
P-F-4.2-3 | 1330 | 4.03 | Local fracture |
P-F-4.2-4 | 1547 | 4.05 | Interfacial fracture |
P-F-4.2-5 | 1380 | 4.59 | Local fracture |
P-F-5.6-1 | 1277 | 5.92 | 1489 | 4.74 | Simultaneous fractures of PFRP and FFRP |
P-F-5.6-2 | 1550 | 4.62 | Local fracture |
P-F-5.6-3 | 1527 | 4.51 | Local fracture |
P-F-5.6-4 | 1290 | 4.65 | Local fracture |
P-F-5.6-5 | 1390 | 4.01 | Local fracture |
Table 7.
Concrete specific mixing table.
Table 7.
Concrete specific mixing table.
fck (MPa) | W/b (%) | S/a (%) | Unit Weight of Mixing Materials (kg/m3) |
---|
W | b | C | F/A | S | G | A.D |
---|
21 | 52.0 | 51.0 | 165 | 317 | 286 | 31 | 928 | 909 | 2.22 | 0.70% |
30 | 40.0 | 48.0 | 168 | 420 | 378 | 42 | 827 | 913 | 3.15 | 0.75% |
40 | 34.0 | 46.0 | 170 | 500 | 450 | 50 | 759 | 908 | 4.25 | 0.85% |
Table 8.
Type and quantity of the hybrid-CFFT specimens.
Table 8.
Type and quantity of the hybrid-CFFT specimens.
Diameter (D, mm) | Height (L, mm) | Concrete Strength (fck, MPa) | FFRP Thickness (tf, mm) | PFRP Thickness (tp) | Number of Specimens (EA) |
---|
300 | 600 | 21 | 2.8 | 1.0 tp | 5 |
4.2 | 1.0 tp | 5 |
5.6 | 1.0 tp | 5 |
30 | 2.8 | 1.0 tp | 5 |
4.2 | 1.0 tp | 5 |
5.6 | 1.0 tp | 5 |
40 | 2.8 | 1.0 tp | 5 |
4.2 | 1.0 tp | 5 |
5.6 | 1.0 tp | 5 |
Table 9.
Results of compressive strength testing of the hybrid-CFFT.
Table 9.
Results of compressive strength testing of the hybrid-CFFT.
Concrete Design Strength (fck, MPa) | FFRP Thickness (tf, mm) | Specimen No. | Fracture Load (kN) | Fracture Strength (MPa) | Displacement (mm) |
---|
Experiment | Average | Experiment | Average | Experiment | Average |
---|
21 | 2.8 | 1 | 3490 | 3252 ± 245 | 49.37 | 46.00 ± 3.47 | 9.34 | 11.04 ± 1.62 |
2 | 2905 | 41.10 | 13.35 |
3 | 3140 | 44.42 | 12.39 |
4 | 3153 | 44.61 | 10.84 |
5 | 3570 | 50.51 | 9.28 |
4.2 | 1 | 3845 | 4112 ± 252 | 54.40 | 58.17 ± 3.57 | 16.45 | 12.57 ± 2.61 |
2 | 4485 | 63.45 | 12.19 |
3 | 4330 | 61.26 | 13.79 |
4 | 3890 | 55.03 | 8.44 |
5 | 4010 | 56.73 | 11.99 |
5.6 | 1 | 4220 | 4202 ± 224 | 59.70 | 59.45 ± 3.17 | 8.31 | 11.04 ± 1.94 |
2 | 4330 | 61.26 | 12.99 |
3 | 4365 | 61.75 | 12.44 |
4 | 3765 | 53.26 | 9.09 |
5 | 4330 | 61.26 | 12.36 |
30 | 2.8 | 1 | 3615 | 3656 ± 80 | 51.14 | 51.72 ± 1.14 | 9.44 | 9.15 ± 2.19 |
2 | 3615 | 51.14 | 8.11 |
3 | 3805 | 53.83 | 12.87 |
4 | 3575 | 50.58 | 9.18 |
5 | 3670 | 51.92 | 6.17 |
4.2 | 1 | 4925 | 4899 ± 45 | 69.67 | 69.31 ± 0.63 | 11.16 | 11.26 ± 2.30 |
2 | 4880 | 69.04 | 11.16 |
3 | 4880 | 69.04 | 9.16 |
4 | 4970 | 70.31 | 9.28 |
5 | 4840 | 68.47 | 15.52 |
5.6 | 1 | 4885 | 4743 ± 238 | 69.11 | 67.10 ± 3.36 | 13.09 | 13.96 ± 4.97 |
2 | 4740 | 67.06 | 11.04 |
3 | 5015 | 70.95 | 10.37 |
4 | 4765 | 67.41 | 11.56 |
5 | 4310 | 60.97 | 23.73 |
40 | 2.8 | 1 | 4050 | 4001 ± 150 | 57.30 | 56.60 ± 2.13 | 7.85 | 11.04 ± 1.91 |
2 | 3855 | 54.54 | 13.06 |
3 | 4175 | 59.06 | 12.51 |
4 | 3795 | 53.69 | 9.97 |
5 | 4130 | 58.43 | 11.83 |
4.2 | 1 | 4860 | 4569 ± 340 | 68.75 | 64.64 ± 4.81 | 11.25 | 9.81 ± 1.07 |
2 | 4060 | 57.44 | 9.63 |
3 | - | - | - |
4 | 4460 | 63.10 | 10.07 |
5 | 4895 | 69.25 | 8.27 |
5.6 | 1 | 5015 | 5258 ± 304 | 70.95 | 74.39 ± 4.30 | 9.89 | 13.05 ± 4.77 |
2 | 5160 | 73.00 | 15.19 |
3 | 4995 | 70.66 | 9.95 |
4 | 5825 | 82.41 | 21.48 |
5 | 5295 | 74.91 | 8.74 |
Table 10.
Mechanical properties of the hybrid−CFFT.
Table 10.
Mechanical properties of the hybrid−CFFT.
Specimen | Diameter (mm) | Length (mm) | FFRP Thickness (mm) | Concrete Compressive Strength (MPa) | FFRP Elasticity (MPa) | FFRP Tensile Strength (MPa) | PFRP Elasticity (GPa) | Poisson’s Ratio |
---|
Hybrid- CFFT-1 | 300 | 600 | 2.80 | 40 | 35,592 | 321 | 30 | 0.2 |
Hybrid- CFFT-2 | 300 | 600 | 4.20 | 40 | 56,123 | 530 | 40 | 0.2 |
Hybrid- CFFT-3 | 300 | 600 | 5.60 | 40 | 56,990 | 607 | 50 | 0.2 |
Table 11.
Comparative results of the hybrid−CFFT.
Table 11.
Comparative results of the hybrid−CFFT.
Concrete Design Strength (fck, MPa) | FFRP Thickness (tf, mm) | Ultimate Strength (MPa) |
---|
Experiment (fe, ①) | FEA Simulation (ff, ②) | Compressive Strength Equation (③) | Error (%) |
---|
{(①-②) × 100}/① | {(①-③) × 100}/① |
---|
21 | 2.8 | 46.13 | 46.07 | 40.95 | 0.13 | 11.23 |
4.2 | 57.67 | 56.88 | 49.56 | 1.37 | 14.06 |
5.6 | 60.74 | 56.48 | 58.16 | 7.01 | 4.25 |
30 | 2.8 | 51.4 | 47.06 | 49.95 | 8.44 | 2.82 |
4.2 | 69.25 | 62.64 | 58.56 | 9.55 | 15.44 |
5.6 | 67.86 | 58.25 | 67.16 | 14.16 | 1.03 |
40 | 2.8 | 56.57 | 49.47 | 59.95 | 12.55 | −5.97 |
4.2 | 67.03 | 57.74 | 68.56 | 13.86 | −2.28 |
5.6 | 72.95 | 59.85 | 77.16 | 17.96 | −5.77 |
Table 12.
Compressive strength comparison of hybrid−CFFT, CFT, and PHC piles.
Table 12.
Compressive strength comparison of hybrid−CFFT, CFT, and PHC piles.
Compressive Behavior | Hybrid-CFFT (①) | CFT(②) | PHC(③) | Error (%) |
---|
{(①-②) × 100}/① | {(①-③) × 100}/① |
---|
Concrete design strength (fck, MPa) | 40 | 40 | 40 | - | - |
Reinforcement thickness (t, mm) | 5.6 | 6 | - | - | - |
Compressive strength (MPa) | 72.95 | 62.50 | 70.18 | 14.32 | 3.80 |