Identifying Changes in Sediment Texture along an Ephemeral Gravel-Bed Stream Using Electrical Resistivity Tomography 2D and 3D
Abstract
:1. Introduction
2. Study Area: Geomorphological and Climatic Setting
3. Materials and Methods
3.1. Electrical Resistivity Tomography (ERT)
3.2. Sediment Texture Analysis from Datasets of Borehole Samples
3.3. Statistical Relationship between Texture Parameters and Electrical Resistivity
4. Results and Discussion
4.1. Changes in Sediment Texture from Borehole Sample Datasets
4.2. Electrical Resistivity Tomography 2D Survey
4.3. Electrical Resistivity Tomography 3D Modelling
4.3.1. Statistical Relationships
4.3.2. 3D Model
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bull, W.B. Discontinuous ephemeral streams. Geomorphology 1997, 19, 227–276. [Google Scholar] [CrossRef]
- Segura-Beltrán, F.; Sanchis-Ibor, C. Assessment of channel changes in a Mediterranean ephemeral stream since the early twentieth century. The Rambla de Cervera, eastern Spain. Geomorphology 2013, 201, 199–214. [Google Scholar] [CrossRef]
- Norman, L.M.; Sankey, J.B.; Dean, D.; Caster, J.; DeLong, S.; DeLong, W.; Pelletier, J.D. Quantifying geomorphic change at ephemeral stream restoration sites using a coupled-model approach. Geomorphology 2017, 283, 1–16. [Google Scholar] [CrossRef]
- Vásconez-Maza, M.D.; Martínez-Segura, M.A.; Bueso, M.C.; Faz, Á.; García-Nieto, M.C.; Gabarrón, M.; Acosta, J.A. Predicting spatial distribution of heavy metals in an abandoned phosphogypsum pond combining geochemistry, electrical resistivity tomography and statistical methods. J. Hazard. Mater. 2019, 374, 392–400. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Segura, M.A.; Vásconez-Maza, M.D.; Faz, Á.; Martínez-Martínez, S.; Gabarrón, M.; Acosta, J.A. Assessment of the environmental impact of an agricultural area near a coastal lagoon using geophysical and geochemical techniques. In Recent Advances in Geophysics; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2019; ISBN 978-1-53616-207-3. [Google Scholar]
- Uhlemann, S.; Kuras, O.; Richards, L.A.; Naden, E.; Polya, D.A. Electrical resistivity tomography determines the spatial distribution of clay layer thickness and aquifer vulnerability, Kandal Province, Cambodia. J. Asian Earth Sci. 2017, 147, 402–414. [Google Scholar] [CrossRef] [Green Version]
- Bábek, O.; Sedláček, J.; Novák, A.; Létal, A. Electrical resistivity imaging of anastomosing river subsurface stratigraphy and possible controls of fluvial style change in a graben-like basin, Czech Republic. Geomorphology 2018. [Google Scholar] [CrossRef]
- Chambers, J.; Ogilvy, R.; Kuras, O.; Cripps, J.; Meldrum, P. 3D electrical imaging of known targets at a controlled environmental test site. Environ. Geol. 2002, 41, 690–704. [Google Scholar] [CrossRef]
- Ogilvy, R.D.; Meldrum, P.I.; Kuras, O.; Wilkinson, P.B.; Chambers, J.E.; Sen, M.; Pulido-Bosch, A.; Gisbert, J.; Jorreto, S.; Frances, I.; et al. Automated monitoring of coastal aquifers with electrical resistivity tomography. Near Surf. Geophys. 2009, 7, 367–376. [Google Scholar] [CrossRef] [Green Version]
- Ortega, J.A.; Razola, L.; Garzón, G. Recent human impacts and change in dynamics and morphology of ephemeral rivers. Nat. Hazards Earth Syst. Sci. 2014, 14, 713–730. [Google Scholar] [CrossRef] [Green Version]
- Conesa-García, C.; Puig-Mengual, C.; Riquelme, A.; Tomás, R.; Martínez-Capel, F.; García-Lorenzo, R.; Pastor, J.L.; Pérez-Cutillas, P.; Cano Gonzalez, M. Combining sfm photogrammetry and terrestrial laser scanning to assess event-scale sediment budgets along a gravel-bed ephemeral stream. Remote Sens. 2020, 12, 3624. [Google Scholar] [CrossRef]
- Everett, M.E. Near-Surface Applied Geophysics; Cambridge University Press: Cambridge, UK, 2013; ISBN 9781107018778. [Google Scholar]
- Vásconez-Maza, M.D.; Martínez-Pagán, P.; Aktarakçi, H.; García-Nieto, M.C.; Martínez-Segura, M.A. Enhancing Electrical Contact with a Commercial Polymer for Electrical Resistivity Tomography on Archaeological Sites: A Case Study. Materials 2020, 13, 5012. [Google Scholar] [CrossRef] [PubMed]
- AGI EarthImager 3D Resistivity Software. Available online: https://www.agiusa.com/agi-earthimager-3d (accessed on 2 February 2021).
- Loke, M.H. Tutorial:2-D and 3-D Electrical Imaging Surveys. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.454.4831&rep=rep1&type=pdf (accessed on 5 March 2019).
- Kasprzak, M. High-resolution electrical resistivity tomography applied to patterned ground, Wedel Jarlsberg Land, south-west Spitsbergen. Polar Res. 2015, 34, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Greggio, N.; Giambastiani, B.M.S.; Balugani, E.; Amaini, C.; Antonellini, M. High-resolution electrical resistivity tomography (ERT) to characterize the spatial extension of freshwater lenses in a salinized coastal aquifer. Water 2018, 10, 1067. [Google Scholar] [CrossRef] [Green Version]
- Rubio-Melendi, D.; Gonzalez-Quirós, A.; Roberts, D.; García García, M.D.C.; Caunedo Domínguez, A.; Pringle, J.K.; Fernández-Álvarez, J.P. GPR and ERT detection and characterization of a mass burial, Spanish Civil War, Northern Spain. Forensic Sci. Int. 2018, 287, e1–e9. [Google Scholar] [CrossRef] [PubMed]
- Dépret, T.; Virmoux, C.; Gautier, E.; Piégay, H.; Doncheva, M.; Plaisant, B.; Ghamgui, S.; Mesmin, E.; Saulnier-Copard, S.; de Milleville, L.; et al. Lowland gravel-bed river recovery through former mining reaches, the key role of sand. Geomorphology 2021, 373, 107493. [Google Scholar] [CrossRef]
- Blackburn, J.; Comte, J.-C.; Foster, G.; Gibbins, C. Hydrogeological controls on the flow regime of an ephemeral temperate stream flowing across an alluvial fan. J. Hydrol. 2021, 595, 125994. [Google Scholar] [CrossRef]
- Rey, J.; Martínez, J.; Hidalgo, M.C. Investigating fluvial features with electrical resistivity imaging and ground-penetrating radar: The Guadalquivir River terrace (Jaen, Southern Spain). Sediment. Geol. 2013, 295, 27–37. [Google Scholar] [CrossRef]
- Loke, M.H.; Chambers, J.E.; Rucker, D.F.; Kuras, O.; Wilkinson, P.B. Recent developments in the direct-current geoelectrical imaging method. J. Appl. Geophys. 2013, 135–156. [Google Scholar] [CrossRef]
- AGI Dipole-Dipole Array. Available online: https://www.agiusa.com/dipole-dipole-array (accessed on 16 July 2020).
- AGI SuperSting Wi-Fi. Available online: https://www.agiusa.com/supersting-wifi (accessed on 16 July 2020).
- Loke, M.H.; Barker, R.D. Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method1. Geophys. Prospect. 1996, 44, 131–152. [Google Scholar] [CrossRef]
- Chambers, J.E.; Wilkinson, P.B.; Wardrop, D.; Hameed, A.; Hill, I.; Jeffrey, C.; Loke, M.H.; Meldrum, P.I.; Kuras, O.; Cave, M.; et al. Bedrock detection beneath river terrace deposits using three-dimensional electrical resistivity tomography. Geomorphology 2012, 177–178, 17–25. [Google Scholar] [CrossRef] [Green Version]
- SIAM Ficha de Estaciones. Available online: http://siam.imida.es/apex/f?p=101:1000:6322900036254158::NO::: (accessed on 17 March 2021).
- Bear, J. Dynamics of Fluids in Porous Media; Dover Publications, Inc.: New York, NY, USA, 2013; ISBN 978-0-486-65675-5. [Google Scholar]
- Salisbury, J.W.; Eastes, J.W. The effect of particle size and porosity on spectral contrast in the mid-infrared. Icarus 1985, 64, 586–588. [Google Scholar] [CrossRef]
- Jin, G.; Torres-Verdín, C.; Lan, C. Pore-level study of grain-shape effects on petrophysical properties of porous media. In Proceedings of the SPWLA 50th Annual Logging Symposium 2009, The Woodlands, TX, USA, 21–24 June 2009. [Google Scholar]
- Tucker, M. Sedimentary Petrology: An Introduction to the Origin of Sedimentary Rocks, 3rd ed.; Blackwell Science Ltd.: Oxford, UK, 2001; ISBN 978-0-632-05735-1. [Google Scholar]
- Beard, D.C.; Weyl, P.K. Influence of Texture on Porosity and Permeability of Unconsolidated Sand. Am. Assoc. Pet. Geol. Bull. 1973, 57. [Google Scholar] [CrossRef]
- Vukovic, M.; Soro, A. Determination of Hydraulic Conductivity of Porous Media from Grain-Size Composition; Water Resources Publications: Littleton, CO, USA, 1992; ISBN 9780918334770. [Google Scholar]
- Cheng, C.; Chen, X. Evaluation of methods for determination of hydraulic properties in an aquifer-aquitard system hydrologically connected to a river. Hydrogeol. J. 2007, 15, 669–678. [Google Scholar] [CrossRef]
- Odong, J. Evaluation of Empirical Formulae for Determination of Hydraulic Conductivity based on Grain-Size Analysis. J. Am. Sci. 2007, 3, 54–60. [Google Scholar]
- Koch, K.; Kemna, A.; Irving, J.; Holliger, K. Impact of changes in grain size and pore space on the hydraulic conductivity and spectral induced polarization response of sand. Hydrol. Earth Syst. Sci. 2011, 15, 1785–1794. [Google Scholar] [CrossRef] [Green Version]
- Urumovi, K.; Urumović, K., Sr. The effective porosity and grain size relations in permeability functions. Hydrol. Earth Syst. Sci. Discuss. 2014, 11, 6675–6714. [Google Scholar] [CrossRef]
- Cho, G.-C.; Dodds, J.; Santamarina, J.C. Particle Shape Effects on Packing Density, Stiffness, and Strength: Natural and Crushed Sands. J. Geotech. Geoenvironmental Eng. 2006, 132, 591–602. [Google Scholar] [CrossRef] [Green Version]
- Dodds, J.; Santamarina, C.; Paul Mayne Glenn Rix, A. Particle Shape and Stiffness-Effects on Soil Behavior; Georgia Institute of Technology: Atlanta, GA, USA, 2003. [Google Scholar]
- Rousé, P.C.; Fannin, R.J.; Shuttle, D.A. Influence of roundness on the void ratio and strength of uniform sand. Géotechnique 2008, 58, 227–231. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001, 4, 1–9. [Google Scholar]
- AGI Quick Tip: Depth of Investigation for ERI Surveys. Available online: https://www.agiusa.com/blog/quick-tip-depth-investigation-eri-surveys (accessed on 28 February 2021).
- Matys Grygar, T.; Elznicová, J.; Tůmová, S.; Faměra, M.; Balogh, M.; Kiss, T. Floodplain architecture of an actively meandering river (the Ploučnice River, the Czech Republic) as revealed by the distribution of pollution and electrical resistivity tomography. Geomorphology 2016. [Google Scholar] [CrossRef]
- Chaudhuri, A.; Sekhar, M.; Descloitres, M.; Godderis, Y.; Ruiz, L.; Braun, J.J. Constraining complex aquifer geometry with geophysics (2-D ERT and MRS measurements) for stochastic modelling of groundwater flow. J. Appl. Geophys. 2013, 98, 288–297. [Google Scholar] [CrossRef]
- Zeng, R.Q.; Meng, X.M.; Zhang, F.Y.; Wang, S.Y.; Cui, Z.J.; Zhang, M.S.; Zhang, Y.; Chen, G. Characterizing hydrological processes on loess slopes using electrical resistivity tomography—A case study of the Heifangtai Terrace, Northwest China. J. Hydrol. 2016, 541, 742–753. [Google Scholar] [CrossRef]
- Argote-Espino, D.L.; López-García, P.A.; Tejero-Andrade, A. 3D-ERT geophysical prospecting for the investigation of two terraces of an archaeological site northeast of Tlaxcala state, Mexico. J. Archaeol. Sci. Rep. 2016, 8, 406–415. [Google Scholar] [CrossRef]
- Chambers, J.E.; Wilkinson, P.B.; Penn, S.; Meldrum, P.I.; Kuras, O.; Loke, M.H.; Gunn, D.A. River terrace sand and gravel deposit reserve estimation using three-dimensional electrical resistivity tomography for bedrock surface detection. J. Appl. Geophys. 2013, 93, 25–32. [Google Scholar] [CrossRef] [Green Version]
Sedimentary Materials | Porosity (%) | Sedimentary Materials | Porosity (%) |
---|---|---|---|
peat soil | 60–80 | fine-to-medium mixed sand | 30–35 |
soils | 50–60 | gravel | 30–40 |
clay | 45–55 | gravel and sand | 30–35 |
silt | 40–50 | sandstone | 10–20 |
medium-to-coarse mixed sand | 35–40 | shale | 1–10 |
uniform sand | 30–40 | limestone | 1–10 |
Grain Sizes | ||||||
---|---|---|---|---|---|---|
Depth (m) | D10 (mm) | D20 (mm) | D50 (mm) | D84 (mm) | σ | |
BH1 | 0.0–1.1 | 0.4 | 2.1 | 15 | 36 | 2.37 |
1.1–3.0 | 0.01 | 0.02 | 0.04 | 0.06 | 0.08 | |
BH2 | 0.0–1.4 | 0.4 | 2.5 | 12 | 27 | 2.09 |
1.4–2.3 | 0.2 | 1.1 | 1.9 | 15 | 2.21 | |
2.3–3.0 | 0.5 | 2.6 | 17 | 32 | 2.22 | |
BH3 | 0.0–1.2 | 0.4 | 3.3 | 10 | 17 | 1.86 |
1.2–1.6 | 0.3 | 1.9 | 8 | 18 | 2.08 | |
1.6–2.5 | 0.4 | 1.4 | 6 | 26 | 2.20 | |
2.5–3.0 | 0.1 | 0.5 | 4 | 12 | 2.73 | |
BH4 | 0.0–1.5 | 0.5 | 3.2 | 17 | 27 | 2.11 |
Zingg Shape Classes | Shape—Sphericity (Sneed & Folk, 1958) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Depth (m) | Discoid or Oblate | Equid.—Spheroid | Blade | Rod | ||||||||||||
% | I/L | S/L | % | I/L | S/L | % | I/L | S/L | % | I/L | S/L | S/L | DRI | ψp | ||
BH1 | 0.0–1.1 | 57.1 | 0.81 | 0.55 | 0.0 | - | - | 14.3 | 0.45 | 0.60 | 28.6 | 0.58 | 0.75 | 0.42 | 0.51 | 0.63 |
1.1–3.0 | Loamy substrate | |||||||||||||||
BH2 | 0.0–1.4 | 50.0 | 0.82 | 0.50 | 16.7 | 0.80 | 0.71 | 0.0 | - | - | 33.3 | 0.47 | 0.71 | 0.41 | 0.49 | 0.62 |
1.4–2.3 | 50.0 | 0.72 | 0.50 | 16.7 | 0.70 | 0.89 | 16.7 | 0.60 | 0.50 | 16.7 | 0.63 | 0.68 | 0.40 | 0.55 | 0.62 | |
2.3–3.0 | 50.0 | 0.80 | 0.54 | 0.0 | - | - | 50.0 | 0.61 | 0.59 | 0.0 | - | - | 0.39 | 0.47 | 0.60 | |
BH3 | 0.0–1.2 | 33.3 | 0.93 | 0.46 | 0.0 | - | - | 16.7 | 0.59 | 0.58 | 50.0 | 0.59 | 0.74 | 0.42 | 0.51 | 0.63 |
1.2–1.6 | 50.0 | 0.89 | 0.54 | 50.0 | 0.76 | 0.72 | 0.0 | - | - | 0.0 | - | - | 0.51 | 0.38 | 0.69 | |
1.6–2.5 | 100.0 | 0.77 | 0.60 | 0.0 | - | - | 0.0 | - | - | 0.0 | - | - | 0.46 | 0.42 | 0.65 | |
2.5–3.0 | 50.0 | 0.73 | 0.49 | 33.3 | 0.74 | 0.75 | 0.0 | - | - | 16.7 | 0.62 | 0.81 | 0.44 | 0.54 | 0.65 | |
BH4 | 0.0–1.5 | 57.1 | 0.76 | 0.60 | 14.3 | 0.83 | 0.84 | 28.6 | 0.63 | 0.55 | 0.0 | - | - | 0.45 | 0.49 | 0.65 |
Grain Sizes | Zingg Shape Classes | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
D10 (mm) | D20 (mm) | D50 (mm) | D84 (mm) | σ | Discoid or Oblate | Equidimensional—Spheroid | Blade | Rod | |||||||||
% | l/L | S/L | % | l/L | S/L | % | l/L | S/L | % | l/L | S/L | ||||||
p | 0.48 | 0.05 | 0.31 | 0.52 | 0.43 | 0.09 | 0.09 | 0.14 | 0.64 | 0.11 | 0.96 | 0.69 | 0.66 | 0.88 | 0.07 | 0.66 | 0.38 |
r | 0.27 | 0.67 | 0.36 | 0.23 | 0.28 | −0.60 | 0.60 | −0.53 | −0.18 | −0.79 | −0.03 | 0.15 | 0.27 | −0.09 | 0.63 | −0.27 | −0.51 |
n | 9 | 9 | 10 | 10 | 10 | 9 | 9 | 9 | 9 | 5 | 5 | 9 | 5 | 5 | 9 | 5 | 5 |
Resistivity Values in Ω.m | ||||||
---|---|---|---|---|---|---|
Depth | Max | Min | Mean | SD | COV | |
m | % | |||||
BH1 | 0.0–1.1 | 2543.4 | 1590.3 | 2187.2 | 252.9 | 11.6 |
1.1–3.0 | 1427.3 | 318.7 | 595.9 | 253.6 | 42.6 | |
BH2 | 0.0–1.4 | 6923.6 | 3370.8 | 4695.5 | 1303.5 | 27.8 |
1.4–2.3 | 4304.8 | 3558.7 | 4023.4 | 211.6 | 5.3 | |
2.3–3.0 | 3558.7 | 2919.3 | 3160.4 | 228.4 | 7.2 | |
BH3 | 0.0–1.2 | 8599.2 | 3744.0 | 6623.5 | 1447.4 | 21.9 |
1.2–1.6 | 3744.0 | 2694.3 | 3180.3 | 309.8 | 9.7 | |
1.6–2.5 | 2694.3 | 1716.1 | 1984.3 | 276.4 | 13.9 | |
2.5–3.0 | 1716.1 | 1706.3 | 1710.0 | 4.3 | 0.3 | |
BH4 | 0.0–1.5 | 7183.5 | 1832.7 | 3843.7 | 1665.2 | 43.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Segura, M.A.; Conesa-García, C.; Pérez-Cutillas, P.; Martínez-Pagán, P.; Vásconez-Maza, M.D. Identifying Changes in Sediment Texture along an Ephemeral Gravel-Bed Stream Using Electrical Resistivity Tomography 2D and 3D. Appl. Sci. 2021, 11, 3030. https://doi.org/10.3390/app11073030
Martínez-Segura MA, Conesa-García C, Pérez-Cutillas P, Martínez-Pagán P, Vásconez-Maza MD. Identifying Changes in Sediment Texture along an Ephemeral Gravel-Bed Stream Using Electrical Resistivity Tomography 2D and 3D. Applied Sciences. 2021; 11(7):3030. https://doi.org/10.3390/app11073030
Chicago/Turabian StyleMartínez-Segura, Marcos A., Carmelo Conesa-García, Pedro Pérez-Cutillas, Pedro Martínez-Pagán, and Marco D. Vásconez-Maza. 2021. "Identifying Changes in Sediment Texture along an Ephemeral Gravel-Bed Stream Using Electrical Resistivity Tomography 2D and 3D" Applied Sciences 11, no. 7: 3030. https://doi.org/10.3390/app11073030
APA StyleMartínez-Segura, M. A., Conesa-García, C., Pérez-Cutillas, P., Martínez-Pagán, P., & Vásconez-Maza, M. D. (2021). Identifying Changes in Sediment Texture along an Ephemeral Gravel-Bed Stream Using Electrical Resistivity Tomography 2D and 3D. Applied Sciences, 11(7), 3030. https://doi.org/10.3390/app11073030