Biochemical Methane Potential of Cork Boiling Wastewater at Different Inoculum to Substrate Ratios
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization of Materials
2.2. Experimental Tests
3. Results and Discussion
3.1. Characterization of Substrate
3.2. Production of Biogas and Biomethane
3.3. Characterization of the Digestate
3.4. Thermogravimetric and Spectroscopic Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Novelty Statement
Abbreviations
AD | Anaerobic Digestion |
BMP | Biochemical Methane Potential |
BOD | Biochemical Oxygen Demand |
C | Carbon |
CBW | Cork Boiling Wastewater |
CH4 | Methane |
CM | Cow Manure |
CO | Carbon monoxide |
CO2 | Carbon Dioxide |
COD | Chemical Oxygen Demand |
DNA | Deoxyribonucleic Acid |
DTG | Differential Thermal Analyzes |
FTIR | Fourier transformed infrared |
FW | Food Waste |
H | Hydrogen |
H2S | Hydrogen Sulfide |
Ino/CBW | Inoculum/Cork Boiling Wastewater |
N | Nitrogen |
O2 | Oxygen |
POA | Advanced Oxidation Processes |
S | Sulfur |
TGA | Thermal Gravimetric Analysis |
TS | Total Solids |
VFA | Volatile Fatty Acids |
VS | Volatile Solids |
WWTP | Wastewater Treatment Plant |
References
- Lan, B.Y.; Nigmatullin, R.; Li Puma, G. Ozonation kinetics of cork-processing water in a bubble column reactor. Water Res. 2008, 42, 2473–2482. [Google Scholar] [CrossRef]
- Ponce-Robles, L.; Miralles-Cuevas, S.; Oller, I.; Agüera, A.; Trinidad-Lozano, M.J.; Yuste, F.J.; Malato, S. Cork boiling wastewater treatment and reuse through combination of advanced oxidation technologies. Environ. Sci. Pollut. Res. 2017, 24, 6317–6328. [Google Scholar] [CrossRef]
- Amorim. A Arte da Cortiça; Amorim: Mozelos, Portugal, 2014; Volume 96, Available online: https://www.amorim.com/xms/files/v1/Documentacao/Brochura_Arte_Cortica_PT_Small.pdf (accessed on 20 January 2020).
- Santos, S.A.O.; Villaverde, J.J.; Sousa, A.F.; Coelho, J.F.J.; Neto, C.P.; Silvestre, A.J.D. Phenolic composition and antioxidant activity of industrial cork by-products. Ind. Crops Prod. 2013, 47, 262–269. [Google Scholar] [CrossRef]
- Bicho, M. A Rolha de Cortiça: Da Floresta à Utilização; APCOR: Santa Maria de Lamas, Portugal, 2014; Available online: https://www.apcor.pt/portfolio-posts/a-rolha-de-cortica-da-floresta-a-utilizacao/ (accessed on 20 January 2020).
- Fernandes, A.; Santos, D.; Pacheco, M.J.; Ciríaco, L.; Simões, R.; Gomes, A.C.; Lopes, A. Electrochemical treatment of cork boiling wastewater with a boron-doped diamond anode. Environ. Technol. 2015, 36, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Ponce-Robles, L.; Oller, I.; Agüera, A.; Trinidad-Lozano, M.J.; Yuste, F.J.; Malato, S.; Perez-Estrada, L.A. Application of a multivariate analysis method for non-target screening detection of persistent transformation products during the cork boiling wastewater treatment. Sci. Total Environ. 2018, 633, 508–517. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.; Bernardo, M.; Vespeira, C.; Cantinho, P.; Minhalma, M. Cork industry wastewater characterization: Assessment of the biodegradability, reuse and of the relationship between BOD, COD and tannins with TOC. J. Water Reuse Desalin. 2012, 2, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Machado, M.M.D. Degradação Biológica de Polifenóis: Isolamento e Caracterização de Bactérias Mesofílicas e Termofílicas de Água de Cozedura de Cortiça. Master’s Thesis, Universidade do Porto—Faculdade de Engenharia, Porto, Portugal, 2005. Available online: https://repositorio-aberto.up.pt/bitstream/10216/12486/2/Texto%20integral.pdf (accessed on 20 January 2020).
- De Torres-socías, E.; Fernández-calderero, I.; Oller, I.; Trinidad-lozano, M.J.; Yuste, F.J.; Malato, S. Cork boiling wastewater treatment at pilot plant scale: Comparison of solar photo-Fenton and ozone (O3, O3/H2O2). Toxic. Biodegrad. Assess. 2013, 234, 232–239. [Google Scholar] [CrossRef]
- Pnpri, P.N.d.P.d.R.I. Sector da Indústria da Cortiça. 2001. Available online: https://www.gee.gov.pt/en/documentos/estudos-e-seminarios/artigos/8479-analise-02-19/file (accessed on 20 January 2020).
- Pintor, A.M.A. Tratamento de Águas Residuais da Indústria Corticeira por Processos Combinados Foto-Fenton Solar/Oxidação Biológica. 2010, Volume 90. Available online: https://repositorio-aberto.up.pt/handle/10216/59140 (accessed on 20 January 2020).
- Ponce-Robles, L.; Oller, I.; Polo-López, M.I.; Rivas-Ibáñez, G.; Malato, S. Microbiological evaluation of combined advanced chemical-biological oxidation technologies for the treatment of cork boiling wastewater. Sci. Total Environ. 2019, 687, 567–576. [Google Scholar] [CrossRef]
- Test, Z.-W. OECD guidelines for testing of chemicals. Dermatotoxic. Eighth Ed. 2012, 8, 497–499. [Google Scholar] [CrossRef]
- Javier Benítez, F.; Acero, J.L.; Leal, A.I. Treatment of wastewaters from the cork process industry by using ultrafiltration membranes. Desalination 2008, 229, 156–169. [Google Scholar] [CrossRef]
- Couceiro, R.A.A. Gestão/Tratamento de Águas Residuais Numa Indústria de Produção de Rolhas de Cortiça; Instituto Superior de Agronomia—Universidade de Lisboa: Lisboa, Portugal, 2015; Available online: https://www.repository.utl.pt/bitstream/10400.5/10911/1/Disserta%C3%A7%C3%A3oFinal_19039_R%C3%BAbenCouceiro.pdf (accessed on 20 January 2020).
- Ponce-robles, L.; Polo-lópez, M.I.; Oller, I.; Garrido-cardenas, J.A.; Malato, S. Practical approach to the evaluation of industrial wastewater treatment by the application of advanced microbiological techniques. Ecotoxicol. Environ. Saf. 2018, 166, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Tilche, A.; Malaspina, F. Biogas production in Europe. In Proceedings of the the 10th European Conference Biomass for Energy and Industry, Würzburg, Germany, 8–11 June 1998. [Google Scholar] [CrossRef]
- Fitzgerald, G.C. Pre-Processing and Treatment of Municipal Solid Waste (MSW) Prior to Incineration; Woodhead Publishing Limited: Cambridge, UK, 2013; ISBN 9780857096364. [Google Scholar]
- Marques, I.P.; Gil, L.; La Cara, F. Energetic and biochemical valorization of cork boiling wastewater by anaerobic digestion. Biotechnol. Biofuels 2014, 7, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alves, M.M.d.S. Estudo e Caracterização de Digestores Anaeróbios de Leito Fixo. Ph.D. Thesis, University of Minho, Braga, Portugal, 1998. Available online: http://repositorium.sdum.uminho.pt/handle/1822/2580 (accessed on 20 January 2020).
- Dixon, P.J.; Ergas, S.J.; Mihelcic, J.R.; Hobbs, S.R. Effect of Substrate to Inoculum Ratio on Bioenergy Recovery from Food Waste, Yard Waste, and Biosolids by High Solids Anaerobic Digestion. Environ. Eng. Sci. 2019, 16. [Google Scholar] [CrossRef] [Green Version]
- Hobbs, S.R.; Parameswaran, P.; Astmann, B.; Devkota, J.P.; Landis, A.E. Anaerobic Codigestion of Food Waste and Polylactic Acid: Effect of Pretreatment on Methane Yield and Solid Reduction. Adv. Mater. Sci. Eng. 2019, 2019. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Jin, Y.; Borrion, A.; Li, J. Influence of feed/inoculum ratios and waste cooking oil content on the mesophilic anaerobic digestion of food waste. Waste Manag. 2018, 73, 156–164. [Google Scholar] [CrossRef]
- Cremonez, P.A.; Sampaio, S.C.; Teleken, J.G.; Weiser Meier, T.; Dieter, J.; Teleken, J. Influence of inoculum to substrate ratio on the anaerobic digestion of a cassava starch polymer. Ind. Crops Prod. 2019, 141, 111709. [Google Scholar] [CrossRef]
- Akyol, Ç. In search of the optimal inoculum to substrate ratio during anaerobic co-digestion of spent coffee grounds and cow manure. Waste Manag. Res. 2020, 38, 1278–1283. [Google Scholar] [CrossRef]
- Córdoba, V.; Fernández, M.; Santalla, E. The effect of substrate/inoculum ratio on the kinetics of methane production in swine wastewater anaerobic digestion. Environ. Sci. Pollut. Res. 2018, 25, 21308–21317. [Google Scholar] [CrossRef]
- Pagés-Díaz, J.; Huiliñir, C. Valorization of the liquid fraction of co-hydrothermal carbonization of mixed biomass by anaerobic digestion: Effect of the substrate to inoculum ratio and hydrochar addition. Bioresour. Technol. 2020, 317, 123989. [Google Scholar] [CrossRef]
- Retecork San Vicenti de Alcántara. Available online: http://www.visitterritorioscorticeiros.pt/project/san-vicente-de-alcantara/ (accessed on 30 October 2019).
- Casaretto, R.; Thomsen, F.; Born, J.; Holm-nielsen, J.B. Bioresource Technology Reports Determination of biogas process e ffi ciency—A practice-oriented alternative to the biomethane potential test. Bioresour. Technol. Rep. 2019, 7, 100201. [Google Scholar] [CrossRef]
- Hafner, S.D.; Rennuit, C.; Triolo, J.M.; Richards, B.K. Biomass and Bioenergy Validation of a simple gravimetric method for measuring biogas production in laboratory experiments. Biomass Bioenergy 2015, 83, 297–301. [Google Scholar] [CrossRef]
- Dias-Machado, M.; Madeira, L.M.; Nogales, B.; Nunes, O.C.; Manaia, C.M. Treatment of cork boiling wastewater using chemical oxidation and biodegradation. Chemosphere 2006, 64, 455–461. [Google Scholar] [CrossRef]
- Guedes, A.M.F.M.; Madeira, L.M.P.; Boaventura, R.A.R.; Costa, C.A.V. Fenton oxidation of cork cooking wastewater—Overall kinetic analysis. Water Res. 2003, 37, 3061–3069. [Google Scholar] [CrossRef]
- Silva, C.A.; Madeira, L.M.; Boaventura, R.A.; Costa, C.A. Photo-oxidation of cork manufacturing wastewater. Chemosphere 2004, 55, 19–26. [Google Scholar] [CrossRef]
- Picado, A.; Silva, L.; Anselmo, A.M. Ecotoxicological evaluation of cork-boiling wastewaters. Ecotoxicol. Environ. Saf. 2007, 66, 384–390. [Google Scholar] [CrossRef]
- Pintor, A.M.A.; Vilar, V.J.P.; Boaventura, R.A.R. Decontamination of cork wastewaters by solar-photo-Fenton process using cork bleaching wastewater as H2O2 source. Sol. Energy 2011, 85, 579–587. [Google Scholar] [CrossRef]
- Gonçalves, M.R.; Gil, L.; Marques, I.P. Cork boiling wastewater management by anerobic digestion. In Proceedings of the 4th International Conference on Engineering for Waste and Biomass Valorisation, Porto, Portugal, 10–13 September 2012; pp. 6–11. Available online: https://repositorio.lneg.pt/handle/10400.9/1668?locale=en (accessed on 20 January 2020).
- Sousa, F.A.; Campos, A.T.; Assenheimer, A.; Ponciano, P.F.; Gonçalves Junior, A.C.; Yanagi Junior, T. Parâmetros Físico-Químicos de Dejetos de Bovinos Tratados em Tanques Aerados. In Proceedings of the III SICER, São Paulo, Brazil, 12–14 March 2013; pp. 12–15. [Google Scholar]
- Wang, X.; Lu, X.; Li, F.; Yang, G. Effects of temperature and Carbon-Nitrogen (C/N) ratio on the performance of anaerobic co-digestion of dairy manure, chicken manure and rice straw: Focusing on ammonia inhibition. PLoS ONE 2014, 9, e97265. [Google Scholar] [CrossRef] [Green Version]
- El-mashad, H.M.; Zhang, R. Biogas production from co-digestion of dairy manure and food waste. Bioresour. Technol. 2010, 101, 4021–4028. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Su, H.; Baeyens, J.; Tan, T. Reviewing the anaerobic digestion of food waste for biogas production. Renew. Sustain. Energy Rev. 2014, 38, 383–392. [Google Scholar] [CrossRef]
- Ratanatamskul, C.; Wattanayommanaporn, O.; Yamamoto, K. An on-site prototype two-stage anaerobic digester for co-digestion of food waste and sewage sludge for biogas production from high-rise building. Int. Biodeterior. Biodegrad. 2015, 102, 143–148. [Google Scholar] [CrossRef]
- Chen, G.; Liu, G.; Yan, B.; Shan, R.; Wang, J.; Li, T.; Xu, W. Experimental study of co-digestion of food waste and tall fescue for bio-gas production. Renew. Energy 2016, 88, 273–279. [Google Scholar] [CrossRef]
- Doran, J.W.; Linn, D.M. Bacteriological Quality of Runoff Water from Pasturelandt. Appl. Environ. Microbiol. 1979, 37, 985–991. [Google Scholar] [CrossRef] [Green Version]
- Furlong, J.; Padilha, T. Inactivation of trichostrong nematode eggs by anaerobic digestion of cattle slurry. Ciência Rural 1996, 26, 269–271. [Google Scholar] [CrossRef]
- Cui, W.; Cheng, J.J. Growing duckweed for biofuel production: A review. Plant Biol. 2014, 1–8. [Google Scholar] [CrossRef]
- Higgins, A.J.; Kaplovsky, A.J.; Hunter, J.V. Organic composition of aerobic, anaerobic, and compost-stabilized sludges. J. Water Pollut. Control. Fed. 1982, 54, 466–473. [Google Scholar]
- Otero, M.; Calvo, L.F.; Estrada, B.; García, A.I.; Morán, A. Thermogravimetry as a technique for establishing the stabilization progress of sludge from wastewater treatment plants. Thermochim. Acta 2002, 389, 121–132. [Google Scholar] [CrossRef]
- Gómez, X.; Cuetos, M.J.; García, A.I.; Morán, A. An evaluation of stability by thermogravimetric analysis of digestate obtained from different biowastes. J. Hazard. Mater. 2007, 149, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Esteves, V.I.; Duarte, A.C. Thermogravimetric properties of aquatic humic substances. Mar. Chem. 1999, 63, 225–233. [Google Scholar] [CrossRef]
- Urban, L.; Antal, J. Study of the kinetics of sewage sludge pyrolysis using DSC and TGA. Fuel 1982, 61, 799–806. [Google Scholar] [CrossRef]
- Pietro, M.; Paola, C. Thermal analysis for the evaluation of the organic matter evolution during municipal solid waste aerobic composting process. Thermochim. Acta 2004, 413, 209–214. [Google Scholar] [CrossRef]
- Francioso, O.; Montecchio, D.; Gioacchini, P.; Ciavatta, C. Thermal analysis (TG–DTA) and isotopic characterization (13 C–15 N) of humic acids from different origins. Appl. Geochem. 2005, 20, 537–544. [Google Scholar] [CrossRef]
- Celina, M.; Ottesen, D.K.; Gillen, K.T.; Clough, R.L. FTIR emission spectroscopy applied to polymer degradation. Polym. Degrad. Stab. 1997, 58, 15–31. [Google Scholar] [CrossRef]
- Stevenson, F.J. Humus Chemistry: Genesis, Composition, Reactions, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 1994; ISBN 978-0-471-59474-1. [Google Scholar]
- Provenzano, M.R.; Iannuzzi, G.; Fabbri, C.; Senesi, N. Qualitative Characterization and Differentiation of Digestates from Different Biowastes Using FTIR and Fluorescence Spectroscopies. J. Environ. Prot. Irvine. Calif. 2011, 2, 83–89. [Google Scholar] [CrossRef] [Green Version]
- Carchesio, M.; Tatàno, F.; Lancellotti, I.; Taurino, R.; Colombo, E.; Barbieri, L. Comparison of biomethane production and digestate characterization for selected agricultural substrates in Italy. Environ. Technol. 2014, 35, 2212–2226. [Google Scholar] [CrossRef] [PubMed]
- Droussi, Z.; D’orazio, V.; Provenzano, M.R.; Hafidi, M.; Ouatmane, A. Study of the biodegradation and transformation of olive-mill residues during composting using FTIR spectroscopy and differential scanning calorimetry. J. Hazard. Mater. 2009, 164, 1281–1285. [Google Scholar] [CrossRef] [PubMed]
- Pognani, M.; Barrena, R.; Font, X.; Scaglia, B.; Adani, F.; Sánchez, A. Monitoring the organic matter properties in a combined anaerobic/aerobic full-scale municipal source-separated waste treatment plant. Bioresour. Technol. 2010, 101, 6873–6877. [Google Scholar] [CrossRef] [Green Version]
- Durga, R.; Anand, S.; Rajkumar, K.; Ramalingam, S.; Sundararajan, R.S. Molecular Structure, Vibrational Spectra [FT-IR and FT-Raman], Electronic Spectra [UV-Visible] and NMR Analysis on Hydroquinone Using HF and DFT Calculations. J. Mol. Struct. 2016, 3. [Google Scholar] [CrossRef]
- Sfaksi, Z.; Azzouz, N.; Abdelwahab, A. Removal of Cr(VI) from water by cork waste. Arab. J. Chem. 2014, 7, 37–42. [Google Scholar] [CrossRef] [Green Version]
- Serpe, G.; Chaupart, N. Relaxation-Structure Relationship in Bulk and Plasticized. J. Polym. Sci. Part B Polym. Phys. 1996, 34, 1–4. [Google Scholar] [CrossRef]
- Domingos, E.; Pereira, T.M.C.; De Castro, E.V.R.; Romão, W.; De Sena, G.L.; Guimarães, R.C.L. Monitoring the Degradation of Polyamide 11 (PA-11) via Fourier Transform Infrared Spectroscopy (FTIR). Polimeros 2013, 23, 37–41. [Google Scholar] [CrossRef] [Green Version]
- Pivnyak, G.; Bonderenko, V.; Kovalevs’ka, I.; Illiashov, M. Mining of Mineral Deposits; CRC Press: London, UK, 2013. [Google Scholar] [CrossRef]
- Grube, M.; Köck, K.; Oswald, S.; Draber, K.; Meissner, K.; Eckel, L.; Böhm, M.; Felix, S.B.; Vogelgesang, S.; Jedlitschky, G.; et al. Organic anion transporting polypeptide 2B1 is a high-affinity transporter for atorvastatin and is expressed in the human heart. Clin. Pharmacol. Ther. 2006, 80, 607–620. [Google Scholar] [CrossRef] [PubMed]
Parameter | Unit. | CBW | Ino | FW | CM |
---|---|---|---|---|---|
pH | - | 4.6 ± 0.2 | 6.7 ± 0.2 | 6 ± 0.2 | >> |
Dissolved solids | mg/L | 740.00 ± 60 | 2840.00 ± 120 | 4440.00 ± 180 | >> |
Conductivity | µS/cm | 1480.00 ± 350 | 5770.00 ± 980 | 8910.00 ± 1080 | >> |
C | (%) | 44.17 ± 0.43 | 35.08 ± 2.08 | 46.29 ± 1.67 | 39.56 ± 0.94 |
H | (%) | 6.03 ± 0.16 | 6.06 ± 0.33 | 6.43 ± 0.37 | 5.91 ± 0.31 |
N | (%) | 3.7 ± 0.57 | 7.52 ± 0.52 | 4.79 ± 1.67 | 3.44 ± 0.16 |
S | (%) | 0 | 0 | 0 | 0 |
O | (%) | 29.96 ± 0.64 | 11.42 ± 0.38 | 28.74 ± 0.55 | 27.31 ± 0.35 |
Ratio C/N | - | 12.06 ± 1.74 | 4.66 ± 0.05 | 9.66 ± 0.59 | 11.51 ± 0.05 |
COD | mg/L | 7060.00 ± 100 | 1639.50 ± 13.75 | 82,975.00 ± 1500 | 84,475.00 ± 1062 |
Total solids | mg/L | 8375.00 ± 25 | 14,525.00 ± 575 | 79,575.00 ± 3525 | 187,250.00 ± 1150 |
Total solids | (%) | 0.87 ± 0.00 | 2.00 ± 0.72 | 6.9 ± 0.02 | 27.96 ± 0.86 |
Volatile solids | mg/L TS | 6875.00 ± 25 | 9500.00 ± 300 | 68,925.00 ± 3225 | 136,600.00 ± 2400 |
Volatile solids | (% TS) | 82.09 ± 0.05 | 65.43 ± 0.52 | 86.60 ± 0.22 | 729.00 ± 0.83 |
Parameter | Unit. | Ino/CBW-1:1 | Ino/CBW-2:1 | Ino/CBW:FW-1/0.7:0.3 | Ino/CBW:FW-1/0.5:0.5 | Ino/CBW:CM-1/0.7:0.3 | Ino/CBW:CM-1/0.5:0.5 | Ino Control |
---|---|---|---|---|---|---|---|---|
pH | - | 6.7 ± 0.2 | 6.7 ± 0.2 | 7.3 ± 0.2 | 6 ± 0.2 | 7 ± 0.2 | 7.1 ± 0.2 | 6.65 ± 0.25 |
Dissolved solids | mg/L | 1720.00 ± 200 | 2065.00 ± 150 | 4440.00 ± 200 | 4650.00 ± 250 | >> | >> | 715.00 ± 50 |
Conductivity | µS/cm | 3420.00 ± 180 | 4185.00 ± 200 | 8890.00 ± 330 | 9220.00 ± 360 | >> | >> | 1415.00 ± 100 |
C | (%) | 37.63 ± 1.38 | 38.15 ± 0.61 | 35.24 ± 0.8 | 39.45 ± 0.2 | 35.71 ± 0.45 | 35.58 ± 0.82 | 35.31 ± 1.13 |
H | (%) | 5.76 ± 0.33 | 6.33 ± 0.13 | 6.86 ± 0.31 | 7.36 ± 0.48 | 6.06 ± 0.35 | 6.39 ± 0.66 | 6.35 ± 0.16 |
N | (%) | 4.34 ± 0.15 | 4.90 ± 0.16 | 6.53 ± 0.12 | 6.00 ± 0.14 | 4.77 ± 0.09 | 5.26 ± 0.12 | 5.02 ± 0.06 |
S | (%) | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
O | (%) | 17.91 ± 0.82 | 12.27 ± 0.91 | 4.73 ± 0.25 | 14.88 ± 0.54 | 15.97 ± 0.84 | 15.00 ± 0.28 | 13.01 ± 0.65 |
C/N ratio | - | 8.68 ± 0.18 | 7.79 ± 0.17 | 5.4 ± 0.25 | 5.68 ± 0.19 | 7.49 ± 0.21 | 7.34 ± 0.18 | 7.03 ± 0.14 |
COD | mg/L | 7547.50 ± 75 | 7328.75 ± 106 | 2147.5 ± 90 | 8053.75 ± 82 | 19,982.50 ± 365 | 15,945.00 ± 330 | 1110.00 ± 37.5 |
Total solids | mg/L | 9850.00 ± 550 | 11,625.00 ± 775 | 11,650.00 ± 2600 | 19,000.00 ± 50 | 27,200.00 ± 200 | 49,400.00 ± 1000 | 5900.00 ± 2700 |
Total solids | (%) | 0.99 ± 0.05 | 1.18 ± 0.07 | 1.33 ± 0.3 | 2.17 ± 0.12 | 3.46 ± 0.11 | 5.51 ± 0.03 | 0.60 ± 0.27 |
Volatile solids | mg/L VS | 8050.00 ± 300 | 8100.00 ± 200 | 5600.00 ± 400 | 10,450.00 ± 250 | 17,700.00 ± 100 | 33,600.00 ± 2000 | 2425.00 ± 675 |
Volatile solids | (wt %) | 82.30 ± 5.9 | 70.00 ± 2.99 | 48.08 ± 3.64 | 55.02 ± 1.89 | 65.01 ± 0.11 | 68.00 ± 2.67 | 48.8 ± 12.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mota-Panizio, R.; Hermoso-Orzáez, M.J.; Carmo-Calado, L.; Lourinho, G.; Brito, P.S.D.d. Biochemical Methane Potential of Cork Boiling Wastewater at Different Inoculum to Substrate Ratios. Appl. Sci. 2021, 11, 3064. https://doi.org/10.3390/app11073064
Mota-Panizio R, Hermoso-Orzáez MJ, Carmo-Calado L, Lourinho G, Brito PSDd. Biochemical Methane Potential of Cork Boiling Wastewater at Different Inoculum to Substrate Ratios. Applied Sciences. 2021; 11(7):3064. https://doi.org/10.3390/app11073064
Chicago/Turabian StyleMota-Panizio, Roberta, Manuel Jesús Hermoso-Orzáez, Luis Carmo-Calado, Gonçalo Lourinho, and Paulo Sérgio Duque de Brito. 2021. "Biochemical Methane Potential of Cork Boiling Wastewater at Different Inoculum to Substrate Ratios" Applied Sciences 11, no. 7: 3064. https://doi.org/10.3390/app11073064
APA StyleMota-Panizio, R., Hermoso-Orzáez, M. J., Carmo-Calado, L., Lourinho, G., & Brito, P. S. D. d. (2021). Biochemical Methane Potential of Cork Boiling Wastewater at Different Inoculum to Substrate Ratios. Applied Sciences, 11(7), 3064. https://doi.org/10.3390/app11073064