A Short-Term Body Jump® Training Program Improves Physical Fitness and Body Composition in Young Active Women
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. General Research Design
2.2. Participants
2.3. Fitness Tests
2.4. Estimation of Body Composition
2.5. Body Jump®
2.6. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boned, C.; Felipe, J.; Barranco, D.; Grimaldi-Puyana, M.; Crovetto, M. Perfil profesional de los trabajadores de los centros de fitness en España / Professional Profile of Workers in Spanish Fitness Clubs. Revista Internacional de Medicina y Ciencias de la Actividad Física y del Deporte 2015, 58, 195–210. [Google Scholar] [CrossRef]
- García Fernández, J.; Gálvez Ruiz, P.; Bernal García, A.; Vélez Colón, L.; García Fernández, J.; Bernal García, A.; Vélez Colón, L. El gasto económico en centros de fitness low-cost: Diferencias según fidelidad y características del cliente. Sportk 2016, 5, 137–144. [Google Scholar] [CrossRef] [Green Version]
- Lazaro, Y.D.J.L.I. La Práctica Deportiva En La Educación Del Ocio Como Herramienta Para El Envejecimiento Activo. Revista Española de Educación Física y Deportes 2019, 426, 370–376. [Google Scholar]
- IHRSA. The State of the Health Club Industry; IHRSA Global Report; IHRSA: Boston, MA, USA, 2018. [Google Scholar]
- Gallegos, A.G.; López, M.G.; Valeiras, J.A.A.; Suárez, N.R. Motivos de práctica en el ámbito de la actividad física no competitiva. ESPIRAL. Cuad. DEL Profr. 2011, 4, 15–22. [Google Scholar] [CrossRef] [Green Version]
- García Ferrando, M.; Llopis Goig, R. Encuesta Sobre Los Hábitos Deportivos En España 2010—Ideal Democrático y Bienestar Personal; Consejo Superior de Deportes: Madrid, Spain, 2010; ISBN 9788479492137. [Google Scholar]
- Thompson, W.R. Worldwide survey of fitness trends for. ACSM´s Health Fit. J. 2019, 10–18. [Google Scholar]
- Amorós Illán, A.; López-Valenciano, A.; Ayala Rodríguez, F.; Wesley López, I.; Ruiz-Pérez, I.; del Pilar García-Vaquero, M.; Hernández-Sánchez, S. Efecto Crónico Del Body Jump Sobre Medidas de Condición Física y Salud: Un Estudio Piloto./Chronic Effect of Body Jump on Physical Conditioning and Health Measures: A Pilot Study. Retos: Nuevas Perspectivas de Educación Física, Deporte y Recreación 2018, 2041, 190–194. [Google Scholar]
- Hausenblas, H.A.; Brewer, B.W.; Van Raalte, J.L. Self-Presentation and Exercise. J. Appl. Sport Psychol. 2004, 16, 3–18. [Google Scholar] [CrossRef]
- Chavarrias, M.; Carlos-Vivas, J.; Barrantes-Martín, B.; Pérez-Gómez, J. Effects of 8-week of fitness classes on blood pressure, body composition, and physical fitness. J. Sports Med. Phys. Fit. 2020, 59, 2066–2074. [Google Scholar] [CrossRef]
- Bosco, C.; Vila, J.M. Aspectos Fisiológicos de La Preparación Física Del Futbolista; Editorial Paidotribo: Barcelona, Spain, 1991; ISBN 8486475783. [Google Scholar]
- Balsalobre-Fernández, C.; Glaister, M.; Lockey, R.A. The validity and reliability of an iPhone app for measuring vertical jump performance. J. Sports Sci. 2015, 33, 1574–1579. [Google Scholar] [CrossRef]
- Oja, P.; Mänttäri, A.; Pokki, T.; Kukkonen-Harjala, K.; Laukkanen, R.; Malmberg, J. UKK Walk Test; Centre for Health Promotion Research: Tampere, Finland, 2013. [Google Scholar]
- Rance, M.; Boussuge, P.-Y.; Lazaar, N.; Bédu, M.; Van Praagh, E.; Dabonneville, M.; Duché, P. Validity of a V·O2maxPrediction Equation of the 2-km Walk Test in Female Seniors. Int. J. Sports Med. 2004, 26, 453–456. [Google Scholar] [CrossRef]
- Brzycki, M. Strength Testing—Predicting a One-Rep Max from Reps-to-Fatigue. J. Phys. Educ. Recreat. Dance 1993, 64, 88–90. [Google Scholar] [CrossRef]
- Ayllón, F.N.; Gutierrez, A.J.; Alvar, B.A.; Peterson, M.D. Assessing strength and power in resistance training. J. Hum. Sport Exerc. 2009, 4, 100–113. [Google Scholar] [CrossRef] [Green Version]
- Ross, W.D.; Marfell-Jones, M.J. Kinanthropometry. Physiological Testing of Elite Athlete; Human Kine: London, UK, 1991. [Google Scholar]
- Lee, R.C.; Wang, Z.; Heo, M.; Ross, R.; Janssen, I.; Heymsfield, S.B. Total-body skeletal muscle mass: Development and cross-validation of anthropometric prediction models. Am. J. Clin. Nutr. 2000, 72, 796–803. [Google Scholar] [CrossRef]
- Durnin, J.V.G.A.; Womersley, J. Body fat assessed from total body density and its estimation from skinfold thickness: Measurements on 481 men and women aged from 16 to 72 Years. Br. J. Nutr. 1974, 32, 77–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruz, J.R.A.; Armesilla, M.D.C.; de Lucas, A.H.; Riaza, L.M.; Pascual, C.M.; Manzañido, J.P.; Quintana, M.S.; Belando, J.E.S. Protocolo de Valoración de La Composición Corporal Para El Reconocimiento Médico-Deportivo. Documento de Consenso Del Grupo Español de Cineantropometría (GRXC)de La Federación Española de Medicina Del Deporte (FEMEDE). Versión Archivos de Medicina del Deporte 2010, 27, 330–344. [Google Scholar]
- Rocha, M. Peso Ósseo Do Brasileiro de Ambos Os Sexos de 17 a 25 Anhos. Arquivos de Anatomia y Antropologia 1975, 1, 445–451. [Google Scholar]
- Suminar, T.J.; Kusnanik, N.W.; Wiriawan, O. High-Impact Aerobic and Zumba Fitness on Increasing VO2MAX, Heart Rate Recovery and Skinfold Thickness. J. Physics: Conf. Ser. 2018, 947, 12016. [Google Scholar] [CrossRef]
- Sánchez, I.G.; Sánchez, B.R. Efectos del entrenamiento mediante danza aeróbica con subida a banco sobre la capacidad de generar fuerza en mujeres sanas de mediana edad. Apunt. Med. de l’Esport 2009, 44, 119–126. [Google Scholar] [CrossRef]
- Greco, C.C.; Oliveira, A.S.; Pereira, M.P.; Figueira, T.R.; Ruas, V.D.; Gonçalves, M.; Denadai, B.S. Improvements in Metabolic and Neuromuscular Fitness After 12-Week Bodypump® Training. J. Strength Cond. Res. 2011, 25, 3422–3431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacInnis, M.J.; Gibala, M.J. Physiological adaptations to interval training and the role of exercise intensity. J. Physiol. 2017, 595, 2915–2930. [Google Scholar] [CrossRef] [Green Version]
- Naves, J.P.A.; Viana, R.B.; Rebelo, A.C.S.; De Lira, C.A.B.; Pimentel, G.D.; Lobo, P.C.B.; De Oliveira, J.C.; Ramirez-Campillo, R.; Gentil, P. Effects of High-Intensity Interval Training vs. Sprint Interval Training on Anthropometric Measures and Cardiorespiratory Fitness in Healthy Young Women. Front. Physiol. 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Astorino, T.; Heath, B.; Bandong, J.; Ordille, G.M.; Contreras, R.; Montell, M.; Schubert, M.M. Effect of periodized high intensity interval training (HIIT) on body composition and attitudes towards hunger in active men and women. J. Sports Med. Phys. Fit. 2017, 58, 1052–1062. [Google Scholar]
- Astorino, T.A.; Edmunds, R.M.; Clark, A.; King, L.; Gallant, R.A.; Namm, S.; Fischer, A.; Wood, K.M. High-Intensity Interval Training Increases Cardiac Output and V˙O2max. Med. Sci. Sports Exerc. 2017, 49, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Sijie, T.; Hainai, Y.; Fengying, Y.; Jianxiong, W. High intensity interval exercise training in overweight young women. J. sports Med. Phys. Fit. 2012, 52, 255–262. [Google Scholar]
- Thum, J.S.; Parsons, G.; Whittle, T.; Astorino, T.A. High-Intensity Interval Training Elicits Higher Enjoyment than Moderate Intensity Continuous Exercise. PLoS ONE 2017, 12, e0166299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Astorino, T.; Allen, R.P.; Roberson, D.W.; Jurancich, M. Effect of High-Intensity Interval Training on Cardiovascular Function, V̇o2max, and Muscular Force. J. Strength Cond. Res. 2012, 26, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Wen, D.; Utesch, T.; Wu, J.; Robertson, S.; Liu, J.; Hu, G.; Chen, H. Effects of different protocols of high intensity interval training for VO2max improvements in adults: A meta-analysis of randomised controlled trials. J. Sci. Med. Sport 2019, 22, 941–947. [Google Scholar] [CrossRef]
- Oliveira, L.C.; Oliveira, R.G.; Pires-Oliveira, D.A.D.A. Pilates increases the isokinetic muscular strength of the knee extensors and flexors in elderly women. J. Bodyw. Mov. Ther. 2017, 21, 815–822. [Google Scholar] [CrossRef]
- Harrison, J.S. Bodyweight Training: A Return To Basics. Strength Cond. J. 2010, 32, 52–55. [Google Scholar] [CrossRef]
- Suchomel, T.J.; Nimphius, S.; Bellon, C.R.; Stone, M.H. The Importance of Muscular Strength: Training Considerations. Sports Med. 2018, 48, 765–785. [Google Scholar] [CrossRef]
- González-Ravé, J.M.; Machado, L.; Navarro-Valdivielso, F.; Vilas-Boas, J.P. Respuestas agudas al entrenamiento de fuerza con cargas pesadas y al entrenamiento mediante estiramiento sobre el rendimiento en squat jump y countermovement jump. (Acute affects of strenght training from heavy loads and static stretching training on squat jump and countermovement jump). RICYDE. Rev. Int. de Cienc. del Deport. 2006, 2, 47–56. [Google Scholar] [CrossRef]
- Maffiuletti, N.A.N.; Aagaard, P.; Blazevich, A.A.; Folland, J.J.; Tillin, N.N.; Duchateau, J. Rate of force development: Physiological and methodological considerations. Graefe’s Arch. Clin. Exp. Ophthalmol. 2016, 116, 1091–1116. [Google Scholar] [CrossRef] [Green Version]
- Katsikari, K.; Bassa, E.; Skoufas, D.; Lazaridis, S.; Kotzamanidis, C.; Patikas, D.A. Kinetic and Kinematic Changes in Vertical Jump in Prepubescent Girls After 10 Weeks of Plyometric Training. Pediatr. Exerc. Sci. 2020, 32, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Jlid, M.C.; Racil, G.; Coquart, J.; Paillard, T.; Bisciotti, G.N.; Chamari, K. Multidirectional Plyometric Training: Very Efficient Way to Improve Vertical Jump Performance, Change of Direction Performance and Dynamic Postural Control in Young Soccer Players. Front. Physiol. 2019, 10. [Google Scholar] [CrossRef] [PubMed]
- Goele, K.; Bosy-Westphal, A.; Rümcker, B.; Lagerpusch, M.; Müller, M.J. Influence of changes in body composition and adaptive thermogenesis on the difference between measured and predicted weight loss in obese women. Obes. Facts 2009, 2, 6. [Google Scholar] [CrossRef]
- Müller, M.J.; Enderle, J.; Bosy-Westphal, A. Changes in Energy Expenditure with Weight Gain and Weight Loss in Humans. Curr. Obes. Rep. 2016, 5, 413–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paoli, A.; Moro, T.; Bianco, A. Lift weights to fight overweight. Clin. Physiol. Funct. Imaging 2014, 35, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Maillard, F.; Pereira, B.; Boisseau, N. Effect of High-Intensity Interval Training on Total, Abdominal and Visceral Fat Mass: A Meta-Analysis. Sports Med. 2018, 48, 269–288. [Google Scholar] [CrossRef]
- Henry, Y.M.; Fatayerji, D.; Eastell, R. Attainment of peak bone mass at the lumbar spine, femoral neck and radius in men and women: Relative contributions of bone size and volumetric bone mineral density. Osteoporos. Int. 2004, 15, 263–273. [Google Scholar] [CrossRef]
- Titova, H.V.; Bodnar, A.I.; Chaban, I.O.; Mineko, O.V.; Tvelina, A.O.; Abramov, K. V Influence of Strength Fitness Based on Exercises with Body Weight over Changes in Body Composition Parameters among Women Aged 21 to 55 Years. Eur. Int. J. Sci. Technol. 2017, 6, 72–79. [Google Scholar]
- Tsourlou, T.; Gerodimos, V.; Kellis, E.; Stavropoulos, N.; Kellis, S. The Effects of a Calisthenics and a Light Strength Training Program on Lower Limb Muscle Strength and Body Composition in Mature Women. J. Strength Cond. Res. 2003, 17, 590. [Google Scholar] [CrossRef] [PubMed]
- Souza, D.; Barbalho, M.; Gentil, P. The impact of resistance training volume on muscle size and lean body mass: To infinity and beyond? Hum. Mov. 2020, 21, 18–29. [Google Scholar] [CrossRef]
Age | BMI 1 | VO2Max 2 | PA 3 | |
---|---|---|---|---|
BJ (n = 14) | 21.14 ± 4.2 | 22.39 ± 2.2 | 36.74 ± 2.3 | 7.43 ± 2.6 |
CG (n = 13) | 22.00 ± 3.6 | 22.23 ± 2.2 | 37.43 ± 2.9 | 7.31 ± 2.2 |
Track | Name | Intensity | Duration |
---|---|---|---|
1 | Warmup | Progressive | 05’13” |
2 | Cardio jump 1 | Medium | 05’23” |
3 | Cardio jump 2 | Medium | 05’27” |
4 | Max jump 1 | High | 06’41” |
5 | Recovery | Low | 04’15” |
6 | Cardio jump 3 | Medium | 06’29” |
7 | Max jump 2 | High | 08’52” |
8 | Conditioning | Medium-Low | 04’52” |
9 | Cooldown | Low | 03’05” |
BJ | CG | |||||
---|---|---|---|---|---|---|
PRE | POST | P | PRE | POST | P | |
VO2Max 1 | 36.74 ± 2.3 | 39.16 ± 1.6 | 0.001 | 37.43 ±2.9 | 37.99 ± 3.1 | 0.360 |
CMJ 2 | 25.24 ± 4.0 | 26.45 ± 4.3 | 0.023 | 26.8 ± 3.5 | 26.68 ± 3.7 | 0.845 |
SJ 3 | 22.94 ± 4.2 | 24.83 ± 4.0 | 0.003 | 25.21 ± 3.5 | 24.83 ± 4.0 | 0.953 |
1 RM 4 | 71.36 ± 12.4 | 78.52 ± 17.02 | 0.009 | 82.3 ± 13.43 | 81.2 ± 14.6 | 0.575 |
BJ | CG | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Pre | Post | Pre | Post | |||||||
Average | 1 sd | Average | 1 sd | 2p | Average | 1 sd | Average | 1 sd | 2p | |
Height | 161.11 | 6.83 | 161.11 | 6.83 | 1.000 | 161.31 | 4.45 | 161.31 | 4.45 | 1.000 |
Weight | 54.59 | 10.44 | 54.39 | 10.32 | 0.409 | 57.76 | 5.34 | 57.95 | 5.32 | 0.556 |
BMI 3 | 22.39 | 2.23 | 22.26 | 2.03 | 0.218 | 22.23 | 2.16 | 22.28 | 2.31 | 0.779 |
∑ SF 4 | 147.65 | 24.61 | 138.03 | 21.17 | 0.003 | 133.76 | 35.52 | 137.22 | 36.00 | 0.075 |
WHI 5 | 0.72 | 0.04 | 0.72 | 0.04 | 0.429 | 0.72 | 0.03 | 0.73 | 0.03 | 0.047 |
Fat mass (%) 6 | 21.52 | 1.99 | 20.54 | 1.78 | 0.002 | 21.76 | 3.24 | 21.88 | 3.62 | 0.010 |
Muscle mass 7 | 22.34 | 3.90 | 22.58 | 3.95 | 0.506 | 22.50 | 4.71 | 22.52 | 4.67 | 0.916 |
Bone mass 8 | 9.12 | 1.17 | 9.12 | 1.17 | 1.000 | 8.80 | 0.98 | 8.80 | 0.98 | 1.000 |
Subesc 9 | 13.43 | 2.96 | 12.69 | 3.11 | 0.050 | 12.75 | 4.20 | 13.36 | 5.06 | 0.600 |
Tricip 10 | 18.26 | 2.77 | 16.95 | 2.17 | 0.016 | 16.55 | 3.84 | 16.38 | 3.94 | 0.754 |
Bicip 11 | 8.54 | 2.53 | 9.57 | 4.21 | 0.683 | 7.85 | 2.21 | 8.72 | 3.19 | 0.099 |
Suprailiac 12 | 22.54 | 5.55 | 20.10 | 4.10 | 0.008 | 19.21 | 6.04 | 19.92 | 6.27 | 1.000 |
Supraspinale 13 | 15.04 | 3.89 | 13.64 | 2.99 | 0.028 | 13.72 | 5.70 | 14.53 | 5.56 | 0.116 |
Abdom 14 | 22.30 | 4.34 | 20.26 | 4.25 | 0.005 | 20.61 | 8.00 | 21.68 | 8.81 | 0.117 |
Front thigh 15 | 30.71 | 8.73 | 29.26 | 9.06 | 0.152 | 26.08 | 6.98 | 27.02 | 6.58 | 0.162 |
Med. Calf 16 | 16.89 | 4.53 | 16.49 | 4.24 | 0.530 | 14.70 | 2.94 | 15.24 | 2.41 | 0.346 |
Arm circum 17 | 27.71 | 2.42 | 27.87 | 1.87 | 0.969 | 27.91 | 2.23 | 27.75 | 2.37 | 0.363 |
Contract arm 18 | 27.86 | 2.51 | 28.87 | 2.21 | 0.050 | 28.55 | 2.07 | 28.73 | 2.07 | 0.479 |
Thigh circum 19 | 50.96 | 4.98 | 51.27 | 4.32 | 0.801 | 51.18 | 3.27 | 51.00 | 3.22 | 0.484 |
Calf circum 20 | 35.40 | 2.85 | 35.54 | 2.77 | 0.944 | 34.76 | 2.26 | 34.96 | 2.17 | 0.288 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sellés-Pérez, S.; García-Jaén, M.; Cortell-Tormo, J.M.; Cejuela, R. A Short-Term Body Jump® Training Program Improves Physical Fitness and Body Composition in Young Active Women. Appl. Sci. 2021, 11, 3234. https://doi.org/10.3390/app11073234
Sellés-Pérez S, García-Jaén M, Cortell-Tormo JM, Cejuela R. A Short-Term Body Jump® Training Program Improves Physical Fitness and Body Composition in Young Active Women. Applied Sciences. 2021; 11(7):3234. https://doi.org/10.3390/app11073234
Chicago/Turabian StyleSellés-Pérez, Sergio, Miguel García-Jaén, Juan Manuel Cortell-Tormo, and Roberto Cejuela. 2021. "A Short-Term Body Jump® Training Program Improves Physical Fitness and Body Composition in Young Active Women" Applied Sciences 11, no. 7: 3234. https://doi.org/10.3390/app11073234