Phytotoxic Substances Involved in Teak Allelopathy and Agroforestry
Abstract
:1. Introduction
2. Ecological Impact of Teak
3. Allelopathic Property of Teak
3.1. Leachate
3.2. Effects of Teak Leaves
3.3. Extract of Teak Soil
3.4. Extracts of Teak Leaves
4. Phytotoxic Substances with Allelopathic Activity in Teak
5. Teak Allelopathy
6. Agroforestry System with Teak
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tangmitcharoen, S.; Owens, J.N. Floral biology, pollination, pistil receptivity, and pollen tube growth of teak (Tectona grandis Linn f.). Ann. Bot. 1997, 79, 227–241. [Google Scholar] [CrossRef] [Green Version]
- Nidavani, R.B.; Mahalakshmi, A.M. Teak (Tectona grandis Linn.): A renowned timber plant with potential medicinal values. Int. J. Pharm. Sci. 2014, 6, 48–54. [Google Scholar]
- Pandey, D.; Brown, C. Teak: A global overview. Unasylva 2000, 51, 3–13. [Google Scholar]
- Healey, S.P.; Gara, R.I. The effect of a teak (Tectona grandis) plantation on the establishment of native species in an abandoned pasture in Costa Rica. Ecol. Manag. 2003, 176, 497–507. [Google Scholar] [CrossRef]
- Kenny, A.L.; Pickens, J.B.; Orr, B. Land allocation with the introduction of teak: A case study of smallholder farms in Southern Togo. J. Sustain. For. 2014, 33, 776–795. [Google Scholar] [CrossRef]
- Newby, J.C.; Cramb, R.A.; Sakanphet, S. Forest transitions and rural livelihoods: Multiple pathways of smallholder teak expansion in Northern Laos. Land 2014, 3, 482–503. [Google Scholar] [CrossRef] [Green Version]
- Udayana, C.; Andreassen, H.P.; Skarpe, C. Understory diversity and composition after planting of teak and mahogany in Yogyakarta, Indonesia. J. Sustain. For. 2020, 39, 494–510. [Google Scholar] [CrossRef] [Green Version]
- Kumar, B.M.; George, S.J.; Chinnamani, S. Diversity, structure and standing stock of wood in the homegardens of Kerala in peninsular. Indian Agrofor. Syst. 1994, 25, 243–262. [Google Scholar] [CrossRef]
- Michon, G.; Mary, F. Conversion of traditional village gardens and new economic strategies of rural households in the area of Bogor, Indonesia. Agrofor. Syst. 1994, 25, 31–58. [Google Scholar] [CrossRef]
- Roshetko, J.M.; Delaney, M.; Hairiah, K.; Purnomosidhi, P. Carbon stocks in Indonesian homegarden systems: Can smallholder systems be targeted for increased carbon storage? Am. J. Altern. Agric. 2002, 17, 138–148. [Google Scholar]
- Pandey, C.B.; Rai, R.B.; Singh, L.; Singh, A.K. Homegardens of Andaman and Nicobar, India. Agric. Syst. 2007, 92, 1–22. [Google Scholar] [CrossRef]
- Mohri, H.; Lahoti, S.; Saito, O.; Mahalingam, A.; Gunatilleke, N.; Irhamc; Hoang, V.T.; Hitinayake, G.; Takeuchi, K.; Herath, S. Assessment of ecosystem services in homegarden systems in Indonesia, Sri Lanka, and Vietnam. Ecosyst. Serv. 2013, 5, e125–e136. [Google Scholar] [CrossRef]
- Bhat, S.; Bhandary, M.J.; Rajanna, L. Plant diversity in the homegardens of Karwar, Karnataka, India. Biodiversitas 2014, 15, 229–235. [Google Scholar]
- Peyre, A.; Guidal, A.; Wiersum, K.F.; Bongers, F. Dynamics of homegarden structure and function in Kerala, Indian. Agrofor. Syst. 2006, 66, 101–115. [Google Scholar] [CrossRef]
- Lakshmi, P.G.S.; John, J. Allelopathic effect of leaf loppings of homestead trees on turmeric (Curcuma longa Linn.). J. Trop. Agric. 2015, 53, 227–232. [Google Scholar]
- Vyas, P.; Yadav, D.K.; Khandelwal, P. Tectona grandis (teak)—A review on its phytochemical and therapeutic potential. Nat. Prod. Res. 2019, 33, 2338–2354. [Google Scholar] [CrossRef]
- Varma, S.B.; Giri, S.P. Study of wound healing activity of Tectona grandis Linn. leaf extract on rats. Anc. Sci. Life 2013, 32, 241–244. [Google Scholar]
- Varma, S.B.; Jaybhaye, D.L. Antihyperglycemic activity of Tectona grandis Linn. bark extract on alloxan induced diabetes in rats. Nat. Prod. Res. 2010, 24, 1059–1068. [Google Scholar]
- Asif, M. In vivo analgesic and antiinflammatory effects of Tectona grandis Linn. stem bark extracts. MJPS 2011, 9, 1–11. [Google Scholar]
- Jaybhaye, D.; Varma, S.; Gagne, N.; Bonde, V.; Gite, A.; Bhosle, D. Effect of Tectona grandis Linn. Seeds on hair growth activity of albino mice. Int. J. Ayurveda Res. 2010, 1, 211–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dégbé, M.; Debierre-Grockiego, F.; Tété-Bénissan, A.; Débare, H.; Aklikokou, K.; Dimier-Poisson, I.; Gbeassor, M. Extracts of Tectona grandis and Vernonia amygdalina have anti-Toxoplasma and pro-inflammatory properties in vitro. Parasite 2018, 25, 11. [Google Scholar] [CrossRef] [Green Version]
- Semidey, N. Allelopathic crops for weed management in cropping systems. In Allelopathy Update. Basic and Applied Aspects; Narwal, S.S., Ed.; Science Publishers Inc.: Enfield, NH, USA, 1999; Volume 2, pp. 271–281. [Google Scholar]
- Caamal-Maldonado, J.A.; Jiménez-Osornio, J.J.; Torres-Barragán, A.; Anaya, A.L. The use of allelopathic legume cover and mulch species for weed control in cropping systems. Agron. J. 2001, 93, 27–36. [Google Scholar] [CrossRef]
- Field, B.; Jordán, F.; Osboourn, A. First encounters-deployment of defense-related natural products by plant. New Phytol. 2006, 172, 193–207. [Google Scholar] [CrossRef] [PubMed]
- Bais, H.P.; Weir, T.L.; Perry, L.G.; Gilroy, S.; Vivanco, J.M. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol. 2006, 57, 233–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belz, R.G. Allelopathy in crop/weed interactions—An update. Pest Manag. Sci. 2007, 63, 308–326. [Google Scholar] [CrossRef]
- Narwal, S.S. Allelopathy in weed management. In Allelopathy Update. Basic and Applied Aspects; Narwal, S.S., Ed.; Science Publishers Inc.: Enfield, NH, USA, 1999; Volume 2, pp. 203–254. [Google Scholar]
- Duke, S.O.; Dayan, F.E.; Romagni, J.G.; Rimando, A.M. Natural products as sources of herbicide, current status and future trends. Weed Res. 2000, 40, 99–111. [Google Scholar] [CrossRef]
- Saha, S. Vegetation composition and structure of Tectona grandis (teak, Family Verbanaceae) plantations and dry deciduous forests in central India. For. Ecol. Manag. 2001, 48, 159–167. [Google Scholar] [CrossRef]
- Falcão, J.C.F.; Dáttilo, W.; Izzo, T.J. Efficiency of different planted forests in recovering biodiversity and ecological interactions in Brazilian Amazon. For. Ecol. Manag. 2015, 339, 105–111. [Google Scholar] [CrossRef]
- Imron, M.A.; Tantaryzard, M.; Satria, R.A.; Maulana, I.; Pudyatmoko, K. Understory avian community in a teak forest of Cepu, Central Java. J. Trop. For. Sci. 2018, 30, 509–518. [Google Scholar] [CrossRef]
- Oliveira, A.T.M.; Bernardo, C.S.S.; Melo, F.R.D.; dos Santos-Filho, M.; Peres, C.A.; Canale, G.R. Primate and ungulate responses to teak agroforestry in a southern Amazonian landscape. Mamm. Biol. 2019, 96, 45–52. [Google Scholar] [CrossRef]
- Sahoo, U.K. Allelopathic studies of understorey weeds by agroforestry trees in home gardens of Mizoram. J. Exp. Biol. Agric. Sci. 2013, 1, 248–257. [Google Scholar]
- Ikhajiagbe, B.; Ogwu, M.C.; Lawrence, A.E. Single-tree influence of Tectona grandis Linn. f. on plant distribution and soil characteristics in a planted forest. Bull. Natl. Res. Cent. 2020, 44, 29. [Google Scholar]
- Suryanti, V.; Kusumaningsih, T.; Marliyana, S.D.; Setyono, H.A.; Trisnawati, E.W. Identification of active compounds and antioxidant activity of teak (Tectona grandis) leaves. Biodiversitas 2020, 21, 946–952. [Google Scholar] [CrossRef]
- Jha, K.K. Litter production and leaf litter decomposition dynamics in an age series Tectona grandis Linn.f. plantations of moist Tarai Sal forest. Indian For. 2010, 136, 433–450. [Google Scholar]
- John, J.; Sreekumar, K.M.; Rekha, P. Allelopathic effects of leaf leachates of multipurpose trees on vegetables. Allelopathy J. 2007, 19, 507–516. [Google Scholar]
- Das, C.R.; Mondal, N.K.; Aditya, P.; Datta, J.K.; Banerjee, A.; Das, K. Allelopathic potentialities of leachates of leaf litter of some selected tree species on gram seeds under laboratory conditions. Asian J. Exp. Biol. Sci. 2012, 3, 59–65. [Google Scholar]
- Kole, R.K.; Paul, P.; Saha, S.; Das, S. Chemistry and bio-efficacy of teak leaf for weed control in wheat. Allelopathy J. 2016, 39, 191–204. [Google Scholar]
- Mensah, E.E.; Owusu-Mensah, I.; Oppong, E.; Saka, M.O. Allelopathic effect of topsoil extract from Tectona grandis L. plantation on the germination of Lycopersicum esculentum. J. Biol. Agric. Health 2015, 5, 117–122. [Google Scholar]
- Owusu-Mensah, I.; Mensah, E.E. Polynomial modelling of allelopathic effect of topsoil extract. Br. J. Res. 2015, 2, 132–141. [Google Scholar]
- Manimegalai, A. Allelopathic effect of Tectona grandis leaves on protein content changes of black gram and green gram. Int. J. Curr. Sci. 2012, 4, 30–34. [Google Scholar]
- Kole, R.K.; Karmakar, P.R.; Poi, R.; Mazumdar, D. Allelopathic inhibition of teak leaf extract: A potential pre-emergent herbicide. J. Crop. Weed 2011, 7, 101–109. [Google Scholar]
- Evangeline, V.R.; Prakash, E.J.J.; Samuel, A.S.; Jayakumar, M. Allelopathic potential of Tectona grandis L. on the germination and seedling growth of Vigna mungo (L.) Hepper. Pak. J. Weed Sci. Res. 2012, 18, 65–70. [Google Scholar]
- Biswas, K.; Das, A.P. Allelopathic effects of teak (Tectona grandis L.f.) on germination and seedling growth of Plumbago zeylanica L. Pleione 2016, 10, 262–268. [Google Scholar]
- Bhatt, B.P.; Singh, J.K.; Barooah, L.; Imtimongla. Phytotoxic influence of agroforestry tree species on food crops in Eastern Himalaya, India. Allelopathy J. 2010, 25, 485–496. [Google Scholar]
- Kumari, N.; Srivastava, P.; Mehta, S.; Lemtur, M.; Das, B. Allelopathic effects of some promising agro forestry tree species on different annual crops. Econ. Environ. Conserv. 2016, 22, 225–236. [Google Scholar]
- Leela, P.; Arumugam, K. Allelopathic influence of teak (Tectona grandis L.) leaves on growth responses of green gram (Vigna radiata (L.) Wilczek) and chilli (Capsicum frutescens L.). Int. J. Curr. Biotechnol. 2014, 2, 55–58. [Google Scholar]
- Leela, P. Phytotoxic effect of Tectona grandis (L.f.) leaf extracts on growth and developmental changes of Pennisetum glaucum (L.) R.BR. and Eleusine coracana (Gaertn). Int. Educ. Appl. Sci. Res. 2017, 6, 7–10. [Google Scholar]
- Erida, G.; Saidi, N.; Hasanuddin; Syafruddin. Herbicidal potential of methanolic extracts of Pinus merkusii Jungh. et de Vriese, Acacia mangium Willd., Jatropha curcas L., Tectona grandis L.f. and Terminalia catappa L. on Amaranthus spinosus L. Allelopathy J. 2020, 49, 201–216. [Google Scholar]
- Abugre, S.; Apetorgbor, A.K.; Antwiwaa, A.; Apetorgbor, M.M. Allelopathic effects of ten tree species on germination and growth of four traditional food crops in Ghana. J. Agric. Technnol. 2011, 7, 825–834. [Google Scholar]
- Sahoo, U.K.; Upadhyaya, K.; Meitei, C.B. Allelopathic effects of Leucaena leucocephala and Tectona grandis on germination and growth of maize. Allelopathy J. 2007, 20, 135–144. [Google Scholar]
- Lacret, R.; Varela, R.M.; Molinillo, J.M.G.; Nogueiras, C.; Macías, F.A. Anthratectone and naphthotectone, two quinones from bioactive extracts of Tectona grandis. J. Chem. Ecol. 2011, 37, 1341–1348. [Google Scholar] [CrossRef] [PubMed]
- Macías, F.A.; Lacret, R.; Varela, R.M.; Nogueiras, C.; Molinillo, J.M.G. Isolation and phytotoxicity of terpenes from Tectona grandis. J. Chem. Ecol. 2010, 36, 396–404. [Google Scholar] [CrossRef] [PubMed]
- Macías, F.A.; Lacret, R.; Varela, R.M.; Nogueiras, C.; Molinillo, J.M.G. Bioactive apocarotenoids from Tectona grandis. Phytochemistry 2008, 69, 2708–2715. [Google Scholar] [CrossRef]
- Lacret, R.; Varela, R.M.; Molinillo, J.M.G.; Nogueiras, C.; Macías, F.A. Tectonoelins, new norlignans from a bioactive extract of Tectona grandis. Phytochem. Lett. 2012, 5, 382–386. [Google Scholar] [CrossRef]
- Balogun, A.O.; Lasode, O.A.; McDonald, A.G. Devolatilisation kinetics and pyrolytic analyses of Tectona grandis (teak). Bioresour. Technol. 2014, 156, 57–62. [Google Scholar] [CrossRef]
- Inderjit. Plant phenolics in allelopathy. Bot. Rev. 1996, 62, 186–202. [Google Scholar] [CrossRef]
- Dalton, B.R. The occurrence and behavior of plant phenolic acids in soil environments and their potential involvement in allelochemical interference interactions: Methodological limitations in establishing conclusive proof of allelopathy. In Principals and Practices in Plant. Ecology: Allelochemical Interactions, Inderjit; Dakshini, K.M.M., Foy, C.L., Eds.; CRC Press: Boca Raton, FL, USA, 1999; pp. 57–74. [Google Scholar]
- Nayeem, N.; Karvekar, M.D. Isolation of phenolic compounds from the methanolic extract of Tectona grandis. Res. J. Pharm. Biol. Chem. Sci. 2010, 1, 221–225. [Google Scholar]
- Rudrappa, T.; Bonsall, J.; Gallagher, J.L.; Seliskar, D.M.; Bais, H.P. Root-secreted allelochemical in the noxious weed Phragmites australis deploys a reactive oxygen species response and microtubule assembly disruption to execute rhizotoxicity. J. Chem. Ecol. 2007, 33, 1898–1918. [Google Scholar] [CrossRef]
- Liu, J.; Li, D.; Wang, D.; Liu, Y.; Song, H. Allelopathic effects, physiological responses and phenolic compounds in litter extracts of Juniperus rigida Sieb. et Zucc. Chem. Biodivers. 2017, 14, e1700088. [Google Scholar] [CrossRef]
- Einhellig, F.A. Mode of action of allelochemical action of phenolic compounds. In Chemistry and Mode of Action of Allelochemicals; Macías, F.A., Galindo, J.C.G., Molino, J.M.G., Cutler, H.G., Eds.; CRC Press: Boca Raton, FL, USA, 2004; pp. 217–238. [Google Scholar]
- Kumara, R.; Tsvetkovc, D.E.; Varshneyb, V.K.; Nifantievc, N.E. Chemical constituents from temperate and subtropical trees with reference to knotwood. Ind. Crops Prod. 2020, 145, 112077. [Google Scholar] [CrossRef]
- Gupta, K.P.; Singh, P. A naphthoquinone derivative from Tectona grandis Linn. J. Asian Nat. Prod. Res. 2004, 6, 237–240. [Google Scholar] [CrossRef] [PubMed]
- Lukmandaru, G.; Takahashi, K. Radial distribution of quinones in plantation teak (Tectona grandis L.f.). Ann. For. Sci. 2009, 66, 605. [Google Scholar] [CrossRef] [Green Version]
- López, L.I.L.; Flores, S.D.N.; Belmares, S.Y.S.; Galindo, A.S. Naphthoquinones: Biological properties and synthesis of lawsone and derivatives—A structured review. Vitae 2014, 21, 248–258. [Google Scholar]
- Rosamah, E.; Ferliyanti, F.; Kuspradini, H.; Dungani, R.; Aditiawati, P. Chemical content in two teak woods (Tectona grandis Linn.F.) that has been used for 2 and 60 years. J. Biol. Sci. Technol. Manag. 2020, 2, 15–19. [Google Scholar] [CrossRef]
- Bonanomi, G.; Sicurezza, M.G.; Caporaso, S.; Esposito, A.; Mazzoleni, S. Phytotoxicity dynamics of decaying plant materials. New Phytol. 2006, 169, 571–578. [Google Scholar] [CrossRef] [PubMed]
- Santosa, M.R.; Umar, M.R.; Priosambodo, D.; Santosa, R.A. Estimation of biomass, carbon stocks and leaf litter decomposition rate in teak Tectona grandis Linn plantations in city forest of Hasanuddin University, Makassar. Int. J. Plant Biol. 2020, 11, 8541. [Google Scholar] [CrossRef]
- Sankaran, K.V. Decomposition of leaf litter of albizia (Paraserianthes falcataria), eucalypt (Eucalyptus tereticornis) and teak (Tectona grandis) in Kerala, India. For. Ecol. Manag. 1993, 56, 225–242. [Google Scholar] [CrossRef]
- Maharudrappa, A.; Srinivasamurthy, C.A.; Nagaraja, M.S.; Siddaramappa, R.; Anand, H.S. Decomposition rates of litter and nutrient release pattern in a tropical soil. J. Indian Soc. Soil Sci. 2000, 48, 92–97. [Google Scholar]
- Kumar, J.I.N.; Sajish, P.R.; Kumar, R.H.; Bhoi, R.K. Wood and leaf litter decomposition and nutrient release from Tectona grandis Linn. f. in a tropical dry deciduous forest of rajasthan, Western India. J. For. Sci. 2010, 26, 17–23. [Google Scholar]
- Barrios, E.; Gemmill-Herren, B.; Bicksler, A.; Siliprandi, E.; Brathwaite, R.; Moller, S.; Batello, C.; Tittonell, P. The 10 Elements of Agroecology: Enabling transitions towards sustainable agriculture and food systems through visual narratives. Ecosyst. People 2020, 16, 230–247. [Google Scholar] [CrossRef]
- Carmo, D.L.; Nannetti, D.C.; Junior, M.S.D.; Lacerda, T.M.; Nannetti, A.N.; Manuel, L. Chemical and physical attributes of a latosol and coffee crop nutrition in agroforestry and conventional management systems. Coffee Sci. 2014, 9, 122–131. [Google Scholar]
- Aguilera, E.; Díaz-Gaona, C.; García-Laureano, R.; Reyes-Palomob, C.; Guzmán, G.I.; Ortolani, L.; Sánchez-Rodríguez, M.; Rodríguez-Estévez, V. Agroecology for adaptation to climate change and resource depletion in the Mediterranean region. Rev. Agric. Syst. 2020, 181, 102809. [Google Scholar] [CrossRef]
- Boeckx, P.; Bauters, M.; Dewettinck, K. Poverty and climate change challenges for sustainable intensification of cocoa systems. Curr. Opin. Environ. Sustain. 2020, 47, 106–111. [Google Scholar] [CrossRef]
- Sollen-Norrlin, M.; Ghaley, B.B.; Rintoul, N.L.J. Agroforestry benefits and challenges for adoption in Europe and beyond. Sustainability 2020, 12, 7001. [Google Scholar] [CrossRef]
- Dagar, J.C.; Tewari, V.P. Evolution of agroforestry as a modern science. In Agroforestry; Dagar, J., Tewari, V., Eds.; Springer: Singapore, 2018; pp. 13–90. [Google Scholar]
- Jácome, M.G.O.; Mantovani, J.R.; da Silva, A.B.; Rezende, T.T.; Landgraf, P.R.C. Soil attributes and coffee yield in an agroforestry system. Coffee Sci. 2020, 15, e151676. [Google Scholar]
- Wiersum, K.F. Tree gardening and taungya on Java: Examples of agroforestry techniques in the humid tropics. Agrofor. Syst. 1982, 1, 53–70. [Google Scholar] [CrossRef]
- Mishra, J.; Prasad, U.N. Agri-silvicultural studies on raising of oil seeds like Sesamum indicum Linn. (til), Arachis hypogea Linn. (groundnut) and Glycine max Merril. (soybean) as cash crops in conjuction with D. sissoo and T. grandis at Mandar, Ranchi. Indian For. 1980, 106, 675–695. [Google Scholar]
- Lalramnghinglova, J.H.; Jha, L.K. Prominent agroforestry systems and important multipurpose trees in farming system of Mizoram. Indian For. 1996, 122, 604–609. [Google Scholar]
- Abraham, E.; John, J.; Pillai, P.S. Allelopathic effect of leaf loppings of homestead trees on ginger (Zingiber officinale Roscoe). J. Trop. Agric. 2016, 54, 60–65. [Google Scholar]
- Sadono, R.; Soeprijadi, D.; Nikmah, S.F.; Wirabuana, P.Y.A.P. Determining the best agroforestry system using multicriteria analysis in Banyumas Forest Management Unit. IOP Conf. Ser. Earth Environ. Sci. 2020, 449, 012049. [Google Scholar] [CrossRef] [Green Version]
- Roshetko, J.M.; Rohadi, D.; Perdana, A.; Sabastian, G.; Nuryartono, N.; Pramono, A.A.; Widyani, N.; Manalu, P.; Muhammad, A.; Fauzi, M.A.; et al. Teak agroforestry systems for livelihood enhancement, industrial timber production, and environmental rehabilitation. For. Trees Livelihoods 2013, 22, 241–256. [Google Scholar] [CrossRef]
- Doddabasawa, P.; Chittapur, B.M.; Murthy, M.M. Economics and energy potential of traditional agroforestry systems under contrasting ecosystems in semi arid tropics. Agrofor. Syst. 2020, 94, 2237–2247. [Google Scholar] [CrossRef]
Source | Inhibition | Target Plant Species | Reference |
---|---|---|---|
Leachate from leaves | Germination, plant growth | Vigna unguiculata, Momordica charantia, Solanum melongena | [37] |
Cicer arietinum | [38] | ||
Leaf mulch | Rhizome growth | Turmeric | [15] |
Leaf powder | Weed emergence | Cyndon dactylon, Echinochloa colona, Cyperus rotundus, Cyperus difformis, Amaranthus viridis, Chenopodium album, Melilotus alba | [39] |
Extracts | |||
Soil under teak trees | Germination, plant growth | Tomato | [40,41] |
Fallen leaf | Plant growth, protein content | Vigna mungo, Vigna radiata | [42] |
Germination, | Echinochloa colona, Cyperus difformis | [43] | |
Weed emergence | Cyndon dactylon, Echinochloa colona, Cyperus rotundus, Cyperus difformis, Amaranthus viridis, Chenopodium album, Melilotus alba | [39] | |
Fresh leaf | Germination, plant growth | Vigna mungo | [44] |
Germination, plant growth | Plumbago zeylanica | [45] | |
Rice, maize, Vigna radiate, Vigna umbellate, Arachis hypogeae | [46] | ||
Germination | Luffa cylindrical, Abelmoschus esculentus, Brassica juncea | [47] | |
Plant growth, contents of chlorophyll and carotenoid | Chilli, Vigna radiata | [48] | |
Plant growth, contents of chlorophyll and carotenoid | Pennisetum glaucum, Eleusine coracana | [49] | |
Plant growth | Amaranthus spinosus | [50] | |
Root | Germination, seedling growth | Hibiscus esculentus | [51] |
Leaf, root, bark | Plant growth | Maize | [52] |
Phytochemical Class | Compound | Terget Plant Species | Inhibition | Reference |
---|---|---|---|---|
Phenolic | 1: Acetovanillone | Wheat | Plant growth | [56] |
Benzofuran | 2: Dehydrololiolide | Wheat | Plant growth | [55] |
Anthra quinone | 3: Naphthotectone | Wheat, onion, tomato, lettuce | Plant growth, germination | [53] |
Monoterpene | 4: (6RS)-(E)-2,6-Dimethyl-2,7-octadiene-1,6-diol | Wheat | Plant growth | |
Sesquterprne | 5: lβ-6α-Dihydroxy-4(15)-eudesmene | Wheat | Plant growth | [54] |
6: (1S,3aR,4R,7aS)-1-(2-hydroxypropan-2-yl)-3a-methyl-7-methyleneoctahydro-1H-inden-4-ol | Wheat | Plant growth | [54] | |
Diterpene | 7: Phytol | Wheat | Plant growth | [54] |
8: Rhinocerotinoic acid | Wheat, lettuce | Plant growth, germination | [54] | |
9: 2-Oxokovalenic acid | Wheat, onion, lettuce | Plant growth, germination | [54] | |
10: Lab-13-en-8β-ol-15-oic acid | Wheat, onion, lettuce | Plant growth | [54] | |
11: 19-Hydroxyferruginol | Wheat, onion, lettuce | Plant growth, germination | [54] | |
12: Solidagonal acid | Wheat | Plant growth | [54] | |
Apocarotenoid | 13: Tectoionol A | Wheat | Plant growth | [55] |
14: Tectoionol B | Wheat | Plant growth | [55] | |
15: 3β-Hydroxy-7,8-dihydro-β-ionol | Wheat, onion, tomato | Plant growth | [55] | |
16: 3β-Hydroxy-7,8-dihydro-β-ionone | Wheat, onion, tomato, lettuce | Plant growth | [55] | |
Phenylpropanoid | 17: Syringaresinol | Wheat | Plant growth | [56] |
18: Medioresinol | Wheat | Plant growth | [56] | |
19: Lariciresinol | Wheat | Plant growth | [56] | |
20: Balaphonin | Wheat | Plant growth | [56] | |
21: Tectonoelin A | Wheat | Plant growth | [56] | |
22: Tectonoelin B | Wheat | Plant growth | [56] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kato-Noguchi, H. Phytotoxic Substances Involved in Teak Allelopathy and Agroforestry. Appl. Sci. 2021, 11, 3314. https://doi.org/10.3390/app11083314
Kato-Noguchi H. Phytotoxic Substances Involved in Teak Allelopathy and Agroforestry. Applied Sciences. 2021; 11(8):3314. https://doi.org/10.3390/app11083314
Chicago/Turabian StyleKato-Noguchi, Hisashi. 2021. "Phytotoxic Substances Involved in Teak Allelopathy and Agroforestry" Applied Sciences 11, no. 8: 3314. https://doi.org/10.3390/app11083314
APA StyleKato-Noguchi, H. (2021). Phytotoxic Substances Involved in Teak Allelopathy and Agroforestry. Applied Sciences, 11(8), 3314. https://doi.org/10.3390/app11083314