There Is No Cross Effect of Unstable Resistance Training on Power Produced during Stable Conditions
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Protocol
2.3. Statistical Analysis
3. Results
3.1. Pre-Post Training Changes in Upper and Lower Body Muscle Power
3.2. Between-Group Differences in Muscle Power Prior to and after 4 and 8-Week Training
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anderson, K.; Behm, D.G. The Impact of Instability Resistance Training on Balance and Stability. Sports Med. 2005, 35, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Behm, D.; Colado, J.C. The Effectiveness of Resistance Training Using Unstable Surfaces and Devices for Rehabilitation. Int. J. Sports Phys. Ther. 2012, 7, 226–241. [Google Scholar] [PubMed]
- Cowley, P.; Swensen, T.; Sforzo, G. Efficacy of Instability Resistance Training. Int. J. Sports Med. 2007, 28, 829–835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kibele, A.; Behm, D.G. Seven weeks of instability and traditional resistance training effects on strength, balance and functional performance. J. Strength Cond. Res. 2009, 23, 2443–2450. [Google Scholar] [CrossRef] [PubMed]
- Sparkes, R.; Behm, D.G. Training Adaptations Associated with an 8-Week Instability Resistance Training Program with Recreationally Active Individuals. J. Strength Cond. Res. 2010, 24, 1931–1941. [Google Scholar] [CrossRef]
- Maté-Muñoz, J.L.; Monroy, A.J.A.; Jiménez, P.J.; Garnacho-Castaño, M.V. Effects of Instability Versus Traditional Resistance Training on Strength, Power and Velocity in Untrained Men. J. Sports Sci. Med. 2014, 13, 460–468. [Google Scholar] [PubMed]
- Lehman, G.J.; Gordon, T.; Langley, J.; Pemrose, P.; Tregaskis, S. Replacing a Swiss ball for an exercise bench causes variable changes in trunk muscle activity during upper limb strength exercises. Dyn. Med. 2005, 4, 6. [Google Scholar] [CrossRef] [Green Version]
- Goodman, C.A.; Pearce, A.J.; Nicholes, C.J.; Gatt, B.M.; Fairweather, I.H. No Difference in 1RM Strength and Muscle Activation During the Barbell Chest Press on a Stable and Unstable Surface. J. Strength Cond. Res. 2008, 22, 88–94. [Google Scholar] [CrossRef] [Green Version]
- Uribe, B.P.; Coburn, J.W.; Brown, L.E.; Judelson, D.A.; Khamoui, A.V.; Nguyen, D. Muscle Activation When Performing the Chest Press and Shoulder Press on a Stable Bench vs. a Swiss Ball. J. Strength Cond. Res. 2010, 24, 1028–1033. [Google Scholar] [CrossRef]
- Chulvi-Medrano, I.; Martínez-Ballester, E.; Masiá-Tortosa, L. Comparison of the Effects of an Eight-Week Push-up Program Using Stable Versus Unstable Surfaces. Int. J. Sports Phys. Ther. 2012, 7, 586–594. [Google Scholar]
- Li, Y.; Cao, C.; Chen, X. Similar Electromyographic Activities of Lower Limbs Between Squatting on a Reebok Core Board and Ground. J. Strength Cond. Res. 2013, 27, 1349–1353. [Google Scholar] [CrossRef]
- Andersen, V.; Fimland, M.; Brennset, Ø.; Haslestad, L.; Lundteigen, M.; Skalleberg, K.; Saeterbakken, A. Muscle Activation and Strength in Squat and Bulgarian Squat on Stable and Unstable Surface. Int. J. Sports Med. 2014, 35, 1196–1202. [Google Scholar] [CrossRef] [PubMed]
- Kibele, A.; Classen, C.; Muehlbauer, T.; Granacher, U.; Behm, D.G. Metastability in plyometric training on unstable surfaces: A pilot study. BMC Sports Sci. Med. Rehabil. 2014, 6, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunnick, D.D.; Brown, L.E.; Coburn, J.W.; Lynn, S.K.; Barillas, S.R. Bench Press Upper-Body Muscle Activation Between Stable and Unstable Loads. J. Strength Cond. Res. 2015, 29, 3279–3283. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Guerrero, J.; Moras, G.; Baeza, J.; Rodríguez-Jiménez, S. Force Outputs during Squats Performed Using a Rotational Inertia Device under Stable versus Unstable Conditions with Different Loads. PLoS ONE 2016, 11, e0154346. [Google Scholar] [CrossRef]
- Lago-Fuentes, C.; Rey, E.; Padrón-Cabo, A.; De Rellán-Guerra, A.S.; Fragueiro-Rodríguez, A.; García-Núñez, J. Effects of Core Strength Training Using Stable and Unstable Surfaces on Physical Fitness and Functional Performance in Professional Female Futsal Players. J. Hum. Kinet. 2018, 65, 213–224. [Google Scholar] [CrossRef] [Green Version]
- Moras, G.; Vázquez-Guerrero, J.; Fernández-Valdés, B.; Rosas-Casals, M.; Weakley, J.; Jones, B.; Sampaio, J. Structure of force variability during squats performed with an inertial flywheel device under stable versus unstable surfaces. Hum. Mov. Sci. 2019, 66, 497–503. [Google Scholar] [CrossRef] [PubMed]
- Saeterbakken, A.H.; Olsen, A.; Behm, D.G.; Bardstu, H.B.; Andersen, V. The short- and long-term effects of resistance training with different stability requirements. PLoS ONE 2019, 14, e0214302. [Google Scholar] [CrossRef] [PubMed]
- Cressey, E.M.; West, C.A.; Tiberio, D.P.; Kraemer, W.J.; Maresh, C.M. The Effects of Ten Weeks of Lower-Body Unstable Surface Training on Markers of Athletic Performance. J. Strength Cond. Res. 2007, 21, 561–567. [Google Scholar] [CrossRef] [PubMed]
- Oberacker, L.M.; Davis, S.E.; Haff, G.G.; Witmer, C.A.; Moir, G.L. The Yo-Yo IR2 test: Physiological response, reliability, and application to elite soccer. J. Strength Cond. Res. 2012, 26, 2734–2740. [Google Scholar] [CrossRef] [PubMed]
- Granacher, U.; Prieske, O.; Majewski, M.; Büsch, D.; Muehlbauer, T. The Role of Instability with Plyometric Training in Sub-elite Adolescent Soccer Players. J. Med. Sci. Sports 2015, 36, 386–394. [Google Scholar] [CrossRef] [PubMed]
- Prieske, O.; Muehlbauer, T.; Borde, R.; Gube, M.; Bruhn, S.; Behm, D.G.; Granacher, U. Neuromuscular and athletic performance following core strength training in elite youth soccer: Role of instability. Scand. J. Med. Sci. Sports 2015, 26, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Anderson, K.G.; Behm, D.G. Maintenance of EMG Activity and Loss of Force Output with Instability. J. Strength Cond. Res. 2004, 18, 637–640. [Google Scholar] [CrossRef] [PubMed]
- Chulvi-Medrano, I.; García-Massó, X.; Colado, J.C.; Pablos, C.; de Moraes, J.A.; Fuster, M.A. Deadlift Muscle Force and Activation Under Stable and Unstable Conditions. J. Strength Cond. Res. 2010, 24, 2723–2730. [Google Scholar] [CrossRef]
- Behm, D.G.; Anderson, K.; Curnew, R.S. Muscle force and activation under stable and unstable conditions. J. Strength Cond. Res. 2002, 16, 416–422. [Google Scholar] [PubMed]
- McBride, J.M.; Cormie, P.; Deane, R. Isometric Squat Force Output and Muscle Activity in Stable and Unstable Conditions. J. Strength Cond. Res. 2006, 20, 915–918. [Google Scholar] [CrossRef] [Green Version]
- Zemková, E.; Oddsson, L. Effects of Stable and Unstable Resistance Training in an Altered-G Environment on Muscle Power. Int. J. Sports Med. 2015, 37, 288–294. [Google Scholar] [CrossRef] [PubMed]
- Koshida, S.; Urabe, Y.; Miyashita, K.; Iwai, K.; Kagimori, A. Muscular Outputs During Dynamic Bench Press Under Stable Versus Unstable Conditions. J. Strength Cond. Res. 2008, 22, 1584–1588. [Google Scholar] [CrossRef] [PubMed]
- Zemková, E.; Jeleň, M.; Kováčiková, Z.; Ollé, G.; Vilman, T.; Hamar, D. Weight Lifted and Countermovement Potentiation of Power in the Concentric Phase of Unstable and Traditional Resistance Exercises. J. Appl. Biomech. 2014, 30, 213–220. [Google Scholar] [CrossRef]
- Nuzzo, J.L.O.; McCaulley, G.; Cormie, P.; Cavill, M.J.; McBride, J.M. Trunk Muscle Activity During Stability Ball and Free Weight Exercises. J. Strength Cond. Res. 2008, 22, 95–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kraemer, W.J.; Adams, K.; Cafarelli, E.; Dudley, G.A.; Dooly, C.; Feigenbaum, M.S.; Fleck, S.J.; Franklin, B.; Fry, A.C.; Hoffman, J.R.; et al. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med. Sci. Sports Exerc. 2009, 41, 687–708. [Google Scholar] [CrossRef]
- Granacher, U.U.; Schellbach, J.J.; Klein, K.K.; Prieske, O.O.; Baeyens, J.P.; Muehlbauer, T.T. Effects of core strength training using stable versus unstable surfaces on physical fitness in adolescents: A randomized controlled trial. BMC Sports Sci. Med. Rehabil. 2014, 6, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Marshall, P.W.; Murphy, B.A. Core stability exercises on and off a Swiss ball. Arch. Phys. Med. Rehabil. 2005, 86, 242–249. [Google Scholar] [CrossRef]
- Behm, D.G.; Drinkwater, E.J.; Willardson, J.M.; Cowley, P.M. The Role of Instability Rehabilitative Resistance Training for the Core Musculature. Strength Cond. J. 2011, 33, 72–81. [Google Scholar] [CrossRef] [Green Version]
- Vera-Garcia, F.J.; Grenier, S.G.; McGill, S.M. Abdominal Muscle Response During Curl-ups on Both Stable and Labile Surfaces. Phys. Ther. 2000, 80, 564–569. [Google Scholar] [CrossRef]
- Marshall, P.W.; Murphy, B.A. Increased Deltoid and Abdominal Muscle Activity During Swiss Ball Bench Press. J. Strength Cond. Res. 2006, 20, 745–750. [Google Scholar] [CrossRef] [Green Version]
- Ostrowski, S.J.; Carlson, L.A.; Lawrence, M.A. Effect of an Unstable Load on Primary and Stabilizing Muscles During the Bench Press. J. Strength Cond. Res. 2017, 31, 430–434. [Google Scholar] [CrossRef]
- Anderson, G.S.; Gaetz, M.; Holzmann, M.; Twist, P. Comparison of EMG activity during stable and unstable push-up protocols. Eur. J. Sport Sci. 2013, 13, 42–48. [Google Scholar] [CrossRef]
- Kohler, J.M.; Flanagan, S.P.; Whiting, W.C. Muscle Activation Patterns While Lifting Stable and Unstable Loads on Stable and Unstable Surfaces. J. Strength Cond. Res. 2010, 24, 313–321. [Google Scholar] [CrossRef]
- Behm, D.G.; Leonard, A.M.; Young, W.B.; Bonsey, A.C.; MacKinnon, S.N. Trunk muscle electromyographic activity with unstable and unilateral exercises. J. Strength Cond. Res. 2005, 19, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Anderson, K.; Behm, D.G. Trunk Muscle Activity Increases with Unstable Squat Movements. Can. J. Appl. Physiol. 2005, 30, 33–45. [Google Scholar] [CrossRef] [Green Version]
- Cosio-Lima, L.M.; Reynolds, K.L.; Winter, C.; Paolone, V.; Jones, M.T. Effects of Physioball and Conventional Floor Exercises on Early Phase Adaptations in Back and Abdominal Core Stability and Balance in Women. J. Strength Cond. Res. 2003, 17, 721–725. [Google Scholar] [CrossRef]
- Stanton, R.; Reaburn, P.R.; Humphries, B. The effect of short-term Swiss ball running on core stability and running economy. J. Strength Cond. Res. 2004, 18, 522–528. [Google Scholar] [CrossRef]
- Cuğ, M.; Ak, E.; Ozdemir, R.A.; Korkusuz, F.; Behm, D.G. The Effect of Instability Training on Knee Joint Proprioception and Core Strength. J. Sports Sci. Med. 2012, 11, 468–474. [Google Scholar] [PubMed]
- Zemkova, E.; Hamar, D. Utilization of elastic energy during weight exercises differs under stable and unstable conditions. J. Sports Med. Phys. Fit. 2013, 53, 119–129. [Google Scholar]
- Zemková, E.; Jeleň, M.; Kováčiková, Z.; Ollé, G.; Vilman, T.; Hamar, D. Enhancement of Peak and Mean Power in Concentric Phase of Resistance Exercises. J. Strength Cond. Res. 2014, 28, 2919–2926. [Google Scholar] [CrossRef] [PubMed]
- Zemková, E.; Hamar, D. Lifting weights close to maximal power differs under stable and unstable conditions. In Proceedings of the 16th Annual Congress of the European College of Sport Science, Liverpool, UK, 6–9 July 2011; p. 481. [Google Scholar]
- Baker, D.G.; Newton, R.U. Change in Power Output Across a High-Repetition Set of Bench Throws and Jump Squats in Highly Trained Athletes. J. Strength Cond. Res. 2007, 21, 1007–1011. [Google Scholar] [CrossRef] [PubMed]
- Laudner, K.G.; Koschnitzky, M.M. Ankle Muscle Activation When Using the Both Sides Utilized (BOSU) Balance Trainer. J. Strength Cond. Res. 2010, 24, 218–222. [Google Scholar] [CrossRef] [PubMed]
- Jennings, C.L.; Viljoen, W.; Durandt, J.; Lambert, M.I. The Reliability of the FiTRO Dyne as a Measure of Muscle Power. J. Strength Cond. Res. 2005, 19, 859–863. [Google Scholar] [CrossRef]
- Zemková, E.; Cepková, A.; Uvaček, M.; Hamar, D. A new method to assess the power performance during a lifting task in young adults. Measurement 2016, 91, 460–467. [Google Scholar] [CrossRef]
- Zemková, E.; Cepková, A.; Uvaček, M.; Šooš, L. A Novel Method for Assessing Muscle Power During the Standing Cable Wood Chop Exercise. J. Strength Cond. Res. 2017, 31, 2246–2254. [Google Scholar] [CrossRef]
- Zemková, E.; Jeleň, M.; Kováčiková, Z.; Ollé, G.; Vilman, T.; Hamar, D. Reliability and methodological issues of power assessment during chest presses on unstable surface with different weights. J. Sports Med. Phys. Fitness 2015, 55, 922–930. [Google Scholar]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef]
- Marquina, M.; Lorenzo-Calvo, J.; Rivilla-García, J.; García-Aliaga, A.; Román, I.R. Effects on Strength, Power and Speed Execution Using Exercise Balls, Semi-Sphere Balance Balls and Suspension Training Devices: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 1026. [Google Scholar] [CrossRef] [PubMed]
- Zemková, E.; Jeleň, M.; Kováčiková, Z.; Ollé, G.; Vilman, T.; Hamar, D. Power Outputs in the Concentric Phase of Resistance Exercises Performed in the Interval Mode on Stable and Unstable Surfaces. J. Strength Cond. Res. 2012, 26, 3230–3236. [Google Scholar] [CrossRef] [PubMed]
- Newton, R.U.; Murphy, A.J.; Humphries, B.J.; Wilson, G.J.; Kraemer, W.J. Influence of load and stretch shortening cycle on the kinematics, kinetics and muscle activation that occurs during explosive upper-body movements. Graefe’s Arch. Clin. Exp. Ophthalmol. 1997, 75, 333–342. [Google Scholar] [CrossRef]
- Gollhofer, A.; Kyröläinen, H. Neuromuscular Control of the Human Leg Extensor Muscles in Jump Exercises Under Various Stretch-Load Conditions. Int. J. Sports Med. 1991, 12, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Fitts, P.M.; Posner, M.I. Human Performance; Brooks/Cole: Belmont, CA, USA, 1967. [Google Scholar]
- Behm, D.G.; Sale, D.G. Velocity Specificity of Resistance Training. Sports Med. 1993, 15, 374–388. [Google Scholar] [CrossRef] [PubMed]
- Schmidtbleicher, D. Training for power events. In Strength and Power in Sport; Komi, P.V., Ed.; Blackwell: Oxford, UK, 2004; pp. 381–395. [Google Scholar]
- Willardson, J.M. The effectiveness of resistance exercises performed on unstable equipment. Strength Cond. J. 2004, 26, 70–74. [Google Scholar] [CrossRef]
- Chek, P. Physioball exercise for swimming, soccer, and basketball. Sports Coach 1999, 21, 30–33. [Google Scholar]
- Verstegen, M.; Williams, P. Physioball routine. In Core Performance; Verstegen, M., Williams, P., Eds.; Rodale: New York, NY, USA, 2004; pp. 73–88. [Google Scholar]
- Behm, D.G.; Drinkwater, E.J.; Willardson, J.M.; Cowley, P.M. The use of instability to train the core musculature. Appl. Physiol. Nutr. Metab. 2010, 35, 91–108. [Google Scholar] [CrossRef]
- Drinkwater, E.J.; Pritchett, E.J.; Behm, D.G. Effect of Instability and Resistance on Unintentional Squat-Lifting Kinetics. Int. J. Sports Physiol. Perform. 2007, 2, 400–413. [Google Scholar] [CrossRef] [Green Version]
- Saeterbakken, A.H.; Fimland, M.S. Muscle Force Output and Electromyographic Activity in Squats with Various Unstable Surfaces. J. Strength Cond. Res. 2013, 27, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Saeterbakken, A.H.; Fimland, M.S. Electromyographic Activity and 6RM Strength in Bench Press on Stable and Unstable Surfaces. J. Strength Cond. Res. 2013, 27, 1101–1107. [Google Scholar] [CrossRef] [PubMed]
- Zemková, E. Instability resistance training for health and performance. J. Tradit. Complement. Med. 2017, 7, 245–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behm, D.G.; Muehlbauer, T.; Kibele, A.; Granacher, U. Effects of Strength Training Using Unstable Surfaces on Strength, Power and Balance Performance Across the Lifespan: A Systematic Review and Meta-analysis. Sports Med. 2015, 45, 1645–1669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hahn, S.; Stanforth, D.; Stanforth, P.R.; Phillips, A. A 10 Week Training Study Comparing Resistaball and Traditional Trunk Training. Med. Sci. Sports Exerc. 1998, 30, 134–140. [Google Scholar] [CrossRef]
- Premkumar, M.; Alagesan, J.; Vaidya, N. Effect of instability resistance training of abdominal muscles in healthy young females—An experimental study. Int. J. Pharm. Sci. Health Care 2012, 2, 91–97. [Google Scholar]
- Sukalinggam, C.L.; Sukalinggam, G.L.; Kasim, F.; Yusof, A. Stability Ball Training on Lower Back Strength has Greater Effect in Untrained Female Compared to Male. J. Hum. Kinet. 2012, 33, 133–141. [Google Scholar] [CrossRef]
Load (kg) | Pre-Training Mean (SD) | After 4 Weeks a Mean (SD) | After 8 Weeks b Mean (SD) | p-Values a | Effect Sizes a | p-Values b | Effect Sizes b |
---|---|---|---|---|---|---|---|
20 | 299.6 (27.1) | 324.7 (32.7) | 366.1 (36.1) | 0.035 | 0.79 | 0.004 | 1.20 |
30 | 347.8 (37.6) | 373.8 (42.0) | 409.0 (43.8) | 0.030 | 0.97 | 0.008 | 1.13 |
40 | 381.7 (31.8) | 405.5 (33.1) | 441.8 (35.9) | 0.041 | 0.73 | 0.007 | 1.05 |
50 | 390.9 (35.8) | 413.4 (35.4) | 455.2 (33.9) | 0.056 | 0.63 | 0.003 | 1.21 |
60 | 384.4 (35.0) | 397.8 (38.8) | 416.9 (39.9) | 0.363 | 0.49 | 0.286 | 0.49 |
65 | 317.6 (36.9) | 330.5 (37.6) | 347.7 (36.5) | 0.421 | 0.35 | 0.301 | 0.46 |
70 | 222.9 (38.0) | 237.6 (42.1) | 253.7 (44.8) | 0.351 | 0.49 | 0.345 | 0.37 |
Load (kg) | Pre-Training Mean (SD) | After 4 Weeks a Mean (SD) | After 8 Weeks b Mean (SD) | p-Values a | Effect Sizes a | p-Values b | Effect Sizes b |
---|---|---|---|---|---|---|---|
20 | 312.1 (33.7) | 327.4 (34.5) | 350.0 (43.2) | 0.341 | 0.45 | 0.004 | 0.58 |
30 | 365.2 (35.4) | 380.6 (33.6) | 400.9 (39.5) | 0.333 | 0.45 | 0.311 | 0.55 |
40 | 396.7 (41.8) | 421.9 (43.2) | 443.4 (42.8) | 0.254 | 0.59 | 0.276 | 0.50 |
50 | 430.1 (37.6) | 450.9 (40.5) | 471.8 (41.6) | 0.309 | 0.53 | 0.298 | 0.51 |
60 | 448.3 (43.5) | 470.1 (42.4) | 487.4 (45.2) | 0.263 | 0.51 | 0.293 | 0.39 |
65 | 421.8 (36.5) | 435.3 (40.4) | 449.0 (46.3) | 0.360 | 0.35 | 0.408 | 0.32 |
70 | 335.5 (36.0) | 348.2 (33.5) | 356.6 (32.7) | 0.414 | 0.53 | 0.570 | 0.25 |
75 | 246.9 (34.3) | 263.1 (35.3) | 270.1 (31.9) | 0.288 | 0.47 | 0.581 | 0.21 |
Load (kg) | Pre-Training Mean (SD) | After 4 Weeks a Mean (SD) | After 8 Weeks b Mean (SD) | p-Values a | Effect Sizes a | p-Values b | Effect Sizes b |
---|---|---|---|---|---|---|---|
20 | 246.1 (29.0) | 317.4 (34.4) | 330.1 (38.3) | 0.001 | 2.92 | 0.389 | 0.35 |
30 | 289.4 (31.9) | 363.6 (40.0) | 377.2 (42.8) | 0.001 | 2.05 | 0.351 | 0.45 |
40 | 333.4 (41.5) | 401.1 (45.4) | 425.7 (49.3) | 0.001 | 1.56 | 0.135 | 0.52 |
50 | 389.5 (41.9) | 445.5 (43.4) | 462.8 (48.2) | 0.012 | 1.31 | 0.234 | 0.38 |
60 | 434.8 (47.9) | 483.3 (49.9) | 502.1 (51.2) | 0.021 | 0.99 | 0.208 | 0.37 |
70 | 417.7 (46.6) | 453.6 (48.7) | 467.3 (43.2) | 0.060 | 0.75 | 0.345 | 0.30 |
80 | 398.6 (43.5) | 421.1 (46.5) | 433.5 (48.5) | 0.111 | 0.70 | 0.425 | 0.26 |
Load (kg) | Pre-Training Mean (SD) | After 4 Weeks a Mean (SD) | After 8 Weeks b Mean (SD) | p-Values a | Effect Sizes a | p-Values b | Effect Sizes b |
---|---|---|---|---|---|---|---|
20 | 303.1 (41.8) | 331.5 (49.9) | 343.9 (48.7) | 0.253 | 0.62 | 0.578 | 0.25 |
30 | 345.7 (44.6) | 375.6 (49.9) | 389.1 (52.4) | 0.201 | 0.63 | 0.512 | 0.26 |
40 | 396.7 (46.2) | 421.0 (49.6) | 429.5 (49.7) | 0.260 | 0.51 | 0.634 | 0.17 |
50 | 454.6 (45.5) | 477.3 (48.3) | 496.2 (50.1) | 0.290 | 0.48 | 0.467 | 0.38 |
60 | 508.1 (43.9) | 528.8 (45.4) | 548.1 (49.9) | 0.412 | 0.46 | 0.450 | 0.40 |
70 | 539.5 (50.8) | 561.4 (52.6) | 579.6 (55.4) | 0.314 | 0.42 | 0.466 | 0.34 |
80 | 529.5 (50.2) | 553.8 (53.1) | 576.1 (59.8) | 0.271 | 0.47 | 0.320 | 0.39 |
85 | 507.8 (45.5) | 529.0 (47.4) | 553.3 (58.5) | 0.322 | 0.46 | 0.278 | 0.45 |
90 | 493.4 (46.7) | 515.5 (52.3) | 534.0 (55.0) | 0.283 | 0.45 | 0.471 | 0.35 |
95 | 445.5 (48.5) | 467.7 (51.8) | 488.1 (54.6) | 0.285 | 0.44 | 0.422 | 0.38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zemková, E.; Jeleň, M.; Cepková, A.; Uvaček, M. There Is No Cross Effect of Unstable Resistance Training on Power Produced during Stable Conditions. Appl. Sci. 2021, 11, 3401. https://doi.org/10.3390/app11083401
Zemková E, Jeleň M, Cepková A, Uvaček M. There Is No Cross Effect of Unstable Resistance Training on Power Produced during Stable Conditions. Applied Sciences. 2021; 11(8):3401. https://doi.org/10.3390/app11083401
Chicago/Turabian StyleZemková, Erika, Michal Jeleň, Alena Cepková, and Marián Uvaček. 2021. "There Is No Cross Effect of Unstable Resistance Training on Power Produced during Stable Conditions" Applied Sciences 11, no. 8: 3401. https://doi.org/10.3390/app11083401
APA StyleZemková, E., Jeleň, M., Cepková, A., & Uvaček, M. (2021). There Is No Cross Effect of Unstable Resistance Training on Power Produced during Stable Conditions. Applied Sciences, 11(8), 3401. https://doi.org/10.3390/app11083401