Supercritical Carbon Dioxide Extraction of Phenolic Compounds from Potato (Solanum tuberosum) Peels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Chemical Characterization of Potato Samples
2.3. Phenolic Acids
2.3.1. Total Phenolic Content (TPC)
2.3.2. Phenolic Acid Identification and Quantification
2.4. Supercritical Fluid Extraction (SFE)
2.5. Design of Experiments (DoE) and Process Optimization
2.6. Antioxidant Activity (AA)
3. Results
3.1. Sample Characterization
3.2. Phenolic Identification and Quantification
3.3. SFE Screening Experiments
3.4. Design of Experiments (DoE) and Process Optimization
3.5. Antioxidant Activity
3.6. Extraction of Phenolics by SFE vs. Other Techniques
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gebrechristos, H.Y.; Chen, W. Utilization of potato peel as eco-friendly products: A review. Food Sci. Nutr. 2018, 6, 1352–1356. [Google Scholar] [CrossRef] [Green Version]
- FAOSTAT. Global Food Losses and Food Waste: Extent, Causes and Prevention. 2012. Available online: http://faostat.fao.org (accessed on 1 March 2021).
- Israilides, C.; Vlyssides, A.G.; Arapoglou, D.; Marchant, R.; Vlysides, A.A. Integrated managemnet of potato starch waste. Proc. Waste 2008 Waste Resour. Manag. A Shar. Responsib 2008, 11, 36. [Google Scholar]
- Akyol, H.; Riciputi, Y.; Capanoglu, E.; Caboni, M.F.; Verardo, V. Phenolic Compounds in the Potato and Its Byproducts: An Overview. Int. J. Mol. Sci. 2016, 17, 835. [Google Scholar] [CrossRef]
- Gaudino, E.C.; Colletti, A.; Grillo, G.; Tabasso, S.; Cravotto, G. Emerging Processing Technologies for the Recovery of Valuable Bioactive Compounds from Potato Peels. Foods 2020, 9, 1598. [Google Scholar] [CrossRef]
- Sampaio, S.L.; Petropoulos, S.A.; Alexopoulos, A.; Heleno, S.A.; Santos-buelga, C.; Barros, L.; Ferreira, I.C.F.R. Trends in Food Science & Technology Potato peels as sources of functional compounds for the food industry: A review. Trends Food Sci. Technol. 2020, 103, 118–129. [Google Scholar]
- Samarin, A.M.; Poorazarang, H.; Hematyar, N.; Poorazarang, H. Phenolics in Potato Peels: Extraction and Utilization as Natural Antioxidants. World Appl. Sci. J. 2017, 18, 16–21. [Google Scholar]
- Silva-beltrán, N.P.; Chaidez-quiroz, C.; López-cuevas, O.; Ruiz-cruz, S.; López-Mata, M.A.; Del-Toro-Sánchez, C.L.; Marquez-Rios, E.; Ornelas-Paz, J.d. Phenolic Compounds of Potato Peel Extracts: Their Antioxidant Activity and Protection against Human Enteric Viruses. J. Microbiol. Biotechnol. Res. 2017, 27, 234–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedman, M.; Huang, V.; Quiambao, Q.; Noritake, S.; Liu, J.; Kwon, O.; Chintalapati, S.; Young, J.; Levin, C.E.; Tam, C.; et al. Potato Peels and Their Bioactive Glycoalkaloids and Phenolic Compounds Inhibit the Growth of Pathogenic Trichomonads. J. Agric. Food Chem. 2018, 66, 7942–7947. [Google Scholar] [CrossRef] [PubMed]
- Venturi, F.; Bartolini, S.; Sanmartin, C.; Orlando, M.; Taglieri, I.; Macaluso, M.; Lucchesini, M.; Trivellini, A.; Zinnai, A.; Mensuali, A. Applied sciences Potato Peels as a Source of Novel Green Extracts Suitable as Antioxidant Additives for Fresh-Cut Fruits. Appl. Sci. 2019, 9, 2431. [Google Scholar] [CrossRef] [Green Version]
- Panzella, L.; Moccia, F.; Nasti, R.; Marzorati, S.; Verotta, L.; Napolitano, A. Bioactive Phenolic Compounds From Agri-Food Wastes: An Update on Green and Sustainable Extraction Methodologies. Front. Nutr. 2020, 7, 60. [Google Scholar] [CrossRef] [PubMed]
- Pimentel-Moral, S.; Cadiz-Gurrea, M.d.; Celia, R.-P.; Segura-carretero, A. Functional and Preservative Properties of Phytochemicals; Elsevier: Amsterdam, The Netherlands, 2020; pp. 208–239. [Google Scholar]
- Zhu, X.; Cheng, Y.; Chen, P.; Peng, P.; Liu, S.; Li, D.; Ruan, R. Effect of alkaline and high-pressure homogenization on the extraction of phenolic acids from potato peels. Innov. Food Sci. Emerg. Technol. 2016, 37, 91–97. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.; Yan, J.; Liu, R.; Marcone, M.F.; Aisa, H.A.; Tsao, R. Optimization of microwave-assisted extraction of phenolics from potato and its downstream waste using orthogonal array design. Food Chem. 2012, 133, 1292–1298. [Google Scholar] [CrossRef]
- Frontuto, D.; Carullo, D.; Harrison, S.M.; Brunton, N.P.; Ferrari, G.; Lyng, J.G.; Pataro, G. Optimization of Pulsed Electric Fields-Assisted Extraction of Polyphenols from Potato Peels Using Response Surface Methodology. Food Bioprocess Technol. 2019, 12, 1708–1720. [Google Scholar] [CrossRef]
- Singh, P.P.; Saldaña, M.D. Subcritical water extraction of phenolic compounds from potato peel. Food Res. Int. 2011, 44, 2452–2458. [Google Scholar] [CrossRef]
- Martinez-Fernandez, J.S.; Gu, X.; Chen, S. Techno-economic assessment of bioactive compound recovery from potato peels with sequential hydrothermal extraction. J. Clean. Prod. 2021, 282, 124356. [Google Scholar] [CrossRef]
- Kumari, B.; Tiwari, B.K.; Hossain, M.B.; Rai, D.K.; Brunton, N.P. Original article Ultrasound-assisted extraction of polyphenols from potato peels: Profiling and kinetic modelling. Int. J. Food Sci. Technol. 2017, 52, 1432–1439. [Google Scholar] [CrossRef] [Green Version]
- AOAC. Official Methods of Analysis of AOAC International, 20th ed.; AOAC International: Gaithersburg, MD, USA, 2016; pp. 1122–1124. [Google Scholar]
- AOAC International. Official Methods of Analysis, 15th ed.; AOAC International: Gaithersburg, MD, USA, 1990; ISBN 0849328993. [Google Scholar]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. NREL/TP-510-42618 analytical procedure—Determination of structural carbohydrates and lignin in Biomass. Lab. Anal. Proced. 2012, 1617, 1–16, Technical Report: NREL/TP-510-42618. [Google Scholar]
- Dai, J.; Mumper, R.J. Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef]
- Kim, K.-H.; Tsao, R.; Yang, R.; Cui, S.W. Phenolic acid profiles and antioxidant activities of wheat bran extracts and the effect of hydrolysis conditions. Food Chem. 2006, 95, 466–473. [Google Scholar] [CrossRef]
- Pisoschi, A.M.; Negulescu, G.P. Methods for Total Antioxidant Activity Determination: A Review. Biochem. Anal. Biochem. 2012, 01, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Mohdaly, A.A.A.; Sarhan, M.A.; Smetanska, I.; Mahmoud, A. Antioxidant properties of various solvent extracts of potato peel, sugar beet pulp and sesame cake. J. Sci. Food Agric. 2009, 90, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Ezekiel, R.; Singh, N.; Sharma, S.; Kaur, A. Beneficial phytochemicals in potato—A review. Food Res. Int. J. 2013, 50, 487–496. [Google Scholar] [CrossRef]
- Joly, N.; Souidi, K.; Depraetere, D.; Wils, D.; Martin, P. Potato By-Products as a Source of Natural Chlorogenic Acids and Phenolic Compounds: Extraction, Characterization, and Antioxidant Capacity. Molecules 2020, 26, 177. [Google Scholar] [CrossRef] [PubMed]
- Acosta-Estrada, B.A.; Gutiérrez-Uribe, J.A.; Serna-Saldívar, S.O. Bound phenolics in foods, a review. Food Chem. 2014, 152, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Waldron, K. Handbook of Waste Management and Co-Product Recovery in Food Processing (v.1); CRC Press, Woodhead Publishing Limited: Cambridge, UK, 2007. [Google Scholar]
- Lattanzio, V. Bioactive polyphenols: Their role in quality and storability of fruit and vegetables. J. Appl. Bot. 2003, 77, 128–146. [Google Scholar]
- Lattanzio, V.; Lattanzio, V.M.T.; Cardinali, A. Role of Phenolics in the Resistance Mechanisms of Plants against Fungal Pathogens and Insects. Phytochem. Adv. Res. 2006, 661, 23–67. [Google Scholar]
- Tyśkiewicz, K.; Konkol, M.; Rój, E. The Application of Supercritical Fluid Extraction in Phenolic Compounds Isolation from Natural Plant Materials. Molecules 2018, 23, 2625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghafoor, K.; Park, J.; Choi, Y.-H. Optimization of supercritical fluid extraction of bioactive compounds from grape (Vitis labrusca B.) peel by using response surface methodology. Innov. Food Sci. Emerg. Technol. 2010, 11, 485–490. [Google Scholar] [CrossRef]
- Fathordoobady, F.; Mirhosseini, H.; Selamat, J.; Manap, M.Y.A. Effect of solvent type and ratio on betacyanins and antioxidant activity of extracts from Hylocereus polyrhizus flesh and peel by supercritical fluid extraction and solvent extraction. Food Chem. 2016, 202, 70–80. [Google Scholar] [CrossRef]
- M’hiri, N.; Ioannou, I.; Boudhrioua, N.M.; Ghoul, M. Food and Bioproducts Processing Effect of different operating conditions on the extraction of phenolic compounds in orange peel. Food Bioprod. Process. 2015, 96, 161–170. [Google Scholar] [CrossRef]
- Omar, J.; Alonso, I.; Garaikoetxea, A.; Etxebarria, N. Optimization of Focused Ultrasound Extraction (FUSE) and Supercritical Fluid Extraction (SFE) of Citrus Peel Volatile Oils and Antioxidants. Food Anal. Methods 2013, 6, 1244–1252. [Google Scholar] [CrossRef]
- Massias, A.; Boisard, S.; Baccaunaud, M.; Leal, F.; Subra-paternault, P. The Journal of Supercritical Fluids Recovery of phenolics from apple peels using CO 2 + ethanol extraction: Kinetics and antioxidant activity of extracts. J. Supercrit. Fluids. 2015, 98, 172–182. [Google Scholar] [CrossRef]
- De Melo, M.; Silvestre, A.; Silva, C. Supercritical fluid extraction of vegetable matrices: Applications, trends and future perspectives of a convincing green technology. J. Supercrit. Fluids 2014, 92, 115–176. [Google Scholar] [CrossRef]
- Veggi, P.C.; Prado, J.M.; Bataglion, G.A.; Eberlin, M.N.; Meireles, M.A.A. Obtaining phenolic compounds from jatoba (Hymenaea courbaril L.) bark by supercritical fluid extraction. J. Supercrit. Fluids 2014, 89, 68–77. [Google Scholar] [CrossRef]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; A Thiessen, P.; Yu, B.; et al. PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res. 2021, 49, D1388–D1395. [Google Scholar] [CrossRef]
- Lima, M.D.A.; Kestekoglou, I.; Charalampopoulos, D.; Chatzifragkou, A. Supercritical Fluid Extraction of Carotenoids from Vegetable Waste Matrices. Molecules 2019, 24, 466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khoddami, A.; Wilkes, M.A.; Roberts, T.H. Techniques for Analysis of Plant Phenolic Compounds. Molecules 2013, 18, 2328–2375. [Google Scholar] [CrossRef]
- Osorio-Tobón, J.F. Recent advances and comparisons of conventional and alternative extraction techniques of phenolic compounds. J. Food Sci. Technol. 2020, 57, 4299–4315. [Google Scholar] [CrossRef] [PubMed]
- Garmus, T.T.; Paviani, L.C.; Queiroga, C.L.; Cabral, F.A. Extraction of phenolic compounds from pepper-rosmarin (Lippia sidoides Cham.) leaves by sequential extraction in fixed bed extractor using supercritical CO2, ethanol and water as solvents. J. Supercrit. Fluids 2015, 99, 68–75. [Google Scholar] [CrossRef]
- Dias, A.L.B.; Sergio, C.S.A.; Santos, P.; Barbero, G.F.; Rezende, C.A.; Martínez, J. Effect of ultrasound on the supercritical CO2 extraction of bioactive compounds from dedo de moça pepper (Capsicum baccatum L. var. pendulum). Ultrason. Sonochem. 2016, 31, 284–294. [Google Scholar] [CrossRef] [PubMed]
- Machmudah, S.; Martin, A.; Sasaki, M.; Goto, M. Mathematical modeling for simultaneous extraction and fractionation process of coffee beans with supercritical CO2 and water. J. Supercrit. Fluids 2012, 66, 111–119. [Google Scholar] [CrossRef]
- Solana, M.; Boschiero, I.; Dall’Acqua, S.; Bertucco, A. Extraction of bioactive enriched fractions from Eruca sativa leaves by supercritical CO2 technology using different co-solvents. J. Supercrit. Fluids 2014, 94, 245–251. [Google Scholar] [CrossRef]
- Konar, N.; Dalabasmaz, S.; Poyrazoglu, E.S.; Artik, N.; Colak, A. The determination of the caffeic acid derivatives of Echinacea purpurea aerial parts under various extraction conditions by supercritical fluid extraction (SFE). J. Supercrit. Fluids 2014, 89, 128–136. [Google Scholar] [CrossRef]
- Pimentel-Moral, S.; Borrás-linares, I.; Lozano-sánchez, J. Supercritical CO2 extraction of bioactive compounds from Hibiscus sabdariffa. J. Supercrit. Fluids 2019, 147, 213–221. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, B.; Chang, Y.; Wang, Q. Optimization of Modified Supercritical CO2 Extraction of Chlorogenic Acid from the Flower Buds of Lonicera japonica Thunb and Determination of Antioxidant Activity of the Extracts Optimization of Modified Supercritical CO2 Extraction of Chlorogenic Acid f. J. Liq. Chromatogr. Relat. Technol. 2015, 38, 443–450. [Google Scholar] [CrossRef]
- Wu, X.-L.; Li, C.-W.; Chen, H.-M.; Su, Z.-Q.; Zhao, X.-N.; Chen, J.-N.; Lai, X.-P.; Zhang, X.-J.; Su, Z.-R. Anti-Inflammatory Effect of Supercritical-Carbon Dioxide Fluid Extract from Flowers and Buds ofChrysanthemum indicumLinnén. Evid. Based Complement. Altern. Med. 2013, 2013, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daraee, A.; Ghoreishi, S.M.; Hedayati, A. Supercritical CO2 extraction of chlorogenic acid from sunflower (Helianthus annuus) seed kernels: Modeling and optimization by response surface methodology. J. Supercrit. Fluids 2019, 144, 19–27. [Google Scholar] [CrossRef]
- Pereira, C.G.; Meireles, M.A.A. Supercritical Fluid Extraction of Bioactive Compounds: Fundamentals, Applications and Economic Perspectives. Food Bioprocess Technol. 2010, 3, 340–372. [Google Scholar] [CrossRef]
- Singh, A.; Sabally, K.; Kubow, S.; Donnelly, D.J.; Gariepy, Y.; Orsat, V.; Raghavan, G. Microwave-Assisted Extraction of Phenolic Antioxidants from Potato Peels. Molecules 2011, 16, 2218–2232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maldonado, A.F.S.; Mudge, E.; Gänzle, M.G.; Schieber, A. Extraction and fractionation of phenolic acids and glycoalkaloids from potato peels using acidified water/ethanol-based solvents. Food Res. Int. 2014, 65, 27–34. [Google Scholar] [CrossRef]
- Solana, M.; Boschiero, I.; Dall’Acqua, S.; Bertucco, A. A comparison between supercritical fluid and pressurized liquid extraction methods for obtaining phenolic compounds from Asparagus officinalis L. J. Supercrit. Fluids 2015, 100, 201–208. [Google Scholar] [CrossRef]
- Roslan, A.S.; Ando, Y.; Azlan, A.; Ismail, A. Effect of Glucose and Ascorbic Acid on Total Phenolic Content Estimation of Green Tea and Commercial Fruit Juices by Using Folin Ciocalteu and Fast Blue BB Assays. J. Trop. Agric. Sci. 2019, 42, 545–556. [Google Scholar]
- Schaich, K.; Tian, X.; Xie, J. Hurdles and pitfalls in measuring antioxidant efficacy: A critical evaluation of ABTS, DPPH, and ORAC assays. J. Funct. Foods 2015, 14, 111–125. [Google Scholar] [CrossRef]
- Paleologou, I.; Vasiliou, A.; Grigorakis, S.; Makris, D.P. Optimisation of a green ultrasound-assisted extraction process for potato peel (Solanum tuberosum) polyphenols using bio-solvents and response surface methodology. Biomass Convers. Biorefinery 2016, 6, 289–299. [Google Scholar] [CrossRef]
- Alvarez, V.H.; Cahyadi, J.; Xu, D.; Saldaña, M.D. Optimization of phytochemicals production from potato peel using subcritical water: Experimental and dynamic modeling. J. Supercrit. Fluids 2014, 90, 8–17. [Google Scholar] [CrossRef]
- Wang, S.; Lin, A.H.-M.; Han, Q.; Xu, Q. Evaluation of Direct Ultrasound-Assisted Extraction of Phenolic Compounds from Potato Peels. Processes 2020, 8, 1665. [Google Scholar] [CrossRef]
- Kadiri, O.; Gbadamosi, S.O.; Akanbi, C.T. Extraction kinetics, modelling and optimization of phenolic antioxidants from sweet potato peel vis-a-vis RSM, ANN-GA and application in functional noodles. J. Food Meas. Charact. 2019, 13, 3267–3284. [Google Scholar] [CrossRef]
Compound (%, w/w) | Potato Peels | Potato Flesh |
---|---|---|
Moisture | 6.6 ± 0.4 a | 7.2 ± 0.4 a |
Protein | 11.0 ± 0.15 a | 7.1 ± 0.21 b |
Lipids | 1.75 ± 0.02 a | 2.61 ± 0.05 b |
Total carbohydrates, of which: | 62.4 ± 3.3 a | 76.4 ± 3.3 b |
Starch | 20.0 ± 1.3 | 47.7 ± 2.8 |
Cellulose | 32.4 ± 0.7 | 28.7 ± 0.5 |
Hemicellulose, of which: | 10.0 ± 0.7 | 0 |
Galacturonic acid | 2.64 ± 0.21 | n.d. |
Galactose | 6.34 ± 0.33 | n.d. |
Arabinose | 1.01 ± 0.09 | n.d. |
Phenolic Acid | Concentration (mg/g) | Total Phenolic Content (mg GAE/g) |
---|---|---|
Chlorogenic acid | 3.87 | 5.24 |
Caffeic acid | 0.92 | |
Neochlorogenic acid | 0.44 | |
Isochlorogenic acid B | 0.33 | |
Vanillic acid | 0.31 | |
Isochlorogenic acid A | 0.21 | |
p-coumaric acid | Trace | |
Salicylic acid | Trace | |
Total | 6.08 | 5.24 |
Run | Conditions | Phenolic Acid | Concent (mg/g) | Individual Recovery (%) | Total Phenolic Recovery (%) | |||
---|---|---|---|---|---|---|---|---|
T (°C) | P (bar) | MeOH (%) | qCO2 (g/min) | |||||
E1 | 45 | 150 | 7.0 | 5.0 | Caffeic | 0.031 | 3.0 a1 | 0.5 a |
E2 | 60 | 350 | 7.0 | 5.0 | Caffeic | 0.041 | 4.0 a1 | 0.7 a |
E3 | 80 | 350 | 7.0 | 10.0 | Caffeic | 0.181 | 19.4 b1 | 6.0 b |
Isochlorogenic A | 0.184 | 87.6 a2 | ||||||
E4 | 80 | 350 | 15.0 | 10.0 | Caffeic | 0.474 | 51.6 c1 | 11.1 c |
Isochlorogenic A | 0.202 | 96.1 b2 | ||||||
E5 | 80 | 350 | 15.0 | 15.0 | Caffeic | 0.404 | 44.0 d1 | 13.5 d |
P-coumaric | 0.140 | |||||||
Isochlorogenic A | 0.280 | 133 c2 |
Run | MeOH (%) | qCO2 (g/min) | CFA (%) | TPR (%) | Antioxidant Activity (%) |
---|---|---|---|---|---|
01 | 10 | 8 | 5.6 | 3.4 | 83.1 ± 3.3 a |
02 | 10 | 18 | 29.4 | 12.1 | 84.0 ± 2.9 a |
03 | 20 | 8 | 67.3 | 27.1 | 83.8 ± 3.6 a |
04 | 20 | 18 | 82 | 37 | 73.0 ± 2.7 b |
05 | 7.9 | 13 | 19.3 | 9.8 | 56.8 ± 2.1 c |
06 | 22.1 | 13 | 63.6 | 33.6 | 69.0 ± 2.2 b |
07 | 15 | 5.9 | 11.2 | 7.7 | 65.1 ± 1.8 d |
08 | 15 | 20.1 | 62.2 | 33 | 73.5 ± 3.1 b |
09 | 15 | 13 | 35.3 | 21.8 | 78.6 ± 2.8 b |
10 | 15 | 13 | 32.2 | 19.2 | 78.7 ± 3.1 b |
11 | 15 | 13 | 23.9 | 14 | 77.1 ± 3.1 b |
Response | ANOVA Parameters | Square Sum | Degrees of Freedom | Mean Square | F-Value | p-Value (%) | R2 |
---|---|---|---|---|---|---|---|
Total phenolic recovery (TPR) | Regression | 1227.5 | 5 | 245.50 | 12.41 | 5 | 0.925 |
Residual | 98.9 | 5 | 19.78 | ||||
Total | 1326.4 | 10 | |||||
Ftab (95%) | 5.05 | ||||||
Caffeic acid (CFA) recovery | Regression | 5806.8 | 5 | 1161.4 | 9.04 | 5 | 0.90 |
Residual | 642.3 | 5 | 128.5 | ||||
Total | 6449.1 | 10 | - | ||||
Ftab (95%) | 5.05 |
Run | MeOH (%) | QCO2 (g/min) | CFA (%) | TPR (%) |
---|---|---|---|---|
07 | 15 | 5.9 | 11.2 | 7.7 |
09 | 15 | 13 | 35.3 | 21.8 |
08 | 15 | 20.1 | 62.2 | 33 |
12 | 15 | 25 | 32.1 | 21.9 |
Matrix | Extraction Technique | Optimal Conditions | Phenolic Characterization (HPLC) | Optimized Yield (Y, mg/g Extract) or Recovery (R, %) | % AA | Ref. |
---|---|---|---|---|---|---|
Potato peel | Conventional solvent | Water + ethanol, Csolv: 59%, RL/S: 84 mL/g; T: 77 °C | n.r. | Y: 9.11 mg CFA/g | n.r. | [59] |
46% water + 51% ethanol + 3% acetic acid. T: 40 °C. | CGA, NCA, CFA | Y: 1.03 mg TPC/g (wet basis); R: 89–97% | n.r | [55] | ||
Hydrolysis + HPH | 0.3 M NaOH; 18 h hydrolysis, 2 homogenisation cycles. | CGA, CFA, FRA, GLA, SNA, VLA, SGA, PHA, PCA | Y: 1.36 mg TPC/g (wet basis) | 34–59 | [13] | |
MAE | 60% ethanol, T: 80 °C, text: 2 min, RS/S: 1:40 | CGA, CFA, FRA, PCA | Y: 1.12 mg GAE/g | 34–96 | [14] | |
64% methanol, text: 2 min, MP: 14.7% | CGA, CFA, FRA | Y: 3.94 mg TPC/g | 34–86 | [54] | ||
PEF | 52% ethanol + 48% water, text: 230 min, T: 50 °C, E: 1 kV/cm, WT: 5 kJ/kg | CGA, CFA, PCA, SGA, PHA | Y: 0.462 mg TPC/g (wet basis) | n.r. | [15] | |
SWE | 100% methanol, T: 180 °C, text: 60 min. | CGA, GLA, CFA, PCA, FRA, PCA, SGA, PBA | Y: 0.818 mg TPC/g (wet basis) | n.r. | [16] | |
P: 40 bar, T: 190 °C, SHT: 9 min, text: 30 min, q: 3 mL/min | CGA, GLA, SGA | Y: 20 mg GAE/g dry peel | n.r. | [60] | ||
SHE (modified SWE) | T: 170 °C and 220 °C, text: 20 min | CGA, GLA, CFA, FRA, SGA, PCA | R: 32.87 mg TPC/g dry peel | 40–92 | [17] | |
UAE | 80% methanol, T: 45 °C, RS/S: 10%, text: 60 min, f: 33 Hz | CGA, CFA | Y: 7.7 mg GAE/g | n.r. | [18] | |
50% methanol, T: 70 °C, RS/S: 5%, text: 60 min, f: 40 Hz | n.r | Y: 9.3 mg GAE/g | 50–67 | [61] | ||
SFE | T: 80 °C, P: 350 bar, Ccos: MeOH at 20% q: 18 g/min | CFA, PCA, ISA | Y: 2.24 mg TPC/g dry peel, R: 37% TPC | 57–84 | This work | |
Sweet potato peel | Conventional solvent | Water, T: 98.7 °C, RS/S: 11.68%, text: 60.5 min | n.r. | Y: 19.74 mg GAE/g and 0.396 mg TPC/g. | 61.8 μg AAE/g | [62] |
Grape peels | SFE | T: 45 °C, P: 160 bar, Ccos: MeOH at 7%, q: 2 mL/min, text: 30 min | n.r. | Y: 0.216 mg GAE/mL ext. | 93 | [33] |
Red pitaya peels | T: 50 °C, P: 250 bar, Ccos: EtOH at 10% q: 2 mL/min. | n.r. | Y: 0.028 mg betacyanins/mL ext. | 44–86 | [34] | |
Orange peels | T: 80 °C, P: 100 bar, Ccos: 80% EtOH at 10% q: 15 g/min, text: 30 min | n.r. | Y: 15.0 mg GAE/g | n.r. | [35] | |
Lemon peels | T: 35 °C, P: 170 bar, Ccos: EtOH at 40% q: 2 mL/min, text: 20 min | n.r. | Y: 6.63 mg GAE/g | n.r. | [36] | |
Apple peels | T: 50 °C, P: 250 bar, Ccos: 96% EtOH at 25% q: 10 g/min, text: 200 min | CGA, flavonoids (catechin, epi-catechin, phlorizin, quercetin) | Y: 0.16 mg GLA/g ext.; 34.7 mg GAE/g ext. | n.r. | [37] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Andrade Lima, M.; Andreou, R.; Charalampopoulos, D.; Chatzifragkou, A. Supercritical Carbon Dioxide Extraction of Phenolic Compounds from Potato (Solanum tuberosum) Peels. Appl. Sci. 2021, 11, 3410. https://doi.org/10.3390/app11083410
de Andrade Lima M, Andreou R, Charalampopoulos D, Chatzifragkou A. Supercritical Carbon Dioxide Extraction of Phenolic Compounds from Potato (Solanum tuberosum) Peels. Applied Sciences. 2021; 11(8):3410. https://doi.org/10.3390/app11083410
Chicago/Turabian Stylede Andrade Lima, Micael, Rafaela Andreou, Dimitris Charalampopoulos, and Afroditi Chatzifragkou. 2021. "Supercritical Carbon Dioxide Extraction of Phenolic Compounds from Potato (Solanum tuberosum) Peels" Applied Sciences 11, no. 8: 3410. https://doi.org/10.3390/app11083410
APA Stylede Andrade Lima, M., Andreou, R., Charalampopoulos, D., & Chatzifragkou, A. (2021). Supercritical Carbon Dioxide Extraction of Phenolic Compounds from Potato (Solanum tuberosum) Peels. Applied Sciences, 11(8), 3410. https://doi.org/10.3390/app11083410