Surface Passivation of Crystalline Silicon Wafer Using H2S Gas
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hongsub, J.; Jinho, S.; Daehan, M.; Jaehyeong, L.; Chaehwan, J. Improvement in power of shingled solar cells for photo-voltaic module. J. Nanosci. Nanotechnol. 2020, 20, 7096–7099. [Google Scholar]
- Ajitha, A.; Nallapaneni, M.K.; Xiao, J.; Guduru, R.R.; Arunkumar, J.; Kadapalla, P.; Anil, K. Underwater performance of thin-film photovoltaic module immersed in shallow and deep waters along with possible applications. Results Phys. 2019, 15, 102768. [Google Scholar] [CrossRef]
- Pramod, R.; Maria, M.; Nallapaneni, M.K.; Sastry, O.S.; Arunkumar, J. Operational performance and degradation influenced life cycle environmental-economic metrics of mc-Si, a-Si and HIT photovoltaic arrays in hot semi-arid climates. Sustainability 2020, 12, 1075. [Google Scholar] [CrossRef] [Green Version]
- Anton, E.; Christian, R.; Armin, R.; Jan, B. Influence of layer thickness on passivation properties in SiOx/Al2O3 stacks. J. Appl. 2020, 127, 235303. [Google Scholar]
- Teng, C.K.; Kean, C.F.; Matthew, S.; Keith, M.; Evan, F.; Sieu, P.P.; Wensheng, L.; Andrew, B. Excellent ONO passivation on phosphorus and boron diffusion demonstrating a 25% efficient IBC solar cell. Prog. Photovolt. 2020, 28, 1034–1044. [Google Scholar]
- Kai-Yuan, C.; Shang-Chi, W.; Chia-Jui, Y.; Tong-Wen, W.; Jyun-Hao, L.; Meng-Chyi, W. Comparative study on performance of AlGaN/GaN MS-HEMTs with SiNx, SiOx, and SiNO surface passivation. Solid State Electron. 2020, 170, 107824. [Google Scholar]
- Mickael, L.; Shota, N.; Hitoshi, S.; Koji, M. Passivation property of ultrathin SiOx:H/a-Si:H stack layers for solar cell applications. Sol. Energy Mater. Sol. Cells 2018, 185, 8–15. [Google Scholar]
- Armin, G.A. Surface passivation of crystalline silicon solar cells: A review. Prog. Photovolt. 2000, 8, 473–487. [Google Scholar]
- Mohammad, Z.R.; Shahidul, I.K. Advances in surface passivation of c-Si solar cells. Mater. Renew. Sustain. Energy 2012, 1, 1–11. [Google Scholar]
- Zongjie, S.; Yanfei, Q.; Ivona, Z.M.; Cezhou, Z.; Steve, H.; Li, Y.; Tian, L.; Yanbo, H.; Chun, Z. Effect of annealing temperature for Ni/AlOx/Pt RRAM devices fabricated with solution-based dielectric. Micromachines 2019, 10, 446. [Google Scholar]
- Mead, C.; Spitzer, W.G. Fermi level position at metal-semiconductor interfaces. Phys. Rev. 1964, 134, A713–A716. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, Y.A.; Meng, T. Effect of sulfur passivation of silicon (100) on Schottky barrier height: Surface states versus surface dipole. J. Appl. 2007, 101, 103708–1–103708–5. [Google Scholar]
- Ying-Huang, L.; Chuin-Tih, Y.; Yi-Hsin, L.; Wei-Hsiu, H. Adsorption and thermal decomposition of H2S on Si(100). Surf. Sci. 2002, 519, 150–156. [Google Scholar]
- Qifei, W.; Boris, V.Y.; Theodore, E.M. Adsorption and decomposition of H2S on UO2(001). Surf. Sci. 2003, 523, 1–11. [Google Scholar]
- Arunodoy, S.; Haifeng, Z.; Wen-Cheng, S.; Meng, T. A new method for bulk passivation in multicrystalline-Si by sulfur. In Proceedings of the IEEE 42nd Photovoltaic Specialist Conference (PVSC), New Orleans, LA, USA, 14–19 June 2015. [Google Scholar]
- John, V. Thin Film Processes, 1st ed.; Academic Press: Cambridge, MA, USA, 1978. [Google Scholar]
- Werner, K. Handbook of Semiconductor Cleaning Technology; Noyes Publishing: Park Ridge, NJ, USA, 1993. [Google Scholar]
- Jerry, G.F.; Fredrik, A.L. Theory of grain-boundary and intragrain recombination currents in polysilicon p-n-junction solar cells. IEEE Trans. Electron Devices 1980, 27, 692–700. [Google Scholar]
- Amal, K.G.; Charles, F.; Tom, F. Theory of the electrical and photovoltaic properties of polycrystalline silicon. J. Appl. 2008, 51, 446–454. [Google Scholar]
- Tae, J.S.; Young, J.C.; Hyun, S.J.; Dae, H.K.; Dae, W.K.; Sang-Moon, L.; Jong-Bong, P.; Jung-Yeon, W.; Seong, K.K.; Cheol, S.H.; et al. High quality interfacial sulfur passivation via H2S pre-deposition annealing for an atomic-layer deposited HfO2 film on a Ge substrate. J. Mater. Chem. C 2016, 4, 850–856. [Google Scholar]
- Wenwu, W.; Toshihide, N.; Yukihiro, S. Interface structure of HfNx/SiO2 stack grown by MOCVD using TDEAHf precursor. Surf. Sci. 2005, 588, 108–116. [Google Scholar]
- Hibino, Y.; Ishihara, S.; Oyanagi, Y.; Sawamoto, N.; Ohashi, T.; Matsuura, K.; Wakabayashi, H.; Ogura, A. Suppression of sulfur desorption of high-temperature sputtered MoS2 film by applying DC bias. ECS Trans. 2018, 85, 531–539. [Google Scholar] [CrossRef]
- Sana, R.; Alain, C.; Virginie, L.; Christian, V.; Jean-Michel, H.; Sebastien, B.; Nicolas, P. Isotropic dry etching of Si selectively to Si0.7Ge0.3 for CMOS sub-10 nm applications. J. Vac. Sci. Technol. 2020, 38, 033002. [Google Scholar]
- Jianhua, Z.; Aihua, W.; Martin, A.G. 19.8% efficient “honeycomb” textured multi-crystalline and 24.4% monocrystalline silicon solar cells. Appl. Phys. Lett. 1998, 73, 1991–1993. [Google Scholar]
- Bas, W.H.L.; Bart, M.; Manuel, S.; Maciej, K.S.; Agnes, A.M.; David, L.Y.; William, N.; Paul, S.; Wilhelmus, M.M.K. On the hydrogenation of Poly-Si passivating contacts by Al2O3 and SiNx thin films. Sol. Energy Mater. Sol. Cells 2020, 215, 110592. [Google Scholar]
- Wendell, D.E.; Richard, M.S. Calculation of surface generation and recombination velocities at the Si-SiO2 interface. J. Appl. Phys. 1985, 58, 4267–4276. [Google Scholar]
- Jerry, G.F. Physical operation of back-surface-field silicon solar cells. IEEE Trans. Electron Devices 1977, 24, 322–325. [Google Scholar]
- Morita, S.; Uchihashi, T.; Okamoto, K.; Abe, M.; Sugawara, Y. Microscale contact charging on a silicon oxide. In Scanning Probe Microscopy: Characterization, Nanofabrication and Device Application of Functional Materials; Vilarinho, P.M., Rosenwaks, Y., Kingon, A., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002; Volume 186, pp. 289–308. [Google Scholar]
H2S Annealing Temperature (°C) | 500 | 525 | 550 | 575 | 600 | 625 | 650 | 675 | 700 |
---|---|---|---|---|---|---|---|---|---|
Minority carrier lifetime gain (×100%) /standard deviation | 13.2/ 0.2517 | 16.1/ 0.2646 | 12.2/ 0.2 | 15.9/ 0.3601 | 20.3/ 0.1633 | 13.1/ 0.2646 | 5.9/ 0.1 | 10.8/ 0.1732 | 17.2/ 0.1732 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, J.; Jee, H.; Yoo, J.; Yi, J.; Jeong, C.; Lee, J. Surface Passivation of Crystalline Silicon Wafer Using H2S Gas. Appl. Sci. 2021, 11, 3527. https://doi.org/10.3390/app11083527
Lin J, Jee H, Yoo J, Yi J, Jeong C, Lee J. Surface Passivation of Crystalline Silicon Wafer Using H2S Gas. Applied Sciences. 2021; 11(8):3527. https://doi.org/10.3390/app11083527
Chicago/Turabian StyleLin, Jian, Hongsub Jee, Jangwon Yoo, Junsin Yi, Chaehwan Jeong, and Jaehyeong Lee. 2021. "Surface Passivation of Crystalline Silicon Wafer Using H2S Gas" Applied Sciences 11, no. 8: 3527. https://doi.org/10.3390/app11083527
APA StyleLin, J., Jee, H., Yoo, J., Yi, J., Jeong, C., & Lee, J. (2021). Surface Passivation of Crystalline Silicon Wafer Using H2S Gas. Applied Sciences, 11(8), 3527. https://doi.org/10.3390/app11083527