Fatty Acid Profile, Lipid Quality and Squalene Content of Teff (Eragrostis teff (Zucc.) Trotter) and Amaranth (Amaranthus caudatus L.) Varieties from Ethiopia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Preparation
2.2. Determination of Dry Matter
2.3. Extraction of Fat
2.4. Analysis of Fatty Acid Profile
2.5. Determination of Squalene
2.6. Lipid Quality Indices
2.7. Statistical Analysis
3. Results and Discussion
3.1. Dry Matter, Total Fat and Fatty Acid Profile of Teff Varieties
3.2. Total Fat and Fatty Acid Profile of Amaranth Varieties
3.3. Correlation Analysis
3.4. Squalene Content of Teff and Amaranth Varieties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Central Statistical Authority. Report on Area and Production of Major Crops; Central Statistical Authority: Addis Ababa, Ethiopia, 2019; Volume 1.
- Woldeyohannes, A.B.; Accotto, C.; Desta, E.A.; Kidane, Y.G.; Fadda, C.; Pè, M.E.; Dell’Acqua, M. Current and projected eco-geographic adaptation and phenotypic diversity of Ethiopian teff (Eragrostis teff) across its cultivation range. Agric. Ecosyst. Environ. 2020, 300, 107020. [Google Scholar] [CrossRef]
- Bultosa, G. Physicochemical characteristics of grain and flour in 13 tef [Eragrostis tef (Zucc.) Trotter] grain varieties. J. Appl. Sci. Res. 2007, 3, 2042–2450. [Google Scholar]
- Callejo, M.J.; Benavente, E.; Ezpeleta, J.I.; Laguna, M.J.; Carrillo, J.M.; Rodríguez-Quijano, M. Influence of teff variety and wheat flour strength on breadmaking properties of healthier teff-based breads. J. Cereal Sci. 2016, 68, 38–45. [Google Scholar] [CrossRef]
- Zhu, F. Chemical composition and food uses of teff (Eragrostis tef). Food Chem. 2018, 239, 402–415. [Google Scholar] [CrossRef] [PubMed]
- Bultosa, G. Traditional African Bread and the Physicochemical Properties of Unfermented Flatbreads. In Encyclopedia of Food Chemistry; Varelis, P., Melton, L., Shahidi, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 1, pp. 66–80. [Google Scholar] [CrossRef]
- Alaunyte, I.; Stojceska, V.; Plunkett, A.; Ainsworth, P.; Derbyshire, E. Improving the quality of nutrient-rich Teff (Eragrostis tef) breads by combination of enzymes in straight dough and sourdough breadmaking. J. Cereal Sci. 2012, 55, 22–30. [Google Scholar] [CrossRef]
- Ruxton, C.; Derbyshire, E. The health benefits of whole grains and fibre. Nutr. Food Sci. 2014, 44, 492–519. [Google Scholar] [CrossRef]
- Bultosa, G.; Taylor, J.R.N. Paste and gel properties and in vitro digestibility of tef [Eragrostis tef (Zucc.) Trotter] Starch. Starch Stärke 2004, 56, 20–28. [Google Scholar] [CrossRef]
- Rybicka, I.; Gliszczyńska-Świgło, A. Minerals in grain gluten-free products. The content of calcium, potassium, magnesium, sodium, copper, iron, manganese, and zinc. J. Food Compos. Anal. 2017, 61–67. [Google Scholar] [CrossRef]
- Gresta, F.; Guerrini, A.; Sacchetti, G.; Tacchini, M.; Sortino, O.; Ceravolo, G.; Onofri, A. Agronomic, chemical, and antioxidant characterization of grain amaranths grown in a Mediterranean environment. Crop Sci. 2017, 57, 2688–2698. [Google Scholar] [CrossRef]
- Bojórquez-Velázquez, E.; Velarde-Salcedo, A.J.; De León-Rodríguez, A.; Jimenez-islas, H.; Pérez-Torres, J.L.; Herrera-Estrella, A.; Barba de la Rosa, A.P. Morphological, proximal composition, and bioactive compounds characterization of wild and cultivated amaranth (Amaranthus spp.) species. J. Cereal Sci. 2018, 83, 222–228. [Google Scholar] [CrossRef]
- Amare, E.; Mouquet-Rivier, C.; Rochette, I.; Adish, A.; Haki, G.D. Effect of popping and fermentation on proximate composition, minerals and absorption inhibitors, and mineral bioavailability of Amaranthus caudatus grain cultivated in Ethiopia. J. Food Sci. Technol. 2016, 53, 2987–2994. [Google Scholar] [CrossRef] [Green Version]
- Amare, E.; Mouquet-Rivier, C.; Servent, A.; Morel, G.; Adish, A.; Haki, G.D. Protein Quality of Amaranth Grains Cultivated in Ethiopia as Affected by Popping and Fermentation. Food Nutr. Sci. 2015, 6, 38–48. [Google Scholar] [CrossRef] [Green Version]
- Thompson, T.; Dennis, M.; Higgins, L.A.; Lee, A.R.; Sharrett, M.K. Gluten-free diet survey: Are Americans with coeliac disease consuming recommended amounts of fibre, iron, calcium and grain foods? J. Hum. Nutr. Diet. 2005, 18, 163–169. [Google Scholar] [CrossRef]
- Huang, Z.-R.; Lin, Y.-K.; Fang, J.-Y. Biological and Pharmacological Activities of Squalene and Related Compounds: Potential Uses in Cosmetic Dermatology. Molecules 2009, 14, 540–554. [Google Scholar] [CrossRef] [PubMed]
- Assefa, K.; Yu, J.-K.; Zeid, M.; Belay, G.; Tefera, H.; Sorrells, M.E. Review Breeding tef [Eragrostis tef (Zucc.) trotter ]: Conventional and molecular approaches. Plant Breed. 2011, 130, 1–9. [Google Scholar] [CrossRef]
- Merga, M. Achievements and Challenges of Tef Breeding in Ethiopia. J. Agr. Sci. Food Res. 2018, 9, 204–211. [Google Scholar]
- AOAC. Official Methods of Analysis; Association of Official Analytical Chemists: Washington, DC, USA, 2000. [Google Scholar]
- Jenkins, T.C. Technical note: Common analytical errors yielding inaccurate results during analysis of fatty acids in feed and digesta samples. J. Dairy Sci. 2010, 93, 1170–1174. [Google Scholar] [CrossRef] [Green Version]
- He, H.-P.; Cai, Y.; Sun, M.; Corke, H. Extraction and Purification of Squalene from Amaranthus Grain. J. Agric. Food Chem. 2002, 50, 368–372. [Google Scholar] [CrossRef] [PubMed]
- Ulbricht, T.; Southgate, D. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Liu, K. Comparison of Lipid Content and Fatty Acid Composition and Their Distribution within Seeds of 5 Small Grain Species. J. Food Sci. 2011, 76, C334–C342. [Google Scholar] [CrossRef]
- Ryan, E.; Galvin, K.; O’Connor, T.P.; Maguire, A.R. Phytosterol, Squalene, Tocopherol Content and Fatty Acid Profile of Selected Seeds, Grains, and Legumes. Plant Foods Hum. Nutr. 2007, 62, 85–91. [Google Scholar] [CrossRef]
- Agza, B.; Bekele, R.; Shiferaw, L. Quinoa (Chenopodium quinoa, Wild.): As a potential ingredient of injera in Ethiopia. J. Cereal Sci. 2018, 82, 170–174. [Google Scholar] [CrossRef]
- Collar, C.; Angioloni, A. Pseudocereals and teff in complex breadmaking matrices: Impact on lipid dynamics. J. Cereal Sci. 2014, 59, 145–154. [Google Scholar] [CrossRef] [Green Version]
- Sanjeev, P.; Chaudhary, D.P.; Sreevastava, P.; Saha, S.; Rajenderan, A.; Sekhar, J.C.; Chikkappa, G.K. Comparison of fatty acid profile of specialty maize to normal maize. J. Am. Oil Chem. Soc. 2014, 91, 1001–1005. [Google Scholar] [CrossRef]
- Wang, C.; Harris, W.S.; Chung, M.; Lichtenstein, A.H.; Balk, E.M.; Kupelnick, B.; Jordan, H.S.; Lau, J. n-3 Fatty Acids from Fish or Fish-Oil Supplements, but not Alpha-Linolenic Acid, Benefit Cardiovascular Disease Outcomes in Primary- and Secondary-Prevention Studies: A Systematic Review. Am. J. Clin. Nutr. 2006, 84, 517. [Google Scholar] [CrossRef]
- Zaier, M.M.; Ciudad-Mulero, M.; Cámara, M.; Pereira, C.; Ferreira, I.C.F.R.; Achour, L.; Morales, P. Revalorization of Tunisian wild Amaranthaceae halophytes: Nutritional composition variation at two different phenotypes stages. J. Food Compos. Anal. 2020, 89, 103463. [Google Scholar] [CrossRef]
- Kouřimská, L.; Sabolová, M.; Horčička, P.; Rys, S.; Božik, M. Lipid content, fatty acid profile, and nutritional value of new oat cultivars. J. Cereal Sci. 2018, 84, 44–48. [Google Scholar] [CrossRef]
- EFSA. Scientific Opinion on Dietary Reference Values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol. EFSA J. 2010, 8, 1–107. [Google Scholar]
- Dubois, V.; Breton, S.; Linder, M.; Fanni, J.; Parmentier, M. Fatty acid profiles of 80 vegetable oils with regard to their nutritional potential. Eur. J. Lipid Sci. Technol. 2007, 109, 710–732. [Google Scholar] [CrossRef]
- Zhang, A.; Liu, X.; Wang, G.; Wang, H.; Liu, J.; Zhao, W.; Zhang, Y. Crude fat content and fatty acid profile and their correlations in foxtail millet. Cereal Chem. 2015, 92, 455–459. [Google Scholar] [CrossRef]
- Willett, W.C. The Role of Dietary n-6 Fatty Acids in the Prevention of Cardiovascular Disease. J. Cardiovasc. Med. 2007, 8 (Suppl. 1), S42–S45. [Google Scholar] [CrossRef] [PubMed]
- León-Camacho, M.; García-González, D.L.; Aparicio, R. A detailed and comprehensive study of amaranth (Amaranthus cruentus L.) oil fatty profile. Eur. Food Res. Technol. 2001, 213, 349–355. [Google Scholar] [CrossRef]
- Kang, M.J.; Shin, M.S.; Park, J.N.; Lee, S.S. The effects of polyunsaturated: Saturated fatty acids ratios and peroxidisability index values of dietary fats on serum lipid profiles and hepatic enzyme activities in rats. Br. J. Nutr. 2005, 94, 526–532. [Google Scholar] [CrossRef] [Green Version]
- Hlinková, A.; Bednárová, A.; Havrlentová, M.; Šupová, J.; Čičová, I. Evaluation of fatty acid composition among selected amaranth grains grown in two consecutive years. Biology 2013, 68, 641–650. [Google Scholar] [CrossRef]
- Tikekar, R.V.; Ludescher, R.D.; Karwe, M.V. Processing Stability of Squalene in Amaranth and Antioxidant Potential of Amaranth Extract. J. Agric. Food Chem. 2008, 56, 10675–10678. [Google Scholar] [CrossRef]
Name of Varieties | Year of Release | Source | Seed Color | Local Name | Adaptation Zone (Altitude) (masl) |
---|---|---|---|---|---|
DZ-01-99 | 1970 | Debrezeit | Brown | Asgori | 1600–2400 |
DZ-01-2423 | 2005 | Adet | Brown | Dima | 2000–2600 |
DZ-01-2053 | 1999/8 | Holetta | Brown | Holeta Key | 1900–2700 |
DZ-01-1278 | 2000 | Holetta | White | Ambo Toke | 2200–2400 |
DZ-01-1681 | 2002 | Debrezeit | Brown | Key Tena | 1600–1900 |
DZ-01-2675 | 2005 | Debrezeit | White | Dega Tef | 1800–2500 |
DZ-Cr-387 | 2006 | Debrezeit | Very white | Quncho | 1800–2400 |
White amaranth | - | Bench Majji | White | Katila | - |
Brown amaranth | - | Bench Majji | Brown | Katila | - |
Red amaranth | - | Bench Majji | Pale red | Katila | - |
Fatty Acids | Teff Varieties | ||||||
---|---|---|---|---|---|---|---|
DZ-01-1278 | DZ-01-1681 | DZ-01-2053 | DZ-01-2423 | DZ-01-2675 | DZ-01-99 | DZ-Cr-387 | |
Dry matter (g/100 g) | 90.19 ± 0.08 b | 90.17 ± 0.07 b | 90.28 ± 0.12 b | 90.38 ± 0.15 b | 90.38 ± 0.06 b | 90.13 ± 0.07 b | 89.00 ± 0.44 a |
Total fat (g/100 g DM) | 3.02 ± 0.01 bc | 2.92 ± 0.02 a | 2.92 ± 0.02 a | 3.15 ± 0.02 d | 3.05 ± 0.00 c | 3.00 ± 0.01 b | 3.34 ± 0.03 e |
Fatty acid (mg/100 g DM) | 1653.32 ± 336.10 a | 1571.44 ± 108.75 a | 1628.27 ± 163.79 a | 2007.69 ± 581.83 ab | 1665.35 ± 149.89 a | 1938.63 ± 85.03 ab | 2258.12 ± 138.47 b |
Myristic (C14:0) | 0.17 ± 0.04 a | 0.16 ± 0.02 a | 0.13 ± 0.04 a | 0.14 ± 0.03 a | 0.16 ± 0.03 a | 0.17 ± 0.05 a | 0.12 ± 0.02 a |
Palmitic (C16:0) | 18.12 ± 0.34 c | 18.11 ± 0.31 c | 17.82 ± 0.29 c | 17.16 ± 0.18 b | 17.72 ± 0.37 c | 18.16 ± 0.18 c | 16.40 ± 0.16 a |
Margaric (C17:0) | 0.15 ± 0.04 a | 0.17 ± 0.01 a | 0.18 ± 0.02 a | 0.19 ± 0.01 a | 0.18 ± 0.01 a | 0.17 ± 0.01 a | 0.25 ± 0.12 a |
Stearic (C18:0) | 3.90 ± 0.15 c | 3.50 ± 0.20 ab | 3.44 ± 0.16 ab | 3.87 ± 0.12 c | 3.64 ± 0.23 abc | 3.33 ± 0.14 a | 3.68 ± 0.12 bc |
Arachidic (C20:0) | 0.77 ± 0.04 c | 0.72 ± 0.04 abc | 0.68 ± 0.04 ab | 0.74 ± 0.06 bc | 0.65 ± 0.03 a | 0.70 ± 0.03 abc | 0.73 ± 0.03 bc |
Henecosanoic (C21:0) | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | 0.11 ± 0.02 a | 0.10 ± 0.03 a |
Behenic (C22:0) | 0.31 ± 0.03 a | 0.31 ± 0.02 a | 0.31 ± 0.03 a | 0.31 ± 0.03 a | 0.29 ± 0.01 a | 0.30 ± 0.01 a | 0.31 ± 0.02 a |
Tricosanoic (C23:0) | 0.30 ± 0.14 ab | 0.26 ± 0.14 ab | 0.34 ± 0.08 b | 0.10 ± 0.01 a | 0.18 ± 0.12 ab | 0.28 ± 0.14 ab | 0.24 ± 0.12 ab |
Lignoceric (C24:0) | 0.30 ± 0.01 a | 0.24 ± 0.21 a | 0.36 ± 0.01 a | 0.33 ± 0.06 a | 0.29 ± 0.02 a | 0.34 ± 0.06 a | 0.32 ± 0.01 a |
Palmitoleic (C16:1, cis-9) | 0.26 ± 0.03 ab | 0.25 ± 0.02 bc | 0.25 ± 0.02 bc | 0.17 ± 0.14 ab | 0.27 ± 0.02 b | 0.24 ± 0.03 ab | 0.21 ± 0.01 ab |
Cis-7-Hexadecenoic (C16:1, cis-7) | <0.1 a | 0.11 ± 0.02 b | 0.11 ± 0.01 b | 0.10 ± 0.01 ab | 0.12 ± 0.02 b | 0.11 ± 0.02 ab | 0.11 ± 0.01 ab |
Oleic (C18:1 cis 9) | 23.59 ± 0.43 a | 24.62 ± 0.19 b | 24.83 ± 0.39 bc | 26.65 ± 0.44 d | 24.95 ± 0.29 b | 23.73 ± 0.16 a | 25.54 ± 0.13 c |
Vaccenic (C18:1 cis11) | 0.71 ± 0.05 b | 0.75 ± 0.06 b | 0.75 ± 0.05 b | 0.70 ± 0.00 b | 0.75 ± 0.04 b | 0.73 ± 0.03 b | 0.62 ± 0.03 a |
Gondoic (C20:1 cis-11) | 0.34 ± 0.01 ab | 0.36 ± 0.00 bcd | 0.37 ± 0.01 cd | 0.33 ± 0.01 a | 0.33 ± 0.02 a | 0.38 ± 0.03 d | 0.35 ± 0.01 abc |
Cis-8-Ecosenoic (C20:1 cis8) | 0.19 ± 0.01 a | 0.21 ± 0.00 b | 0.21 ± 0.00 b | 0.21 ± 0.01 bc | 0.21 ± 0.01 b | 0.22 ± 0.00 bc | 0.23 ± 0.00 c |
Octadeca-9,12-dienoic (C18:2 cis, trans-9,12) | 0.13 ± 0.05 b | 0.12 ± 0.01 b | 0.14 ± 0.04 b | <0.1 a | 0.12 ± 0.01 b | 0.13 ± 0.02 b | 0.11 ± 0.03 b |
Linoleic (C18:2, cis, cis-9,12) | 43.17 ± 0.15 c | 43.17 ± 0.09 c | 42.73 ± 0.18 b | 41.91 ± 0.15 a | 42.06 ± 0.43 a | 43.33 ± 0.19 c | 43.17 ± 0.14 c |
α-Linolenic (C18:3, all cis-9,12,15) | 6.65 ± 0.17 a | 6.15 ± 0.37 a | 6.39 ± 0.16 a | 6.09 ± 0.36 a | 7.18 ± 0.25 a | 6.74 ± 0.17 a | 6.74 ± 0.26 a |
Fatty Acids | Teff Varieties | ||||||
---|---|---|---|---|---|---|---|
DZ-01-1278 | DZ-01-1681 | DZ-01-2053 | DZ-01-2423 | DZ-01-2675 | DZ-01-99 | DZ-Cr-387 | |
SFA | 24.33 ± 0.26 d | 23.81 ± 0.39 c | 23.61 ± 0.16 c | 23.13 ± 0.12 b | 23.45 ± 0.31 bc | 23.82 ± 0.23 c | 22.35 ± 0.19 a |
UFA | 75.62 ± 0.25 a | 76.14 ± 0.40 a | 76.34 ± 0.17 a | 76.83 ± 0.12 a | 76.52 ± 0.30 a | 76.15 ± 0.22 a | 75.45 ± 3.90 a |
MUFA | 25.40 ± 0.48 a | 26.49 ± 0.17 b | 26.75 ± 0.45 bc | 28.51 ± 0.38 d | 26.89 ± 0.37 bc | 25.70 ± 0.04 a | 27.32 ± 0.10 c |
PUFA | 50.22 ± 0.23 a | 49.65 ± 0.28 a | 49.58 ± 0.31 a | 48.32 ± 0.26 a | 49.63 ± 0.63 a | 50.46 ± 0.19 a | 48.14 ± 3.97 a |
Omega 6/Omega 3 | 6.50 ± 0.17 b | 7.04 ± 0.43 c | 6.69 ± 0.16 bc | 6.90 ± 0.42 bc | 5.86 ± 0.18 a | 6.43 ± 0.17 b | 6.42 ± 0.22 b |
SFA/UFA | 0.32 ± 0.00 c | 0.32 ± 0.01 cd | 0.31 ± 0.00 abc | 0.30 ± 0.00 ab | 0.31 ± 0.01 abc | 0.31 ± 0.00 cd | 0.33 ± 0.02 a |
PUFA/SFA | 2.06 ± 0.01 a | 2.08 ± 0.05 a | 2.10 ± 0.01 a | 2.09 ± 0.00 a | 2.12 ± 0.05 a | 2.12 ± 0.03 a | 2.15 ± 0.19 a |
TI | 0.41 ± 0.01 a | 0.41 ± 0.01 a | 0.40 ± 0.01 a | 0.39 ± 0.01 a | 0.38 ± 0.01 a | 0.39 ± 0.00 a | 0.43 ± 0.12 a |
AI | 0.25 ± 0.01 c | 0.25 ± 0.01 c | 0.24 ± 0.01 bc | 0.23 ± 0.00 ab | 0.24 ± 0.01 bc | 0.25 ± 0.00 c | 0.23 ± 0.01 a |
Fatty Acids | Amaranth Varieties | ||
---|---|---|---|
White | Brown | Red | |
Dry matter | 89.23 ± 0.07 b | 88.83 ± 0.11 a | 88.87 ± 0.14 a |
Total fat (g/100 g DM) | 9.14 ± 0.07 b | 8.44 ± 0.19 a | 8.28 ± 0.07 a |
Fatty acid (mg/100 g DM) | 6110.69 ± 785.92 a | 5738.18 ± 682.36 a | 5409.38 ± 433.79 a |
Myristic (C14:0) | 0.25 ± 0.03 a | 0.25 ± 0.03 a | 0.37 ± 0.02 b |
Palmitic (C16:0) | 21.04 ± 0.23 a | 21.09 ± 0.15 a | 20.81 ± 0.35 a |
Anteiso-hexadecanoic (C17:0 anteiso) | 0.34 ± 0.03 ab | 0.41 ± 0.04 b | 0.31 ± 0.02 a |
Margaric (C17:0) | 0.15 ± 0.00 b | 0.15 ± 0.02 ab | 0.13 ± 0.01 a |
Iso-heptadecanoic (C18:0 iso) | 0.78 ± 0.03 a | 0.84 ± 0.01 b | 0.98 ± 0.01 c |
Stearic (C18:0) | 3.50 ± 0.17 b | 3.27 ± 0.10 b | 2.43 ± 0.23 a |
Antesiso-octadecanoic (C19:0 anteiso) | 0.13 ± 0.10 a | 0.20 ± 0.01 a | 0.17 ± 0.02 a |
Iso-nonadecanoic (C20:0 iso) | 0.17 ± 0.17 a | 0.28 ± 0.05 ab | 0.45 ± 0.03 b |
Arachidic (C20:0) | 0.77 ± 0.08 a | 0.77 ± 0.03 a | 0.73 ± 0.03 a |
Anteiso-eicosanoic (C21:0 anteiso | <0.1 a | <0.1 a | 0.11 ± 0.02 a |
Iso-heneicosanoic (C22:0 iso) | <0.1 a | <0.1 a | 0.11 ± 0.01 b |
Behenic (C22:0) | 0.33 ± 0.05 a | 0.33 ± 0.04 a | 0.33 ± 0.03 a |
Tricosanoic (C23:0) | <0.1 a | 0.20 ± 0.11 a | 0.15 ± 0.13 a |
Lignoceric (C24:0) | 0.35 ± 0.05 a | 0.35 ± 0.05 a | 0.37 ± 0.06 a |
Palmitoleic (C16:1, cis-9) | 0.23 ± 0.03 a | 0.23 ± 0.02 a | 0.23 ± 0.01 a |
Cis-10-heptadecenoic (C17:1, cis-10) | 0.10 ± 0.01 a | <0.1 a | <0.1 a |
Oleic (C18:1 cis 9) | 32.91 ± 1.05 c | 31.57 ± 0.45 b | 22.10 ± 0.18 a |
Vaccenic (C18:1 cis 11) | 1.20 ± 0.02 a | 1.20 ± 0.05 a | 1.44 ± 0.02 b |
Cis-16-octadecenoic (C18:1 cis 16) | 0.13 ± 0.21 a | <0.1 a | <0.1 a |
Iso-octadecenoic (C18:1 iso) | <0.1 a | 0.15 ± 0.01 ab | 0.17 ± 0.01 b |
Anteiso-nonadecenoic (C19:1 anteiso) | 0.22 ± 0.19 a | 0.04 ± 0.02 a | 0.25 ± 0.01 a |
Cis-8-ecoseinoic (C20:1 cis 8) | <0.1 a | 0.10 ± 0.17 a | <0.1 a |
Gondoic (C20:1 cis 11) | 0.31 ± 0.01 a | 0.21 ± 0.18 a | 0.26 ± 0.02 a |
Cis, trans-9,12-octadecadienoic acid (C18:2 cis, trans-9,12) | 0.11 ± 0.03 a | 0.10 ± 0.02 a | <0.1 a |
Linoleic (C18:2 cis, cis-9,12) | 35.73 ± 1.00 a | 36.55 ± 0.64 a | 46.39 ± 0.10 b |
α-Linolenic (C18:3, all cis-9,12,15) | 0.35 ± 0.32 a | 0.57 ± 0.05 ab | 0.85 ± 0.10 b |
Fatty Acids | Amaranth Varieties | ||
---|---|---|---|
White | Brown | Red | |
SFA | 28.16 ± 0.34 ab | 28.52 ± 0.09 b | 27.74 ± 0.17 a |
UFA | 71.64 ± 0.66 a | 71.46 ± 0.10 a | 72.20 ± 0.17 a |
MUFA | 35.16 ± 1.19 b | 34.16 ± 0.62 b | 24.71 ± 0.23 a |
PUFA | 36.47 ± 1.04 a | 37.30 ± 0.67 a | 47.48 ± 0.20 b |
Omega 6/Omega 3 | 68.63 ± 13.66 a | 64.17 ± 4.48 a | 54.90 ± 6.09 a |
SFA/UFA | 0.39 ± 0.01 ab | 0.40 ± 0.00 b | 0.38 ± 0.00 a |
PUFA/SFA | 1.30 ± 0.04 a | 1.31 ± 0.03 a | 1.71 ± 0.01 b |
TI | 0.70 ± 0.03 b | 0.69 ± 0.00 b | 0.65 ± 0.01 a |
AI | 0.31 ± 0.01 a | 0.31 ± 0.00 a | 0.31 ± 0.01 a |
Samples | Fatty Acids | Palmitic | Stearic | Oleic | Linoleic | α-Linolenic |
---|---|---|---|---|---|---|
Teff | Palmitic | 1 | ||||
Amaranth | ||||||
Teff | Stearic | −0.443 * (0.044) | 1 | |||
Amaranth | 0.234 (0.544) | |||||
Teff | Oleic | −0.691 ** (0.001) | 0.333 (0.140) | 1 | ||
Amaranth | 0.529 (0.143) | 0.922 ** (0.000) | ||||
Teff | Linoleic | 0.220 (0.338) | −0.371 (0.098) | −0.675 ** (0.001) | 1 | |
Amaranth | −0.553 (0.122) | −0.914 ** (0.001) | −0.998 ** (0.000) | |||
Teff | α-Linolenic | 0.310 (0.172) | 0.114 (0.623) | −0.271 (0.234) | −0.082 (0.724) | 1 |
Amaranth | −0.611 (0.081) | −0.645 (0.060) | −0.753 * (0.019) | 0.761 * (0.017) |
Sample | Squalene (mg/100 g DM) |
---|---|
White Amaranth | 486.54 ± 10.20 c |
Brown Amaranth | 340.81 ± 12.86 b |
Red Amaranth | 327.54 ± 16.92 b |
DZ-01-1278 | ND |
DZ-01-1681 | 0.85 ± 0.09 a |
DZ-01-2053 | ND |
DZ-01-2423 | ND |
DZ-01-2675 | ND |
DZ-01-99 | 2.33 ± 0.15 a |
DZ-Cr-387 | ND |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amare, E.; Grigoletto, L.; Corich, V.; Giacomini, A.; Lante, A. Fatty Acid Profile, Lipid Quality and Squalene Content of Teff (Eragrostis teff (Zucc.) Trotter) and Amaranth (Amaranthus caudatus L.) Varieties from Ethiopia. Appl. Sci. 2021, 11, 3590. https://doi.org/10.3390/app11083590
Amare E, Grigoletto L, Corich V, Giacomini A, Lante A. Fatty Acid Profile, Lipid Quality and Squalene Content of Teff (Eragrostis teff (Zucc.) Trotter) and Amaranth (Amaranthus caudatus L.) Varieties from Ethiopia. Applied Sciences. 2021; 11(8):3590. https://doi.org/10.3390/app11083590
Chicago/Turabian StyleAmare, Endale, Luca Grigoletto, Viviana Corich, Alessio Giacomini, and Anna Lante. 2021. "Fatty Acid Profile, Lipid Quality and Squalene Content of Teff (Eragrostis teff (Zucc.) Trotter) and Amaranth (Amaranthus caudatus L.) Varieties from Ethiopia" Applied Sciences 11, no. 8: 3590. https://doi.org/10.3390/app11083590
APA StyleAmare, E., Grigoletto, L., Corich, V., Giacomini, A., & Lante, A. (2021). Fatty Acid Profile, Lipid Quality and Squalene Content of Teff (Eragrostis teff (Zucc.) Trotter) and Amaranth (Amaranthus caudatus L.) Varieties from Ethiopia. Applied Sciences, 11(8), 3590. https://doi.org/10.3390/app11083590