Effects of a Curved Heel Shape in a Running Shoe on Biomechanical Variables and Comfort
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedure
2.3. Characteristics of the Shoes
2.4. Data Processing
2.5. Analysis Variables
2.6. Statistical Processing
3. Results
3.1. Impact Variables
3.2. Ankle Joint Biomechanics
3.3. Shoe Comfort
3.4. Multiple Regression Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Variables | NS a | RHS b | RLHS c | F | p | Post-hoc | Effect Size | Statistical Power |
---|---|---|---|---|---|---|---|---|
PVGRF (BW) | 1.61 ± 0.26 | 1.47 ± 0.08 | 1.43 ± 0.09 | 5.193 | 0.010 * | b, c < a | 0.147 | 0.589 |
VLR (BW/s) | 21.15 ± 2.90 | 20.53 ± 2.90 | 21.60 ± 2.17 | 0.674 | 0.515 | - | 0.037 | 0.164 |
Ankle Joint Angle (Deg) | Variables | NS a | RHS b | RLHS c | F | p | Post-hoc | Effect Size | Statistical Power |
---|---|---|---|---|---|---|---|---|---|
(+) Dorsiflexion (−) Plantarflexion | Heel contact | 3.1 ± 3.6 | 2.8 ± 3.4 | 3.2 ± 3.3 | 0.287 | 0.752 | - | 0.015 | 0.092 |
Toe off | −22.7 ± 3.8 | −22.7 ± 3.8 | −22.8 ± 4.3 | 0.015 | 0.985 | - | 0.001 | 0.052 | |
Range of motion | 28.9 ± 4.2 | 28.7 ± 4.0 | 29.2 ± 4.3 | 0.566 | 0.573 | - | 0.029 | 0.137 | |
(+) Inversion (−) Eversion | Heel contact | −0.7 ± 2.5 | −0.8 ± 2.4 | −0.7 ± 2.1 | 0.159 | 0.854 | - | 0.008 | 0.073 |
Toe off | 4.0 ± 4.5 | 3.2 ± 3.9 | 2.3 ± 3.7 | 4.305 | 0.021 * | c < a, b | 0.185 | 0.715 | |
Maximum eversion | −7.7 ± 2.8 | −7.9 ± 2.5 | −7.5 ± 2.6 | 0.460 | 0.635 | - | 0.024 | 0.120 | |
Range of motion | 12.1 ± 4.3 | 11.5 ± 4.3 | 10.5 ± 3.8 | 5.041 | 0.011 * | c < a, b | 0.210 | 0.785 |
Questions | NS a | RHS b | RLHS c | F | p | Post-hoc | Effect Size | Statistical Power |
---|---|---|---|---|---|---|---|---|
Rear foot Cushioning | 57.0 ± 14.9 | 59.7 ± 14.7 | 62.1 ± 10.7 | 1.143 | 0.330 | - | 0.057 | 0.236 |
Overall comfort | 53.6 ± 15.1 | 56.7 ± 16.6 | 58.4 ± 14.9 | 0.609 | 0.549 | - | 0.031 | 0.144 |
Independent Variables | Non-Standardized Coefficients | Standardized Coefficients (β) | t | p | VIF | |
---|---|---|---|---|---|---|
B | Standard Error | |||||
(constant) | 114.619 | 36.481 | 3.142 | 0.003 | ||
VLR | −1.074 | 0.975 | −0.168 | −1.102 | 0.276 | 1.705 |
Dorsiflexion angle at HC | −1.740 | 0.561 | −0.382 | −3.102 | 0.003 * | 1.114 |
ROM of dorsi-plantarflexion | 1.021 | 0.477 | 0.271 | 2.138 | 0.037 * | 1.176 |
Inversion angle at HC | 0.179 | 1.154 | 0.027 | 0.155 | 0.877 | 2.171 |
Maximum eversion angle | −0.169 | 1.133 | −0.029 | −0.149 | 0.882 | 2.679 |
ROM of inversion-eversion | −1.007 | 0.528 | −0.268 | −1.908 | 0.062 | 1.450 |
R2 = 0.277, F (6, 53) = 3.387, p = 0.007, Durbin-Watson = 1.437 |
References
- Nicola, T.L.; Jewison, D.J. The anatomy and biomechanics of running. Clin. Sports Med. 2012, 31, 187–201. [Google Scholar] [CrossRef]
- Milner, C.E.; Davis, I.S.; Hamill, J. Free moment as a predictor of tibial stress fracture in distance runners. J. Biomech. 2006, 39, 2819–2825. [Google Scholar] [CrossRef]
- Stefanyshyn, D.J.; Stergiou, P.; Lun, V.M.; Meeuwisse, W.H.; Worobets, J.T. Knee angular impulse as a predictor of patellofemoral pain in runners. Am. J. Sports Med. 2006, 34, 1844–1851. [Google Scholar] [CrossRef] [PubMed]
- Willems, T.M.; De Clercq, D.; Delbaere, K.; Vanderstraeten, G.; De Cock, A.; Witvrouw, E. A prospective study of gait related risk factors for exercise-related lower leg pain. Gait. Posture 2006, 23, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Taunton, J.E.; Ryan, M.B.; Clement, D.B.; McKenzie, D.C.; Lloyd-Smith, D.R.; Zumbo, B.D. A prospective study of running injuries: The Vancouver Sun Run “In Training” clinics. Br. J. Sports Med. 2003, 37, 239–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yen, S.C.; Gutierrez, G.M.; Wang, Y.C.; Murphy, P. Alteration of ankle kinematics and muscle activity during heel contact when walking with external loading. Eur. J. Appl. Physiol. 2015, 115, 1683–1692. [Google Scholar] [CrossRef]
- Nigg, B.M. Biomechanics of Running Shoes; Human Kinetics Publishers: Champaign, IL, USA, 1986. [Google Scholar]
- Agresta, C.; Kessler, S.; Southern, E.; Goulet, G.C.; Zernicke, R.; Zendler, J.D. Immediate and short-term adaptations to maximalist and minimalist running shoes. Footwear Sci. 2018, 10, 95–107. [Google Scholar] [CrossRef]
- Baltich, J.; Maurer, C.; Nigg, B.M. Increased vertical impact forces and altered running mechanics with softer midsole shoes. PLoS ONE 2015, 10, e0125196. [Google Scholar] [CrossRef] [PubMed]
- Kulmala, J.P.; Kosonen, J.; Nurminen, J.; Avela, J. Running in highly cushioned shoes increases leg stiffness and amplifies impact loading. Sci. Rep. 2018, 8, 17496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lam, W.K.; Liu, H.; Wu, G.Q.; Liu, Z.L.; Sun, W. Effect of shoe wearing time and midsole hardness on ground reaction forces, ankle stability and perceived comfort in basketball landing. J. Sports Sci. 2019, 37, 2347–2355. [Google Scholar] [CrossRef]
- Lam, W.K.; Ng, W.X.; Kong, P.W. Influence of shoe midsole hardness on plantar pressure distribution in four basketball-related movements. Res. Sports Med. 2017, 25, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Meardon, S.A.; Willson, J.D.; Kernozek, T.W.; Duerst, A.H.; Derrick, T.R. Shoe cushioning affects lower extremity joint contact forces during running. Footwear Sci. 2018, 10, 109–117. [Google Scholar] [CrossRef]
- Morio, C.; Lake, M.J.; Gueguen, N.; Rao, G.; Baly, L. The influence of footwear on foot motion during walking and running. J. Biomech. 2009, 42, 2081–2088. [Google Scholar] [CrossRef] [PubMed]
- Nigg, B.M.; Bahlsen, H.A.; Luethi, S.M.; Stokes, S. The influence of running velocity and midsole hardness on external impact forces in heel-toe running. J. Biomech. 1987, 20, 951–959. [Google Scholar] [CrossRef]
- Flores, N.; Rao, G.; Berton, E.; Delattre, N. The stiff plate location into the shoe influences the running biomechanics. Sports Biomech. 2019, 1–16. [Google Scholar] [CrossRef]
- Kurz, M.J.; Stergiou, N. Does footwear affect ankle coordination strategies? J. Am. Podiatr Med. Assoc. 2004, 94, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Nigg, B.M.; Morlock, M. The influence of lateral heel flare of running shoes on pronation and impact forces. Med. Sci. Sports Exerc. 1987, 19, 294–302. [Google Scholar] [CrossRef]
- Lam, W.K.; Ryue, J.; Lee, K.K.; Park, S.K.; Cheung, J.T.; Ryu, J. Does shoe heel design influence ground reaction forces and knee moments during maximum lunges in elite and intermediate badminton players? PLoS ONE 2017, 12, e0174604. [Google Scholar] [CrossRef]
- Liu, Z.L.; Lam, W.K.; Zhang, X.; Vanwanseele, B.; Liu, H. Influence of heel design on lower extremity biomechanics and comfort perception in overground running. J. Sports Sci. 2021, 39, 232–238. [Google Scholar] [CrossRef]
- Jordan, C.; Payton, C.; Bartlett, R. Perceived comfort and pressure distribution in casual footwear. Clin. Biomech. 1997, 12, S5. [Google Scholar] [CrossRef]
- Ryu, S.; Gil, H.; Kong, S.; Choi, Y.; Ryu, J.; Yoon, S.; Park, S.K. The effects of insole material and hardness in different plantar sites on the comfort and impact absorption. J. Erg. Soc. Korea 2018, 37, 475–487. [Google Scholar]
- Chumanov, E.S.; Wall-Scheffler, C.; Heiderscheit, B.C. Gender differences in walking and running on level and inclined surfaces. Clin. Biomech. 2008, 23, 1260–1268. [Google Scholar] [CrossRef] [PubMed]
- Mo, S.; Lam, W.-K.; Ching, E.C.K.; Chan, Z.Y.S.; Zhang, J.H.; Cheung, R.T.H. Effects of heel-toe drop on running biomechanics and perceived comfort of rearfoot strikers in standard cushioned running shoes. Footwear Sci. 2020, 12, 91–99. [Google Scholar] [CrossRef]
- Cui, W.; Wang, C.; Chen, W.; Guo, Y.; Jia, Y.; Du, W.; Wang, C. Effects of toe-out and toe-in gaits on lower-extremity kinematics, dynamics, and electromyography. Appl. Sci. 2019, 9, 5245. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.S.; Khan, S.J.; Usman, J. Effects of toe-out and toe-in gait with varying walking speeds on knee joint mechanics and lower limb energetics. Gait. Posture 2017, 53, 185–192. [Google Scholar] [CrossRef] [PubMed]
- McClay, I.; Manal, K. A comparison of three-dimensional lower extremity kinematics during running between excessive pronators and normals. Clin. Biomech. 1998, 13, 195–203. [Google Scholar] [CrossRef]
- Hong, Y.; Wang, S.J.; Lam, W.K.; Cheung, J.T. Kinetics of badminton lunges in four directions. J. Appl. Biomech. 2014, 30, 113–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winter, D.A. Biomechanics and Motor Control of Human Movement, 4th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009. [Google Scholar]
- Lung, C.W.; Chern, J.S.; Hsieh, L.F.; Yang, S.W. The differences in gait pattern between dancers and non-dancers. J. Mech. 2008, 24, 451–457. [Google Scholar] [CrossRef] [Green Version]
- Nigg, B.M. Biomechanics of Sport Shoes; University of Calgary: Calgary, AB, Canada, 2010. [Google Scholar]
- Hamill, J.; Ryu, J. Experiment in Sport Biomechanics; Daehanmedia: Busan, Korea, 2003. [Google Scholar]
- Yoo, S. Classification of the Hand Techniques by Angular Momentum in the Taekwondo Poomsae. Ph.D. Thesis, Graduate School of Korea National Sport University, Seoul, Korea, 2015. [Google Scholar]
- Mundermann, A.; Nigg, B.M.; Humble, R.N.; Stefanyshyn, D. Consistent immediate effects of foot orthoses on comfort and lower extremity kinematics, kinetics, and muscle activity. J. Appl. Biomech. 2004, 20, 71–84. [Google Scholar] [CrossRef] [Green Version]
- Mundermann, A.; Nigg, B.M.; Stefanyshyn, D.J.; Humble, R.N. Development of a reliable method to assess footwear comfort during running. Gait. Posture 2002, 16, 38–45. [Google Scholar] [CrossRef]
- Mundermann, A.; Stefanyshyn, D.J.; Nigg, B.M. Relationship between footwear comfort of shoe inserts and anthropometric and sensory factors. Med. Sci. Sports Exerc. 2001, 33, 1939–1945. [Google Scholar] [CrossRef]
- Dattalo, P. Analysis of Multiple Dependent Variables; Oxford University Press: New York, NY, USA, 2013. [Google Scholar]
- Mercer, J.A.; Horsch, S. Heel-toe running: A new look at the influence of foot strike pattern on impact force. J. Exerc. Sci. Fit. 2015, 13, 29–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orendurff, M.S.; Kobayashi, T.; Tulchin-Francis, K.; Tullock, A.M.H.; Villarosa, C.; Chan, C.; Kraus, E.; Strike, S. A little bit faster: Lower extremity joint kinematics and kinetics as recreational runners achieve faster speeds. J. Biomech. 2018, 71, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.P.; Ju, C.W.; Tang, F.T. Effects of total contact insoles on the plantar stress redistribution: A finite element analysis. Clin. Biomech. 2003, 18, S17–S24. [Google Scholar] [CrossRef]
- McClay, I.; Manal, K. Coupling parameters in runners with normal and excessive pronation. J. Appl. Biomech. 1997, 13, 109–124. [Google Scholar] [CrossRef]
- Stacoff, A.; Kalin, X.; Stussi, E. The effects of shoes on the torsion and rearfoot motion in running. Med. Sci. Sports Exerc. 1991, 23, 482–490. [Google Scholar] [CrossRef] [PubMed]
- Luo, G.; Stergiou, P.; Worobets, J.; Nigg, B.; Stefanyshyn, D. Improved footwear comfort reduces oxygen consumption during running. Footwear Sci. 2009, 1, 25–29. [Google Scholar] [CrossRef]
- Nigg, B.M.; Nurse, M.A.; Stefanyshyn, D.J. Shoe inserts and orthotics for sport and physical activities. Med. Sci. Sports Exerc. 1999, 31, S421–S428. [Google Scholar] [CrossRef] [PubMed]
- Nigg, B.M. The role of imact forces and foot pronation: A new paradigm. Clin. J. Sport. Med. 2001, 11, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Heidenfelder, J.; Sterzing, T.; Milani, T.L. Biomechanical wear testing of running shoes. Footwear Sci. 2009, 1, 16–17. [Google Scholar] [CrossRef]
- Kong, P.W.; Candelaria, N.G.; Smith, D.R. Running in new and worn shoes: A comparison of three types of cushioning footwear. Br. J. Sports Med. 2009, 43, 745–749. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryu, S.; Stefanyshyn, D.; Kong, S.; Park, S.-K. Effects of a Curved Heel Shape in a Running Shoe on Biomechanical Variables and Comfort. Appl. Sci. 2021, 11, 3613. https://doi.org/10.3390/app11083613
Ryu S, Stefanyshyn D, Kong S, Park S-K. Effects of a Curved Heel Shape in a Running Shoe on Biomechanical Variables and Comfort. Applied Sciences. 2021; 11(8):3613. https://doi.org/10.3390/app11083613
Chicago/Turabian StyleRyu, Sihyun, Darren Stefanyshyn, Sejin Kong, and Sang-Kyoon Park. 2021. "Effects of a Curved Heel Shape in a Running Shoe on Biomechanical Variables and Comfort" Applied Sciences 11, no. 8: 3613. https://doi.org/10.3390/app11083613
APA StyleRyu, S., Stefanyshyn, D., Kong, S., & Park, S.-K. (2021). Effects of a Curved Heel Shape in a Running Shoe on Biomechanical Variables and Comfort. Applied Sciences, 11(8), 3613. https://doi.org/10.3390/app11083613