An ANN Model for Predicting the Compressive Strength of Concrete
Abstract
:1. Introduction
2. The Concrete Mix Proportioning
3. The Artificial Neural Network
4. The Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
S.N. | S.N. | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 * | 0.119 | 0.442 | 0.663 | 0.544 | 0.043 | 0.579 | 0.758 | 0.506 | 242 | 0.473 | 0.651 | 0.625 | 0.481 | 0.000 | 0.315 | 0.320 | 0.589 |
2 | 0.285 | 0.577 | 0.624 | 0.481 | 0.053 | 0.545 | 0.607 | 0.550 | 243 | 0.473 | 0.651 | 0.649 | 0.465 | 0.277 | 0.000 | 0.276 | 0.637 |
3 | 0.458 | 0.710 | 0.584 | 0.418 | 0.063 | 0.512 | 0.431 | 0.506 | 244 | 0.473 | 0.453 | 0.665 | 0.427 | 0.555 | 0.000 | 0.250 | 0.671 |
4 * | 0.177 | 0.413 | 0.663 | 0.544 | 0.041 | 0.579 | 0.674 | 0.439 | 245 | 0.355 | 0.602 | 0.726 | 0.469 | 0.000 | 0.295 | 0.180 | 0.394 |
5 | 0.343 | 0.545 | 0.624 | 0.481 | 0.050 | 0.545 | 0.519 | 0.517 | 246 | 0.528 | 0.508 | 0.725 | 0.468 | 0.000 | 0.258 | 0.077 | 0.305 |
6 | 0.523 | 0.674 | 0.584 | 0.418 | 0.060 | 0.512 | 0.346 | 0.528 | 247 | 0.662 | 0.436 | 0.725 | 0.468 | 0.000 | 0.229 | 0.000 | 0.252 |
7 | 0.256 | 0.253 | 0.683 | 0.576 | 0.029 | 0.594 | 0.501 | 0.249 | 248 | 0.757 | 0.378 | 0.725 | 0.468 | 0.000 | 0.206 | 0.000 | 0.156 |
8 | 0.350 | 0.312 | 0.663 | 0.544 | 0.033 | 0.579 | 0.431 | 0.305 | 249 | 0.415 | 0.427 | 0.725 | 0.468 | 0.530 | 0.000 | 0.000 | 0.521 |
9 * | 0.538 | 0.432 | 0.624 | 0.481 | 0.042 | 0.545 | 0.276 | 0.327 | 250 | 0.568 | 0.355 | 0.725 | 0.468 | 0.463 | 0.000 | 0.000 | 0.451 |
10 | 0.726 | 0.550 | 0.584 | 0.418 | 0.051 | 0.512 | 0.107 | 0.361 | 251 | 0.687 | 0.299 | 0.725 | 0.468 | 0.410 | 0.000 | 0.000 | 0.312 |
11 | 0.158 | 0.423 | 0.679 | 0.543 | 0.042 | 0.512 | 0.568 | 0.583 | 252 * | 0.781 | 0.254 | 0.725 | 0.468 | 0.369 | 0.000 | 0.000 | 0.217 |
12 | 0.334 | 0.551 | 0.639 | 0.481 | 0.051 | 0.483 | 0.394 | 0.677 | 253 | 0.365 | 0.517 | 0.726 | 0.469 | 0.276 | 0.135 | 0.206 | 0.461 |
13 | 0.476 | 0.679 | 0.600 | 0.419 | 0.060 | 0.454 | 0.392 | 0.681 | 254 * | 0.540 | 0.433 | 0.725 | 0.468 | 0.241 | 0.118 | 0.088 | 0.360 |
14 | 0.158 | 0.423 | 0.679 | 0.543 | 0.042 | 0.512 | 0.568 | 0.580 | 255 | 0.676 | 0.368 | 0.725 | 0.468 | 0.214 | 0.104 | 0.000 | 0.279 |
15 | 0.334 | 0.551 | 0.639 | 0.481 | 0.051 | 0.483 | 0.394 | 0.619 | 256 | 0.770 | 0.317 | 0.725 | 0.468 | 0.192 | 0.094 | 0.000 | 0.204 |
16 * | 0.476 | 0.679 | 0.600 | 0.419 | 0.060 | 0.454 | 0.392 | 0.640 | 257 | 0.869 | 0.979 | 0.446 | 0.377 | 0.000 | 0.267 | 0.000 | 0.606 |
17 | 0.158 | 0.423 | 0.679 | 0.543 | 0.042 | 0.512 | 0.568 | 0.317 | 258 * | 0.826 | 0.790 | 0.446 | 0.377 | 0.000 | 0.518 | 0.000 | 0.651 |
18 | 0.334 | 0.551 | 0.639 | 0.481 | 0.051 | 0.483 | 0.394 | 0.448 | 259 | 0.809 | 0.717 | 0.446 | 0.377 | 0.000 | 0.669 | 0.000 | 0.584 |
19 | 0.476 | 0.679 | 0.600 | 0.419 | 0.060 | 0.454 | 0.392 | 0.501 | 260 | 0.874 | 0.733 | 0.550 | 0.377 | 0.000 | 0.209 | 0.000 | 0.472 |
20 | 0.285 | 0.623 | 0.808 | 0.229 | 0.056 | 0.439 | 0.504 | 0.638 | 261 | 0.837 | 0.588 | 0.550 | 0.377 | 0.000 | 0.406 | 0.000 | 0.495 |
21 | 0.213 | 0.554 | 0.834 | 0.254 | 0.051 | 0.455 | 0.498 | 0.615 | 262 | 0.822 | 0.532 | 0.550 | 0.377 | 0.000 | 0.482 | 0.000 | 0.405 |
22 | 0.047 | 0.484 | 0.861 | 0.278 | 0.045 | 0.467 | 1.000 | 0.573 | 263 | 0.879 | 0.576 | 0.616 | 0.377 | 0.000 | 0.174 | 0.000 | 0.417 |
23 | 0.329 | 0.349 | 0.865 | 0.284 | 0.037 | 0.470 | 0.283 | 0.441 | 264 * | 0.845 | 0.458 | 0.616 | 0.377 | 0.000 | 0.334 | 0.000 | 0.394 |
24 | 0.264 | 0.295 | 0.889 | 0.305 | 0.032 | 0.482 | 0.267 | 0.395 | 265 | 0.832 | 0.413 | 0.616 | 0.377 | 0.000 | 0.396 | 0.000 | 0.327 |
25 | 0.199 | 0.242 | 0.912 | 0.327 | 0.029 | 0.494 | 0.235 | 0.299 | 266 * | 0.882 | 0.467 | 0.665 | 0.377 | 0.000 | 0.145 | 0.000 | 0.294 |
26 | 0.422 | 0.225 | 0.880 | 0.296 | 0.419 | 0.030 | 0.195 | 0.185 | 267 | 0.852 | 0.368 | 0.665 | 0.377 | 0.000 | 0.289 | 0.000 | 0.283 |
27 | 0.350 | 0.183 | 0.900 | 0.316 | 0.429 | 0.027 | 0.189 | 0.172 | 268 | 0.840 | 0.330 | 0.665 | 0.377 | 0.000 | 0.337 | 0.000 | 0.216 |
28 | 0.278 | 0.139 | 0.922 | 0.335 | 0.440 | 0.024 | 0.171 | 0.174 | 269 | 0.890 | 0.825 | 0.446 | 0.377 | 0.473 | 0.000 | 0.000 | 0.684 |
29 | 0.523 | 0.556 | 0.594 | 0.505 | 0.141 | 0.318 | 0.287 | 0.656 | 270 | 0.884 | 0.756 | 0.446 | 0.377 | 0.565 | 0.000 | 0.000 | 0.673 |
30 * | 0.523 | 0.488 | 0.631 | 0.505 | 0.125 | 0.285 | 0.312 | 0.544 | 271 | 0.880 | 0.696 | 0.446 | 0.377 | 0.645 | 0.000 | 0.000 | 0.562 |
31 * | 0.560 | 0.446 | 0.675 | 0.457 | 0.117 | 0.264 | 0.259 | 0.489 | 272 | 0.892 | 0.612 | 0.550 | 0.377 | 0.369 | 0.000 | 0.000 | 0.584 |
32 | 0.410 | 0.288 | 0.689 | 0.430 | 0.360 | 0.273 | 0.215 | 0.609 | 273 | 0.888 | 0.558 | 0.550 | 0.377 | 0.441 | 0.000 | 0.000 | 0.573 |
33 | 0.410 | 0.416 | 0.689 | 0.465 | 0.360 | 0.068 | 0.215 | 0.590 | 274 | 0.884 | 0.512 | 0.550 | 0.377 | 0.503 | 0.000 | 0.000 | 0.517 |
34 | 0.410 | 0.159 | 0.689 | 0.394 | 0.360 | 0.477 | 0.215 | 0.575 | 275 * | 0.895 | 0.476 | 0.615 | 0.377 | 0.302 | 0.000 | 0.000 | 0.472 |
35 * | 0.410 | 0.459 | 0.689 | 0.438 | 0.120 | 0.273 | 0.215 | 0.605 | 276 | 0.891 | 0.432 | 0.615 | 0.377 | 0.361 | 0.000 | 0.000 | 0.506 |
36 | 0.410 | 0.116 | 0.689 | 0.421 | 0.600 | 0.273 | 0.215 | 0.471 | 277 | 0.888 | 0.394 | 0.615 | 0.377 | 0.412 | 0.000 | 0.000 | 0.450 |
37 | 0.329 | 0.288 | 0.689 | 0.467 | 0.360 | 0.273 | 0.215 | 0.739 | 278 | 0.897 | 0.382 | 0.661 | 0.377 | 0.256 | 0.000 | 0.000 | 0.361 |
38 | 0.491 | 0.288 | 0.689 | 0.392 | 0.360 | 0.273 | 0.215 | 0.490 | 279 | 0.893 | 0.345 | 0.661 | 0.377 | 0.306 | 0.000 | 0.000 | 0.394 |
39 | 0.410 | 0.288 | 0.689 | 0.430 | 0.360 | 0.273 | 0.182 | 0.685 | 280 | 0.890 | 0.313 | 0.661 | 0.377 | 0.349 | 0.000 | 0.000 | 0.294 |
40 | 0.410 | 0.288 | 0.689 | 0.430 | 0.360 | 0.273 | 0.248 | 0.502 | 281 | 0.473 | 0.484 | 0.652 | 0.661 | 0.000 | 0.112 | 0.000 | 0.316 |
41 | 0.372 | 0.240 | 0.721 | 0.456 | 0.320 | 0.242 | 0.177 | 0.542 | 282 | 0.473 | 0.413 | 0.647 | 0.652 | 0.000 | 0.224 | 0.000 | 0.301 |
42 | 0.372 | 0.354 | 0.721 | 0.488 | 0.320 | 0.061 | 0.177 | 0.497 | 283 | 0.473 | 0.347 | 0.643 | 0.643 | 0.000 | 0.333 | 0.000 | 0.287 |
43 | 0.372 | 0.126 | 0.721 | 0.424 | 0.320 | 0.424 | 0.177 | 0.483 | 284 | 0.473 | 0.276 | 0.638 | 0.634 | 0.000 | 0.442 | 0.000 | 0.219 |
44 | 0.372 | 0.392 | 0.721 | 0.463 | 0.107 | 0.242 | 0.177 | 0.533 | 285 | 0.675 | 0.789 | 0.381 | 0.729 | 0.325 | 0.000 | 0.114 | 0.515 |
45 | 0.372 | 0.088 | 0.721 | 0.449 | 0.533 | 0.242 | 0.177 | 0.483 | 286 * | 0.675 | 0.556 | 0.374 | 0.729 | 0.651 | 0.000 | 0.114 | 0.532 |
46 | 0.285 | 0.240 | 0.721 | 0.496 | 0.320 | 0.242 | 0.177 | 0.639 | 287 | 0.675 | 0.324 | 0.367 | 0.729 | 0.976 | 0.000 | 0.114 | 0.497 |
47 | 0.458 | 0.240 | 0.721 | 0.416 | 0.320 | 0.242 | 0.177 | 0.437 | 288 | 0.690 | 0.581 | 0.472 | 0.729 | 0.253 | 0.000 | 0.044 | 0.403 |
48 | 0.372 | 0.240 | 0.721 | 0.456 | 0.320 | 0.242 | 0.147 | 0.549 | 289 * | 0.690 | 0.402 | 0.466 | 0.729 | 0.507 | 0.000 | 0.044 | 0.418 |
49 * | 0.372 | 0.240 | 0.721 | 0.456 | 0.320 | 0.242 | 0.206 | 0.514 | 290 * | 0.690 | 0.221 | 0.460 | 0.729 | 0.760 | 0.000 | 0.044 | 0.390 |
50 | 0.432 | 0.216 | 0.721 | 0.458 | 0.300 | 0.227 | 0.152 | 0.354 | 291 | 0.697 | 0.450 | 0.530 | 0.729 | 0.208 | 0.000 | 0.015 | 0.315 |
51 | 0.432 | 0.323 | 0.721 | 0.489 | 0.300 | 0.057 | 0.152 | 0.476 | 292 * | 0.697 | 0.301 | 0.525 | 0.729 | 0.413 | 0.000 | 0.015 | 0.307 |
52 | 0.432 | 0.109 | 0.721 | 0.429 | 0.300 | 0.398 | 0.152 | 0.269 | 293 | 0.697 | 0.154 | 0.520 | 0.729 | 0.621 | 0.000 | 0.015 | 0.284 |
53 | 0.432 | 0.359 | 0.721 | 0.466 | 0.100 | 0.227 | 0.152 | 0.358 | 294 * | 0.314 | 0.594 | 0.661 | 0.475 | 0.133 | 0.352 | 0.221 | 0.785 |
54 | 0.432 | 0.073 | 0.721 | 0.452 | 0.500 | 0.227 | 0.152 | 0.232 | 295 | 0.314 | 0.486 | 0.723 | 0.475 | 0.112 | 0.300 | 0.184 | 0.662 |
55 | 0.350 | 0.216 | 0.721 | 0.496 | 0.300 | 0.227 | 0.152 | 0.429 | 296 | 0.314 | 0.406 | 0.768 | 0.475 | 0.099 | 0.261 | 0.147 | 0.606 |
56 | 0.513 | 0.216 | 0.721 | 0.420 | 0.300 | 0.227 | 0.152 | 0.289 | 297 | 0.314 | 0.345 | 0.804 | 0.475 | 0.088 | 0.230 | 0.147 | 0.573 |
57 | 0.432 | 0.216 | 0.721 | 0.458 | 0.300 | 0.227 | 0.124 | 0.459 | 298 | 0.314 | 0.594 | 0.556 | 0.647 | 0.133 | 0.352 | 0.221 | 0.796 |
58 | 0.432 | 0.216 | 0.721 | 0.458 | 0.300 | 0.227 | 0.180 | 0.402 | 299 | 0.314 | 0.486 | 0.617 | 0.647 | 0.112 | 0.300 | 0.184 | 0.707 |
59 * | 0.300 | 0.526 | 0.625 | 0.577 | 0.213 | 0.212 | 0.059 | 0.549 | 300 | 0.314 | 0.406 | 0.662 | 0.647 | 0.099 | 0.261 | 0.147 | 0.640 |
60 | 0.477 | 0.270 | 0.745 | 0.541 | 0.025 | 0.255 | 0.103 | 0.263 | 301 | 0.314 | 0.345 | 0.698 | 0.647 | 0.088 | 0.230 | 0.147 | 0.629 |
61 * | 0.266 | 0.207 | 0.716 | 0.561 | 0.049 | 0.498 | 0.173 | 0.263 | 302 | 0.314 | 0.594 | 0.450 | 0.819 | 0.133 | 0.352 | 0.221 | 0.818 |
62 | 0.365 | 0.430 | 0.375 | 0.947 | 0.000 | 0.388 | 0.110 | 0.370 | 303 * | 0.314 | 0.486 | 0.511 | 0.819 | 0.112 | 0.300 | 0.184 | 0.707 |
63 | 0.473 | 0.430 | 0.496 | 0.706 | 0.000 | 0.388 | 0.081 | 0.249 | 304 | 0.314 | 0.406 | 0.557 | 0.819 | 0.099 | 0.261 | 0.147 | 0.651 |
64 * | 0.639 | 0.430 | 0.541 | 0.561 | 0.000 | 0.388 | 0.074 | 0.249 | 305 * | 0.314 | 0.345 | 0.591 | 0.819 | 0.088 | 0.230 | 0.147 | 0.584 |
65 | 0.466 | 0.285 | 0.730 | 0.562 | 0.000 | 0.290 | 0.147 | 0.272 | 306 | 0.314 | 0.385 | 0.533 | 0.647 | 0.221 | 0.585 | 0.221 | 0.796 |
66 | 0.264 | 0.335 | 0.580 | 0.600 | 0.525 | 0.303 | 0.497 | 0.630 | 307 | 0.314 | 0.307 | 0.597 | 0.647 | 0.189 | 0.500 | 0.184 | 0.707 |
67 | 0.264 | 0.526 | 0.409 | 0.929 | 0.349 | 0.200 | 0.497 | 0.735 | 308 | 0.314 | 0.250 | 0.645 | 0.647 | 0.165 | 0.436 | 0.147 | 0.673 |
68 | 0.538 | 0.417 | 0.625 | 0.438 | 0.131 | 0.445 | 0.252 | 0.427 | 309 | 0.314 | 0.206 | 0.683 | 0.647 | 0.147 | 0.385 | 0.147 | 0.517 |
69 | 0.372 | 0.354 | 0.705 | 0.385 | 0.533 | 0.000 | 0.239 | 0.545 | 310 | 0.350 | 0.341 | 0.648 | 0.542 | 0.552 | 0.000 | 0.220 | 0.689 |
70 | 0.386 | 0.469 | 0.568 | 0.475 | 0.499 | 0.288 | 0.397 | 0.715 | 311 | 0.350 | 0.362 | 0.633 | 0.542 | 0.576 | 0.000 | 0.230 | 0.783 |
71 | 0.567 | 0.579 | 0.649 | 0.447 | 0.347 | 0.097 | 0.313 | 0.620 | 312 | 0.814 | 0.644 | 0.643 | 0.374 | 0.000 | 0.139 | 0.000 | 0.321 |
72 | 0.377 | 0.240 | 0.633 | 0.448 | 0.293 | 0.485 | 0.147 | 0.327 | 313 | 0.814 | 0.557 | 0.628 | 0.374 | 0.000 | 0.278 | 0.000 | 0.289 |
73 | 0.495 | 0.217 | 0.656 | 0.591 | 0.299 | 0.227 | 0.138 | 0.338 | 314 | 0.814 | 0.470 | 0.613 | 0.374 | 0.000 | 0.416 | 0.000 | 0.255 |
74 | 0.422 | 0.202 | 0.624 | 0.677 | 0.192 | 0.327 | 0.132 | 0.316 | 315 | 0.814 | 0.470 | 0.625 | 0.374 | 0.122 | 0.278 | 0.000 | 0.267 |
75 * | 0.374 | 0.341 | 0.608 | 0.489 | 0.243 | 0.491 | 0.138 | 0.320 | 316 | 0.814 | 0.470 | 0.631 | 0.374 | 0.183 | 0.208 | 0.000 | 0.278 |
76 * | 0.495 | 0.579 | 0.649 | 0.447 | 0.347 | 0.097 | 0.313 | 0.594 | 317 | 0.814 | 0.470 | 0.637 | 0.374 | 0.244 | 0.139 | 0.000 | 0.305 |
77 | 0.538 | 0.417 | 0.625 | 0.438 | 0.131 | 0.445 | 0.248 | 0.427 | 318 * | 0.339 | 0.269 | 0.709 | 0.594 | 0.000 | 0.652 | 0.055 | 0.164 |
78 | 0.567 | 0.417 | 0.623 | 0.435 | 0.104 | 0.476 | 0.293 | 0.396 | 319 | 0.325 | 0.269 | 0.705 | 0.594 | 0.280 | 0.318 | 0.048 | 0.349 |
79 | 0.567 | 0.411 | 0.671 | 0.432 | 0.107 | 0.364 | 0.267 | 0.340 | 320 | 0.069 | 0.630 | 0.511 | 0.872 | 0.000 | 0.136 | 0.515 | 0.893 |
80 | 0.495 | 0.335 | 0.658 | 0.522 | 0.320 | 0.242 | 0.184 | 0.465 | 321 * | 0.069 | 0.545 | 0.511 | 0.872 | 0.000 | 0.273 | 0.515 | 0.877 |
81 | 0.495 | 0.240 | 0.770 | 0.387 | 0.267 | 0.303 | 0.162 | 0.349 | 322 | 0.069 | 0.459 | 0.511 | 0.872 | 0.000 | 0.409 | 0.515 | 0.853 |
82 | 0.372 | 0.430 | 0.705 | 0.397 | 0.613 | 0.000 | 0.234 | 0.647 | 323 | 0.069 | 0.545 | 0.511 | 0.872 | 0.240 | 0.000 | 0.515 | 1.000 |
83 | 0.372 | 0.430 | 0.705 | 0.397 | 0.491 | 0.139 | 0.234 | 0.578 | 324 | 0.069 | 0.373 | 0.511 | 0.872 | 0.480 | 0.000 | 0.515 | 0.914 |
84 | 0.372 | 0.430 | 0.705 | 0.397 | 0.368 | 0.279 | 0.234 | 0.554 | 325 | 0.069 | 0.202 | 0.511 | 0.872 | 0.720 | 0.000 | 0.515 | 0.904 |
85 | 0.372 | 0.430 | 0.705 | 0.397 | 0.307 | 0.348 | 0.234 | 0.544 | 326 | 0.430 | 0.240 | 0.737 | 0.389 | 0.179 | 0.476 | 0.280 | 0.244 |
86 | 0.372 | 0.430 | 0.705 | 0.397 | 0.245 | 0.418 | 0.234 | 0.478 | 327 | 0.408 | 0.335 | 0.724 | 0.373 | 0.176 | 0.467 | 0.313 | 0.320 |
87 | 0.372 | 0.430 | 0.705 | 0.397 | 0.123 | 0.558 | 0.234 | 0.552 | 328 | 0.401 | 0.430 | 0.711 | 0.357 | 0.168 | 0.448 | 0.302 | 0.396 |
88 * | 0.372 | 0.430 | 0.705 | 0.397 | 0.000 | 0.697 | 0.234 | 0.422 | 329 | 0.386 | 0.526 | 0.698 | 0.342 | 0.163 | 0.430 | 0.324 | 0.472 |
89 | 0.220 | 0.560 | 0.686 | 0.525 | 0.107 | 0.285 | 0.314 | 0.583 | 330 | 0.430 | 0.697 | 0.541 | 0.609 | 0.000 | 0.333 | 0.273 | 0.716 |
90 | 0.220 | 0.560 | 0.686 | 0.525 | 0.149 | 0.248 | 0.317 | 0.549 | 331 | 0.430 | 0.488 | 0.530 | 0.586 | 0.000 | 0.667 | 0.273 | 0.616 |
91 | 0.220 | 0.560 | 0.686 | 0.525 | 0.187 | 0.212 | 0.318 | 0.526 | 332 | 0.430 | 0.278 | 0.519 | 0.563 | 0.000 | 1.000 | 0.245 | 0.467 |
92 | 0.531 | 0.534 | 0.638 | 0.431 | 0.407 | 0.116 | 0.280 | 0.727 | 333 | 0.430 | 0.697 | 0.550 | 0.627 | 0.293 | 0.000 | 0.384 | 0.775 |
93 | 0.567 | 0.421 | 0.638 | 0.431 | 0.486 | 0.138 | 0.346 | 0.625 | 334 | 0.430 | 0.488 | 0.548 | 0.622 | 0.587 | 0.000 | 0.368 | 0.830 |
94 | 0.567 | 0.421 | 0.638 | 0.431 | 0.486 | 0.138 | 0.308 | 0.513 | 335 | 0.430 | 0.278 | 0.546 | 0.618 | 0.880 | 0.000 | 0.327 | 0.808 |
95 | 0.567 | 0.335 | 0.653 | 0.431 | 0.527 | 0.150 | 0.293 | 0.603 | 336 | 0.430 | 0.697 | 0.546 | 0.618 | 0.147 | 0.167 | 0.294 | 0.796 |
96 | 0.552 | 0.345 | 0.653 | 0.431 | 0.530 | 0.151 | 0.296 | 0.623 | 337 * | 0.430 | 0.488 | 0.539 | 0.604 | 0.293 | 0.333 | 0.276 | 0.632 |
97 | 0.538 | 0.345 | 0.653 | 0.431 | 0.541 | 0.154 | 0.300 | 0.586 | 338 | 0.430 | 0.278 | 0.532 | 0.591 | 0.440 | 0.500 | 0.163 | 0.711 |
98 | 0.567 | 0.278 | 0.653 | 0.431 | 0.581 | 0.165 | 0.290 | 0.501 | 339 * | 0.588 | 0.545 | 0.620 | 0.531 | 0.000 | 0.273 | 0.118 | 0.518 |
99 | 0.531 | 0.250 | 0.653 | 0.431 | 0.637 | 0.181 | 0.296 | 0.588 | 340 | 0.588 | 0.373 | 0.610 | 0.514 | 0.000 | 0.545 | 0.109 | 0.436 |
100 | 0.567 | 0.250 | 0.667 | 0.431 | 0.569 | 0.162 | 0.278 | 0.491 | 341 | 0.588 | 0.202 | 0.600 | 0.497 | 0.000 | 0.818 | 0.110 | 0.275 |
101 | 0.531 | 0.240 | 0.667 | 0.431 | 0.606 | 0.172 | 0.285 | 0.560 | 342 | 0.588 | 0.545 | 0.628 | 0.544 | 0.240 | 0.000 | 0.136 | 0.595 |
102 * | 0.531 | 0.240 | 0.668 | 0.450 | 0.569 | 0.162 | 0.275 | 0.468 | 343 | 0.588 | 0.373 | 0.626 | 0.541 | 0.480 | 0.000 | 0.127 | 0.584 |
103 | 0.531 | 0.240 | 0.662 | 0.470 | 0.552 | 0.157 | 0.270 | 0.470 | 344 | 0.588 | 0.202 | 0.624 | 0.537 | 0.720 | 0.000 | 0.103 | 0.564 |
104 | 0.567 | 0.240 | 0.662 | 0.470 | 0.524 | 0.149 | 0.262 | 0.489 | 345 | 0.588 | 0.545 | 0.624 | 0.537 | 0.120 | 0.136 | 0.118 | 0.633 |
105 | 0.567 | 0.307 | 0.656 | 0.490 | 0.149 | 0.395 | 0.248 | 0.256 | 346 | 0.588 | 0.373 | 0.618 | 0.527 | 0.240 | 0.273 | 0.118 | 0.535 |
106 | 0.567 | 0.297 | 0.644 | 0.529 | 0.140 | 0.372 | 0.239 | 0.228 | 347 | 0.588 | 0.202 | 0.612 | 0.517 | 0.360 | 0.409 | 0.103 | 0.449 |
107 | 0.588 | 0.686 | 0.668 | 0.390 | 0.000 | 0.145 | 0.178 | 0.368 | 348 | 0.803 | 0.745 | 0.697 | 0.195 | 0.000 | 0.258 | 0.395 | 0.329 |
108 | 0.552 | 0.575 | 0.668 | 0.390 | 0.000 | 0.285 | 0.173 | 0.321 | 349 | 0.809 | 0.697 | 0.697 | 0.195 | 0.000 | 0.333 | 0.405 | 0.307 |
109 | 0.516 | 0.470 | 0.668 | 0.390 | 0.000 | 0.415 | 0.169 | 0.290 | 350 | 0.843 | 0.650 | 0.697 | 0.195 | 0.000 | 0.409 | 0.365 | 0.288 |
110 | 0.480 | 0.370 | 0.668 | 0.390 | 0.000 | 0.542 | 0.165 | 0.264 | 351 * | 0.851 | 0.592 | 0.697 | 0.195 | 0.000 | 0.500 | 0.365 | 0.279 |
111 | 0.617 | 0.705 | 0.668 | 0.390 | 0.131 | 0.000 | 0.181 | 0.381 | 352 | 0.903 | 0.535 | 0.697 | 0.195 | 0.000 | 0.591 | 0.365 | 0.267 |
112 * | 0.610 | 0.606 | 0.668 | 0.390 | 0.261 | 0.000 | 0.180 | 0.368 | 353 | 0.718 | 0.240 | 1.000 | 0.154 | 0.000 | 0.091 | 0.000 | 0.174 |
113 * | 0.603 | 0.509 | 0.668 | 0.390 | 0.389 | 0.000 | 0.180 | 0.346 | 354 * | 0.740 | 0.240 | 0.979 | 0.141 | 0.000 | 0.152 | 0.000 | 0.187 |
114 | 0.596 | 0.413 | 0.668 | 0.390 | 0.517 | 0.000 | 0.179 | 0.332 | 355 * | 0.755 | 0.240 | 0.963 | 0.129 | 0.000 | 0.197 | 0.000 | 0.192 |
115 | 0.610 | 0.268 | 0.594 | 0.765 | 0.082 | 0.186 | 0.110 | 0.187 | 356 | 0.776 | 0.240 | 0.946 | 0.118 | 0.000 | 0.258 | 0.000 | 0.190 |
116 | 0.574 | 0.287 | 0.594 | 0.765 | 0.086 | 0.195 | 0.136 | 0.255 | 357 | 0.812 | 0.240 | 0.929 | 0.105 | 0.000 | 0.303 | 0.000 | 0.176 |
117 | 0.433 | 0.363 | 0.594 | 0.765 | 0.101 | 0.229 | 0.264 | 0.483 | 358 | 0.834 | 0.240 | 0.914 | 0.095 | 0.000 | 0.348 | 0.000 | 0.160 |
118 * | 0.495 | 0.777 | 0.591 | 0.492 | 0.321 | 0.000 | 0.244 | 0.622 | 359 | 0.769 | 0.316 | 0.967 | 0.132 | 0.000 | 0.106 | 0.000 | 0.239 |
119 | 0.495 | 0.536 | 0.591 | 0.492 | 0.632 | 0.000 | 0.240 | 0.662 | 360 | 0.783 | 0.316 | 0.943 | 0.115 | 0.000 | 0.182 | 0.000 | 0.263 |
120 | 0.386 | 0.259 | 0.757 | 0.449 | 0.373 | 0.152 | 0.162 | 0.369 | 361 | 0.805 | 0.316 | 0.922 | 0.101 | 0.000 | 0.242 | 0.000 | 0.267 |
121 | 0.415 | 0.297 | 0.750 | 0.449 | 0.320 | 0.152 | 0.162 | 0.385 | 362 | 0.827 | 0.316 | 0.907 | 0.091 | 0.000 | 0.303 | 0.000 | 0.269 |
122 | 0.422 | 0.335 | 0.749 | 0.449 | 0.267 | 0.152 | 0.162 | 0.440 | 363 * | 0.863 | 0.316 | 0.884 | 0.075 | 0.000 | 0.364 | 0.000 | 0.255 |
123 | 0.422 | 0.392 | 0.751 | 0.449 | 0.187 | 0.152 | 0.162 | 0.468 | 364 | 0.892 | 0.316 | 0.865 | 0.061 | 0.000 | 0.424 | 0.000 | 0.237 |
124 | 0.372 | 0.202 | 0.732 | 0.449 | 0.373 | 0.303 | 0.170 | 0.422 | 365 * | 0.819 | 0.392 | 0.933 | 0.109 | 0.000 | 0.121 | 0.000 | 0.305 |
125 | 0.422 | 0.240 | 0.724 | 0.449 | 0.373 | 0.242 | 0.170 | 0.384 | 366 | 0.834 | 0.392 | 0.906 | 0.090 | 0.000 | 0.212 | 0.000 | 0.334 |
126 | 0.386 | 0.278 | 0.735 | 0.449 | 0.320 | 0.242 | 0.170 | 0.395 | 367 | 0.863 | 0.392 | 0.880 | 0.072 | 0.000 | 0.288 | 0.000 | 0.341 |
127 | 0.422 | 0.335 | 0.726 | 0.449 | 0.240 | 0.242 | 0.170 | 0.438 | 368 | 0.892 | 0.392 | 0.858 | 0.057 | 0.000 | 0.364 | 0.000 | 0.344 |
128 | 0.401 | 0.240 | 0.717 | 0.449 | 0.533 | 0.152 | 0.182 | 0.449 | 369 | 0.928 | 0.392 | 0.838 | 0.043 | 0.000 | 0.424 | 0.000 | 0.333 |
129 | 0.422 | 0.088 | 0.705 | 0.449 | 0.320 | 0.242 | 0.182 | 0.465 | 370 | 0.957 | 0.392 | 0.814 | 0.027 | 0.000 | 0.500 | 0.000 | 0.312 |
130 | 0.386 | 0.621 | 0.709 | 0.449 | 0.267 | 0.000 | 0.184 | 0.569 | 371 | 0.870 | 0.469 | 0.894 | 0.082 | 0.000 | 0.152 | 0.000 | 0.375 |
131 * | 0.372 | 0.383 | 0.707 | 0.449 | 0.600 | 0.000 | 0.184 | 0.571 | 372 * | 0.892 | 0.469 | 0.865 | 0.061 | 0.000 | 0.242 | 0.000 | 0.399 |
132 | 0.386 | 0.383 | 0.675 | 0.449 | 0.333 | 0.303 | 0.184 | 0.440 | 373 | 0.913 | 0.469 | 0.844 | 0.047 | 0.000 | 0.318 | 0.000 | 0.411 |
133 | 0.473 | 0.453 | 0.586 | 0.524 | 0.555 | 0.000 | 0.383 | 0.751 | 374 | 0.942 | 0.469 | 0.817 | 0.028 | 0.000 | 0.409 | 0.000 | 0.413 |
134 * | 0.473 | 0.453 | 0.586 | 0.503 | 0.416 | 0.158 | 0.364 | 0.718 | 375 | 0.971 | 0.469 | 0.793 | 0.013 | 0.000 | 0.485 | 0.000 | 0.396 |
135 | 0.473 | 0.453 | 0.586 | 0.482 | 0.277 | 0.315 | 0.346 | 0.618 | 376 | 1.000 | 0.469 | 0.775 | 0.000 | 0.000 | 0.561 | 0.000 | 0.378 |
136 | 0.473 | 0.453 | 0.586 | 0.461 | 0.139 | 0.473 | 0.346 | 0.568 | 377 * | 0.242 | 0.621 | 0.533 | 0.900 | 0.000 | 0.303 | 0.276 | 0.822 |
137 | 0.473 | 0.453 | 0.586 | 0.439 | 0.000 | 0.630 | 0.364 | 0.484 | 378 | 0.242 | 0.621 | 0.533 | 0.900 | 0.267 | 0.000 | 0.276 | 0.828 |
138 | 0.336 | 0.248 | 0.572 | 0.735 | 0.000 | 0.412 | 0.063 | 0.215 | 379 | 0.242 | 0.621 | 0.533 | 0.900 | 0.133 | 0.152 | 0.276 | 0.837 |
139 | 0.161 | 0.217 | 0.721 | 0.556 | 0.000 | 0.570 | 0.235 | 0.242 | 380 | 0.314 | 0.316 | 0.462 | 0.997 | 0.000 | 0.485 | 0.092 | 0.235 |
140 | 0.235 | 0.288 | 0.657 | 0.537 | 0.000 | 0.682 | 0.215 | 0.337 | 381 | 0.343 | 0.278 | 0.459 | 1.000 | 0.000 | 0.545 | 0.096 | 0.212 |
141 | 0.372 | 0.373 | 0.681 | 0.500 | 0.240 | 0.273 | 0.141 | 0.469 | 382 | 0.314 | 0.240 | 0.464 | 0.999 | 0.000 | 0.606 | 0.099 | 0.195 |
142 | 0.386 | 0.339 | 0.698 | 0.503 | 0.224 | 0.255 | 0.124 | 0.421 | 383 * | 0.170 | 0.430 | 0.486 | 0.885 | 0.000 | 0.606 | 0.055 | 0.664 |
143 | 0.314 | 0.255 | 0.712 | 0.497 | 0.277 | 0.312 | 0.140 | 0.331 | 384 | 0.170 | 0.430 | 0.489 | 0.891 | 0.200 | 0.379 | 0.074 | 0.836 |
144 | 0.458 | 0.446 | 0.583 | 0.692 | 0.192 | 0.094 | 0.166 | 0.357 | 385 | 0.170 | 0.335 | 0.486 | 0.885 | 0.000 | 0.758 | 0.055 | 0.544 |
145 * | 0.372 | 0.328 | 0.672 | 0.489 | 0.365 | 0.221 | 0.201 | 0.396 | 386 | 0.386 | 0.295 | 0.502 | 0.871 | 0.501 | 0.000 | 0.107 | 0.303 |
146 | 0.296 | 0.288 | 0.721 | 0.518 | 0.000 | 0.455 | 0.179 | 0.435 | 387 | 0.386 | 0.341 | 0.492 | 0.839 | 0.552 | 0.000 | 0.119 | 0.408 |
147 | 0.296 | 0.373 | 0.689 | 0.473 | 0.000 | 0.545 | 0.215 | 0.495 | 388 | 0.386 | 0.621 | 0.496 | 0.854 | 0.267 | 0.000 | 0.129 | 0.427 |
148 | 0.166 | 0.288 | 0.689 | 0.499 | 0.000 | 0.682 | 0.248 | 0.507 | 389 | 0.386 | 0.383 | 0.481 | 0.814 | 0.600 | 0.000 | 0.129 | 0.512 |
149 | 0.623 | 0.872 | 0.023 | 0.671 | 0.000 | 0.179 | 0.151 | 0.625 | 390 * | 0.386 | 0.097 | 0.489 | 0.837 | 1.000 | 0.000 | 0.129 | 0.375 |
150 * | 0.623 | 0.760 | 0.070 | 0.671 | 0.000 | 0.358 | 0.151 | 0.565 | 391 | 0.386 | 0.469 | 0.467 | 0.776 | 0.677 | 0.000 | 0.148 | 0.636 |
151 * | 0.623 | 0.646 | 0.116 | 0.671 | 0.000 | 0.536 | 0.151 | 0.501 | 392 | 0.386 | 0.514 | 0.458 | 0.751 | 0.749 | 0.000 | 0.161 | 0.667 |
152 | 0.653 | 0.568 | 0.009 | 0.671 | 0.000 | 0.124 | 0.000 | 0.367 | 393 | 0.502 | 0.392 | 0.495 | 0.923 | 0.245 | 0.000 | 0.000 | 0.395 |
153 * | 0.653 | 0.490 | 0.042 | 0.671 | 0.000 | 0.252 | 0.000 | 0.316 | 394 | 0.502 | 0.213 | 0.495 | 0.923 | 0.496 | 0.000 | 0.000 | 0.331 |
154 | 0.653 | 0.221 | 0.074 | 0.671 | 0.000 | 0.376 | 0.000 | 0.266 | 395 * | 0.502 | 0.392 | 0.495 | 0.923 | 0.000 | 0.279 | 0.000 | 0.288 |
155 | 0.653 | 0.366 | 0.000 | 0.671 | 0.000 | 0.091 | 0.000 | 0.168 | 396 | 0.097 | 0.156 | 0.515 | 0.978 | 0.000 | 0.655 | 0.132 | 0.295 |
156 | 0.653 | 0.310 | 0.023 | 0.671 | 0.000 | 0.179 | 0.000 | 0.128 | 397 | 0.841 | 0.874 | 0.446 | 0.376 | 0.000 | 0.403 | 0.000 | 0.695 |
157 | 0.653 | 0.253 | 0.047 | 0.671 | 0.000 | 0.270 | 0.000 | 0.085 | 398 | 0.848 | 0.653 | 0.549 | 0.376 | 0.000 | 0.315 | 0.000 | 0.532 |
158 | 0.653 | 0.872 | 0.417 | 0.671 | 0.157 | 0.000 | 0.000 | 0.554 | 399 | 0.856 | 0.510 | 0.615 | 0.376 | 0.000 | 0.258 | 0.000 | 0.413 |
159 | 0.653 | 0.760 | 0.414 | 0.671 | 0.315 | 0.000 | 0.000 | 0.614 | 400 | 0.863 | 0.413 | 0.664 | 0.376 | 0.000 | 0.218 | 0.000 | 0.337 |
160 | 0.653 | 0.535 | 0.406 | 0.671 | 0.632 | 0.000 | 0.000 | 0.604 | 401 | 0.899 | 1.000 | 0.446 | 0.376 | 0.237 | 0.000 | 0.000 | 0.652 |
161 | 0.653 | 0.568 | 0.535 | 0.671 | 0.109 | 0.000 | 0.000 | 0.419 | 402 | 0.892 | 0.905 | 0.446 | 0.376 | 0.365 | 0.000 | 0.000 | 0.674 |
162 | 0.653 | 0.490 | 0.532 | 0.671 | 0.221 | 0.000 | 0.000 | 0.442 | 403 | 0.899 | 0.747 | 0.549 | 0.376 | 0.187 | 0.000 | 0.000 | 0.539 |
163 | 0.653 | 0.331 | 0.527 | 0.671 | 0.443 | 0.000 | 0.000 | 0.436 | 404 | 0.892 | 0.674 | 0.549 | 0.376 | 0.285 | 0.000 | 0.000 | 0.533 |
164 | 0.653 | 0.366 | 0.622 | 0.671 | 0.080 | 0.000 | 0.000 | 0.220 | 405 * | 0.899 | 0.589 | 0.615 | 0.376 | 0.152 | 0.000 | 0.000 | 0.427 |
165 | 0.653 | 0.310 | 0.619 | 0.671 | 0.157 | 0.000 | 0.000 | 0.219 | 406 | 0.899 | 0.526 | 0.615 | 0.376 | 0.232 | 0.000 | 0.000 | 0.457 |
166 | 0.653 | 0.196 | 0.615 | 0.671 | 0.315 | 0.000 | 0.000 | 0.218 | 407 | 0.899 | 0.423 | 0.660 | 0.376 | 0.197 | 0.000 | 0.000 | 0.311 |
167 | 0.650 | 0.760 | 0.407 | 0.671 | 0.157 | 0.179 | 0.014 | 0.549 | 408 | 0.260 | 0.692 | 0.622 | 0.532 | 0.061 | 0.337 | 0.276 | 0.485 |
168 | 0.650 | 0.648 | 0.393 | 0.671 | 0.157 | 0.358 | 0.016 | 0.502 | 409 | 0.134 | 0.550 | 0.664 | 0.602 | 0.051 | 0.359 | 0.184 | 0.300 |
169 | 0.649 | 0.423 | 0.395 | 0.671 | 0.632 | 0.179 | 0.017 | 0.512 | 410 | 0.000 | 0.413 | 0.705 | 0.670 | 0.041 | 0.380 | 0.151 | 0.280 |
170 | 0.649 | 0.310 | 0.381 | 0.671 | 0.632 | 0.358 | 0.017 | 0.463 | 411 | 0.295 | 0.555 | 0.645 | 0.569 | 0.051 | 0.349 | 0.099 | 0.314 |
171 | 0.653 | 0.490 | 0.530 | 0.671 | 0.109 | 0.124 | 0.000 | 0.449 | 412 | 0.300 | 0.365 | 0.676 | 0.622 | 0.037 | 0.365 | 0.074 | 0.243 |
172 | 0.653 | 0.411 | 0.520 | 0.671 | 0.109 | 0.252 | 0.000 | 0.396 | 413 | 0.329 | 0.621 | 0.645 | 0.518 | 0.427 | 0.000 | 0.453 | 0.717 |
173 * | 0.653 | 0.253 | 0.522 | 0.671 | 0.443 | 0.124 | 0.000 | 0.408 | 414 | 0.514 | 0.530 | 0.637 | 0.606 | 0.626 | 0.000 | 0.304 | 0.642 |
174 * | 0.653 | 0.175 | 0.511 | 0.671 | 0.443 | 0.252 | 0.000 | 0.354 | 415 | 0.514 | 0.530 | 0.637 | 0.606 | 0.269 | 0.405 | 0.387 | 0.466 |
175 | 0.653 | 0.310 | 0.649 | 0.671 | 0.080 | 0.091 | 0.000 | 0.229 | 416 | 0.514 | 0.530 | 0.637 | 0.606 | 0.000 | 0.711 | 0.566 | 0.404 |
176 | 0.653 | 0.253 | 0.669 | 0.671 | 0.080 | 0.179 | 0.000 | 0.191 | 417 | 0.514 | 0.362 | 0.641 | 0.600 | 0.861 | 0.000 | 0.287 | 0.561 |
177 | 0.653 | 0.141 | 0.707 | 0.671 | 0.315 | 0.091 | 0.000 | 0.207 | 418 * | 0.514 | 0.362 | 0.641 | 0.600 | 0.370 | 0.558 | 0.431 | 0.462 |
178 | 0.653 | 0.084 | 0.726 | 0.671 | 0.315 | 0.179 | 0.000 | 0.191 | 419 | 0.444 | 0.495 | 0.657 | 0.627 | 0.255 | 0.384 | 0.595 | 0.394 |
179 | 0.278 | 0.556 | 0.626 | 0.643 | 0.000 | 0.276 | 0.168 | 0.452 | 420 | 0.444 | 0.495 | 0.657 | 0.627 | 0.000 | 0.674 | 0.198 | 0.566 |
180 * | 0.278 | 0.469 | 0.614 | 0.643 | 0.000 | 0.415 | 0.168 | 0.445 | 421 | 0.444 | 0.336 | 0.657 | 0.627 | 0.816 | 0.000 | 0.216 | 0.586 |
181 | 0.278 | 0.381 | 0.603 | 0.643 | 0.000 | 0.555 | 0.168 | 0.432 | 422 | 0.444 | 0.336 | 0.657 | 0.627 | 0.351 | 0.528 | 0.275 | 0.442 |
182 | 0.278 | 0.295 | 0.591 | 0.643 | 0.000 | 0.694 | 0.168 | 0.299 | 423 | 0.444 | 0.336 | 0.657 | 0.627 | 0.000 | 0.927 | 0.403 | 0.359 |
183 * | 0.278 | 0.208 | 0.580 | 0.643 | 0.000 | 0.830 | 0.168 | 0.235 | 424 | 0.375 | 0.461 | 0.676 | 0.646 | 0.562 | 0.000 | 0.516 | 0.422 |
184 | 0.278 | 0.120 | 0.568 | 0.643 | 0.000 | 0.970 | 0.168 | 0.141 | 425 | 0.375 | 0.461 | 0.676 | 0.646 | 0.258 | 0.345 | 0.563 | 0.350 |
185 | 0.314 | 0.400 | 0.709 | 0.643 | 0.000 | 0.215 | 0.000 | 0.373 | 426 | 0.375 | 0.461 | 0.676 | 0.646 | 0.000 | 0.638 | 0.187 | 0.549 |
186 | 0.314 | 0.333 | 0.699 | 0.643 | 0.000 | 0.324 | 0.000 | 0.329 | 427 | 0.375 | 0.310 | 0.676 | 0.646 | 0.772 | 0.000 | 0.205 | 0.569 |
187 | 0.314 | 0.265 | 0.690 | 0.643 | 0.000 | 0.430 | 0.000 | 0.291 | 428 | 0.375 | 0.310 | 0.676 | 0.646 | 0.355 | 0.474 | 0.261 | 0.344 |
188 | 0.314 | 0.198 | 0.681 | 0.643 | 0.000 | 0.539 | 0.000 | 0.213 | 429 | 0.375 | 0.310 | 0.676 | 0.646 | 0.000 | 0.878 | 0.381 | 0.331 |
189 | 0.314 | 0.130 | 0.672 | 0.643 | 0.000 | 0.645 | 0.000 | 0.154 | 430 | 0.516 | 0.530 | 0.637 | 0.606 | 0.627 | 0.000 | 0.259 | 0.662 |
190 * | 0.314 | 0.063 | 0.662 | 0.643 | 0.000 | 0.755 | 0.000 | 0.068 | 431 * | 0.254 | 0.457 | 0.494 | 0.831 | 0.279 | 0.317 | 0.328 | 0.552 |
191 | 0.314 | 0.303 | 0.755 | 0.643 | 0.000 | 0.176 | 0.000 | 0.284 | 432 | 0.250 | 0.458 | 0.495 | 0.831 | 0.280 | 0.318 | 0.386 | 0.572 |
192 | 0.314 | 0.248 | 0.747 | 0.643 | 0.000 | 0.264 | 0.000 | 0.224 | 433 | 0.230 | 0.449 | 0.487 | 0.810 | 0.276 | 0.313 | 0.420 | 0.603 |
193 | 0.314 | 0.192 | 0.740 | 0.643 | 0.000 | 0.352 | 0.000 | 0.193 | 434 | 0.408 | 0.288 | 0.689 | 0.429 | 0.360 | 0.273 | 0.215 | 0.610 |
194 | 0.314 | 0.135 | 0.732 | 0.643 | 0.000 | 0.439 | 0.000 | 0.130 | 435 * | 0.408 | 0.159 | 0.689 | 0.394 | 0.360 | 0.477 | 0.215 | 0.575 |
195 | 0.314 | 0.080 | 0.724 | 0.643 | 0.000 | 0.530 | 0.000 | 0.073 | 436 | 0.408 | 0.459 | 0.689 | 0.438 | 0.120 | 0.273 | 0.215 | 0.606 |
196 | 0.314 | 0.025 | 0.717 | 0.643 | 0.000 | 0.618 | 0.000 | 0.029 | 437 | 0.329 | 0.288 | 0.689 | 0.467 | 0.360 | 0.273 | 0.215 | 0.739 |
197 | 0.314 | 0.234 | 0.787 | 0.643 | 0.000 | 0.148 | 0.000 | 0.197 | 438 | 0.495 | 0.288 | 0.689 | 0.392 | 0.360 | 0.273 | 0.215 | 0.491 |
198 | 0.314 | 0.187 | 0.781 | 0.643 | 0.000 | 0.224 | 0.000 | 0.191 | 439 * | 0.365 | 0.466 | 0.689 | 0.478 | 0.217 | 0.151 | 0.195 | 0.684 |
199 * | 0.314 | 0.141 | 0.774 | 0.643 | 0.000 | 0.297 | 0.000 | 0.131 | 440 | 0.365 | 0.109 | 0.689 | 0.425 | 0.503 | 0.395 | 0.195 | 0.647 |
200 | 0.314 | 0.093 | 0.768 | 0.643 | 0.000 | 0.373 | 0.000 | 0.076 | 441 | 0.458 | 0.313 | 0.689 | 0.391 | 0.217 | 0.395 | 0.195 | 0.558 |
201 | 0.314 | 0.046 | 0.762 | 0.643 | 0.000 | 0.448 | 0.000 | 0.042 | 442 | 0.458 | 0.262 | 0.689 | 0.424 | 0.503 | 0.151 | 0.195 | 0.545 |
202 | 0.314 | 0.000 | 0.755 | 0.643 | 0.000 | 0.521 | 0.000 | 0.000 | 443 | 0.372 | 0.240 | 0.721 | 0.456 | 0.320 | 0.242 | 0.177 | 0.529 |
203 | 0.430 | 0.430 | 0.721 | 0.486 | 0.000 | 0.227 | 0.138 | 0.373 | 444 | 0.372 | 0.354 | 0.721 | 0.487 | 0.320 | 0.061 | 0.177 | 0.497 |
204 * | 0.292 | 0.288 | 0.721 | 0.518 | 0.000 | 0.455 | 0.180 | 0.435 | 445 * | 0.372 | 0.126 | 0.721 | 0.424 | 0.320 | 0.424 | 0.177 | 0.483 |
205 | 0.155 | 0.217 | 0.721 | 0.556 | 0.000 | 0.570 | 0.208 | 0.488 | 446 | 0.372 | 0.392 | 0.721 | 0.463 | 0.107 | 0.242 | 0.177 | 0.533 |
206 | 0.047 | 0.145 | 0.721 | 0.587 | 0.000 | 0.682 | 0.248 | 0.339 | 447 | 0.372 | 0.088 | 0.721 | 0.449 | 0.533 | 0.242 | 0.177 | 0.483 |
207 | 0.422 | 0.545 | 0.689 | 0.461 | 0.000 | 0.273 | 0.182 | 0.502 | 448 | 0.285 | 0.240 | 0.721 | 0.496 | 0.320 | 0.242 | 0.177 | 0.639 |
208 | 0.292 | 0.373 | 0.689 | 0.473 | 0.000 | 0.545 | 0.215 | 0.495 | 449 | 0.458 | 0.240 | 0.721 | 0.416 | 0.320 | 0.242 | 0.177 | 0.437 |
209 | 0.162 | 0.288 | 0.689 | 0.499 | 0.000 | 0.682 | 0.248 | 0.507 | 450 | 0.321 | 0.398 | 0.721 | 0.504 | 0.192 | 0.133 | 0.159 | 0.608 |
210 | 0.069 | 0.202 | 0.689 | 0.524 | 0.000 | 0.818 | 0.298 | 0.428 | 451 | 0.321 | 0.082 | 0.721 | 0.457 | 0.448 | 0.352 | 0.159 | 0.518 |
211 | 0.432 | 0.430 | 0.721 | 0.486 | 0.000 | 0.227 | 0.142 | 0.373 | 452 | 0.422 | 0.263 | 0.721 | 0.418 | 0.192 | 0.352 | 0.159 | 0.412 |
212 | 0.296 | 0.288 | 0.721 | 0.518 | 0.000 | 0.455 | 0.196 | 0.435 | 453 | 0.422 | 0.217 | 0.721 | 0.447 | 0.448 | 0.133 | 0.159 | 0.528 |
213 | 0.161 | 0.217 | 0.721 | 0.556 | 0.000 | 0.570 | 0.208 | 0.488 | 454 | 0.432 | 0.216 | 0.721 | 0.458 | 0.300 | 0.227 | 0.152 | 0.347 |
214 * | 0.053 | 0.145 | 0.721 | 0.587 | 0.000 | 0.682 | 0.273 | 0.339 | 455 | 0.432 | 0.323 | 0.721 | 0.489 | 0.300 | 0.057 | 0.152 | 0.391 |
215 | 0.426 | 0.545 | 0.689 | 0.461 | 0.000 | 0.273 | 0.158 | 0.502 | 456 | 0.432 | 0.109 | 0.721 | 0.429 | 0.300 | 0.398 | 0.152 | 0.270 |
216 * | 0.296 | 0.373 | 0.689 | 0.473 | 0.000 | 0.545 | 0.182 | 0.495 | 457 | 0.432 | 0.359 | 0.721 | 0.466 | 0.100 | 0.227 | 0.152 | 0.358 |
217 | 0.166 | 0.288 | 0.689 | 0.499 | 0.000 | 0.682 | 0.238 | 0.507 | 458 | 0.432 | 0.073 | 0.721 | 0.452 | 0.500 | 0.227 | 0.152 | 0.293 |
218 | 0.069 | 0.202 | 0.689 | 0.524 | 0.000 | 0.818 | 0.272 | 0.428 | 459 * | 0.350 | 0.216 | 0.721 | 0.496 | 0.300 | 0.227 | 0.152 | 0.452 |
219 | 0.856 | 0.494 | 0.426 | 0.770 | 0.000 | 0.178 | 0.000 | 0.422 | 460 | 0.513 | 0.216 | 0.721 | 0.420 | 0.300 | 0.227 | 0.152 | 0.289 |
220 | 0.856 | 0.382 | 0.408 | 0.770 | 0.000 | 0.356 | 0.000 | 0.321 | 461 | 0.383 | 0.365 | 0.721 | 0.503 | 0.181 | 0.126 | 0.169 | 0.392 |
221 | 0.856 | 0.492 | 0.440 | 0.770 | 0.157 | 0.000 | 0.000 | 0.461 | 462 | 0.383 | 0.067 | 0.721 | 0.459 | 0.419 | 0.329 | 0.169 | 0.253 |
222 | 0.856 | 0.382 | 0.436 | 0.770 | 0.314 | 0.000 | 0.000 | 0.406 | 463 | 0.479 | 0.238 | 0.721 | 0.423 | 0.181 | 0.329 | 0.169 | 0.254 |
223 | 0.675 | 0.905 | 0.381 | 0.729 | 0.000 | 0.185 | 0.114 | 0.417 | 464 | 0.479 | 0.195 | 0.721 | 0.449 | 0.419 | 0.126 | 0.135 | 0.314 |
224 | 0.675 | 0.789 | 0.373 | 0.729 | 0.000 | 0.370 | 0.114 | 0.396 | 465 * | 0.342 | 0.173 | 0.690 | 0.721 | 0.000 | 0.435 | 0.000 | 0.228 |
225 | 0.675 | 0.672 | 0.366 | 0.729 | 0.000 | 0.555 | 0.114 | 0.392 | 466 | 0.423 | 0.173 | 0.567 | 0.721 | 0.343 | 0.400 | 0.297 | 0.452 |
226 | 0.690 | 0.672 | 0.472 | 0.729 | 0.000 | 0.142 | 0.044 | 0.340 | 467 | 0.458 | 0.198 | 0.568 | 0.723 | 0.346 | 0.359 | 0.131 | 0.372 |
227 * | 0.690 | 0.581 | 0.466 | 0.729 | 0.000 | 0.288 | 0.044 | 0.334 | 468 | 0.426 | 0.178 | 0.567 | 0.722 | 0.346 | 0.390 | 0.287 | 0.394 |
228 | 0.690 | 0.491 | 0.461 | 0.729 | 0.000 | 0.430 | 0.044 | 0.320 | 469 | 0.291 | 0.187 | 0.654 | 0.722 | 0.036 | 0.522 | 0.162 | 0.311 |
229 | 0.697 | 0.524 | 0.529 | 0.729 | 0.000 | 0.118 | 0.015 | 0.347 | 470 | 0.349 | 0.190 | 0.605 | 0.722 | 0.133 | 0.526 | 0.238 | 0.361 |
230 | 0.697 | 0.450 | 0.525 | 0.729 | 0.000 | 0.236 | 0.015 | 0.382 | 471 | 0.343 | 0.177 | 0.586 | 0.723 | 0.201 | 0.506 | 0.291 | 0.397 |
231 | 0.697 | 0.377 | 0.520 | 0.729 | 0.000 | 0.352 | 0.015 | 0.392 | 472 | 0.403 | 0.190 | 0.567 | 0.723 | 0.249 | 0.485 | 0.358 | 0.357 |
232 * | 0.623 | 0.872 | 0.424 | 0.680 | 0.158 | 0.000 | 0.152 | 0.614 | 473 | 0.362 | 0.222 | 0.609 | 0.814 | 0.000 | 0.379 | 0.364 | 0.213 |
233 | 0.623 | 0.760 | 0.420 | 0.680 | 0.315 | 0.000 | 0.152 | 0.598 | 474 | 0.544 | 0.335 | 0.655 | 0.649 | 0.000 | 0.290 | 0.196 | 0.239 |
234 | 0.623 | 0.535 | 0.413 | 0.680 | 0.631 | 0.000 | 0.152 | 0.569 | 475 | 0.308 | 0.266 | 0.587 | 0.769 | 0.000 | 0.528 | 0.429 | 0.433 |
235 | 0.650 | 0.568 | 0.542 | 0.680 | 0.110 | 0.000 | 0.015 | 0.419 | 476 | 0.388 | 0.230 | 0.690 | 0.711 | 0.000 | 0.305 | 0.275 | 0.351 |
236 | 0.650 | 0.490 | 0.540 | 0.680 | 0.221 | 0.000 | 0.015 | 0.472 | 477 | 0.552 | 0.338 | 0.573 | 0.769 | 0.000 | 0.358 | 0.212 | 0.306 |
237 | 0.650 | 0.332 | 0.535 | 0.680 | 0.441 | 0.000 | 0.015 | 0.423 | 478 | 0.355 | 0.230 | 0.694 | 0.722 | 0.000 | 0.305 | 0.275 | 0.137 |
238 | 0.653 | 0.366 | 0.622 | 0.680 | 0.079 | 0.000 | 0.000 | 0.210 | 479 | 0.519 | 0.338 | 0.576 | 0.750 | 0.000 | 0.358 | 0.234 | 0.242 |
239 * | 0.653 | 0.310 | 0.619 | 0.680 | 0.158 | 0.000 | 0.000 | 0.207 | 480 | 0.455 | 0.193 | 0.567 | 0.725 | 0.282 | 0.428 | 0.082 | 0.213 |
240 | 0.653 | 0.197 | 0.615 | 0.680 | 0.315 | 0.000 | 0.000 | 0.228 | 481 | 0.581 | 0.347 | 0.608 | 0.717 | 0.014 | 0.236 | 0.262 | 0.182 |
241 | 0.473 | 0.750 | 0.625 | 0.500 | 0.000 | 0.158 | 0.287 | 0.647 | 482 * | 0.482 | 0.309 | 0.616 | 0.716 | 0.169 | 0.215 | 0.205 | 0.270 |
References
- Abrams, D. Design of Concrete Mixtures; Bulletin No. 1; Structural Materials Laboratory, Lewis Institute: Chicago, IL, USA, 1918. [Google Scholar]
- Lin, T.-K.; Lin, C.-C.J.; Chang, K.-C. Neural network based methodology for estimating bridge damage after major earthquakes. J. Chin. Inst. Eng. 2002, 25, 415–424. [Google Scholar] [CrossRef]
- Lee, S.-C. Prediction of concrete strength using artificial neural networks. Eng. Struct. 2003, 25, 849–857. [Google Scholar] [CrossRef]
- Hola, J.; Schabowicz, K. Methodology of neural identification of strength of concrete. ACI Mater. J. 2005, 102, 459–464. [Google Scholar]
- Kewalramani, M.A.; Gupta, R. Concrete compressive strength prediction using ultrasonic pulse velocity through artificial neural networks. Autom. Constr. 2006, 15, 374–379. [Google Scholar] [CrossRef]
- Öztaş, A.; Pala, M.; Özbay, E.; Kanca, E.; Çaglar, N.; Bhatti, M.A. Predicting the compressive strength and slump of high strength concrete using neural network. Constr. Build. Mater. 2006, 20, 769–775. [Google Scholar] [CrossRef]
- Topçu, I.B.; Sarıdemir, M. Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic. Comput. Mater. Sci. 2008, 41, 305–311. [Google Scholar] [CrossRef]
- Bilim, C.; Atiş, C.D.; Tanyildizi, H.; Karahan, O. Predicting the compressive strength of ground granulated blast furnace slag concrete using artificial neural network. Adv. Eng. Softw. 2009, 40, 334–340. [Google Scholar] [CrossRef]
- Trtnik, G.; Kavčič, F.; Turk, G. Prediction of concrete strength using ultrasonic pulse velocity and artificial neural networks. Ultrasonics 2009, 49, 53–60. [Google Scholar] [CrossRef] [Green Version]
- Atici, U. Prediction of the strength of mineral admixture concrete using multivariable regression analysis and an artificial neural network. Expert Syst. Appl. 2011, 38, 9609–9618. [Google Scholar] [CrossRef]
- Alexandridis, A.; Triantis, D.; Stavrakas, I.; Stergiopoulos, C. A neural network approach for compressive strength prediction in cement-based materials through the study of pressure stimulated electrical signals. Constr. Build. Mater. 2012, 30, 294–300. [Google Scholar] [CrossRef]
- Shen, C.-H. Application of Neural Networks and ACI Code in Pozzolanic Concrete Mix Design. Master’s Thesis, Department of Civil Engineering, Nation Chiao Tung University, Hsinchu City, Taiwan, 2013. (In Chinese). [Google Scholar]
- Chopra, P.; Sharma, R.K.; Kumar, M. Artificial Neural Networks for the Prediction of Compressive Strength of Concrete. Int. J. Appl. Sci. Eng. 2015, 13, 187–204. [Google Scholar]
- Nikoo, M.; Moghadam, F.T.; Sadowski, L. Prediction of Concrete Compressive Strength by Evolutionary Artificial Neural Networks. Adv. Mater. Sci. Eng. 2015, 2015, 849126. [Google Scholar] [CrossRef]
- Chopar, P.; Sharma, R.K.; Kumar, M. Prediction of Compressive Strength of Concrete Using Artificial Neural Network and Genetic Programming. Adv. Mater. Sci. Eng. 2016, 2016, 7648467. [Google Scholar] [CrossRef] [Green Version]
- Hao, C.-Y.; Shen, C.-H.; Jan, J.-C.; Hung, S.-K. A Computer-Aided Approach to Pozzolanic Concrete Mix Design. Adv. Civ. Eng. 2018, 2018, 4398017. [Google Scholar]
- Cuingnet, R.; Rosso, C.; Chupin, M.; Lehéricy, S.; Dormont, D.; Benali, H.; Samson, Y.; Colliot, O. Spatial regularization of SVM for the detection of diffusion alterations associated with stroke outcome. Med. Image Anal. 2011, 15, 729–737. [Google Scholar] [CrossRef]
- Shalev-Shwartz, S.; Singer, Y.; Srebro, N.; Cotter, A. Pegasos: Primal estimated sub-gradient solver for SVM. Math. Program. 2011, 127, 3–30. [Google Scholar] [CrossRef] [Green Version]
- Hinton, G.; Osindero, S.; Teh, Y.-W. A fast learning algorithm for deep belief nets. Neural Comput. 2006, 18, 1527–1554. [Google Scholar] [CrossRef]
- Hinton, G.; Deng, L.; Yu, D.; Dahl, G.E.; Hohamed, A.; Jaitly, N.; Senior, A.; Vanhoucke, V.; Nguyen, P.; Sainath, T.N.; et al. Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups. IEEE Signal Process. Mag. 2012, 29, 82–97. [Google Scholar] [CrossRef]
- Sainath, T.N.; Mohamed, A.; Kingsbury, B.; Ramabhadran, B. Deep convolutional neural networks for LVCSR. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 8614–8618. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- He, K.; Sun, J. Convolutional neural networks at constrained time cost. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 5353–5360. [Google Scholar]
- Segal, R.; Kothari, M.L.; Madnani, S. Radial basis function (RBF) network adaptive power system stabilizer. IEEE Trans. Power Syst. 2000, 15, 722–727. [Google Scholar]
- Mai-Duy, N.; Tran-Cong, T. Numerical solution of differential equations using multiquadric radial basis function networks. Neural Netw. 2001, 14, 185–199. [Google Scholar] [CrossRef] [Green Version]
- Ding, S.; Xu, L.; Su, C.; Jin, F. An optimizing method of RBF neural network based on genetic algorithm. Neural Comput. Appl. 2012, 21, 333–336. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Sun, S.; Ma, X.; Lu, G. Forecasting short-term subway passenger flow under special events scenarios using multiscale radial basis function networks. Transp. Res. Part C Emerg. Technol. 2017, 77, 306–328. [Google Scholar] [CrossRef]
- Aljarah, C.I.; Faris, H.; Mirjalili, S.; Al-Madi, N. Training radial basis function networks using biogeography-based optimizer. Neural Comput. Appl. 2018, 29, 529–553. [Google Scholar] [CrossRef]
- Karamichailidou, D.; Kaloutsa, V.; Alexandridis, A. Wind turbine power curve modeling using radial basis function neural networks and tabu search. Renew. Energy 2021, 163, 2137–2152. [Google Scholar] [CrossRef]
- Winiczenko, R.; Górnicki, K.; Kaleta, A.; Janaszek-Mańkowska, M. Optimisation of ANN topology for predicting the rehydrated apple cubes colour change using RSM and GA. Neural Comput. Appl. 2018, 30, 1795–1809. [Google Scholar] [CrossRef] [Green Version]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back propagating errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Ham, F.M.; Kostanic, I. Principles of Neurocomputing for Science & Engineering; McGraw-Hill Higher Education: New York, NY, USA, 2001. [Google Scholar]
Inputs | Output | |||||||
---|---|---|---|---|---|---|---|---|
x1 | x2 | x3 | x4 | x5 | x6 | x7 | y | |
Maximum | 255 | 599 | 1293 | 1226 | 375 | 330 | 27.17 | 95.3 |
Minimum | 116.5 | 74 | 30 | 436 | 0 | 0 | 0 | 5.66 |
i | |||||||||
---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | ||
j | 1 | 0.6144 | 0.8055 | 0.1110 | 0.8372 | 1.7008 | −0.3427 | 0.6209 | 0.5749 |
2 | 1.3936 | 1.0523 | 1.4664 | 0.1982 | −0.4601 | −0.5712 | 0.5264 | 3.1878 | |
3 | 0.5066 | −1.7844 | 0.0736 | −1.7298 | −1.0940 | 0.0095 | −0.9082 | 1.1462 | |
4 | −1.3016 | 0.8221 | 1.3503 | 0.2557 | 0.0471 | 2.0145 | −1.1131 | 1.5552 | |
5 | −0.4564 | 0.0257 | −1.7657 | 2.7258 | −1.7268 | −1.9379 | 0.2811 | 1.4361 | |
6 | −0.0404 | 0.1909 | 1.1077 | 2.3484 | −0.5073 | 2.2264 | −0.1963 | 1.4299 | |
7 | 0.7199 | −0.0957 | 0.2010 | −0.1656 | 2.5119 | −0.2500 | 0.0705 | −0.1386 |
j | |||||||
---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
−1.0706 | −0.2102 | 2.0741 | 2.3526 | −1.2642 | −1.3384 | 2.2950 | −1.5356 |
Ingredients (kg/m3) | Compressive Strength (MPa) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Water | Cement | Fine Aggregate | Coarse Aggregate | Blast Furnace Slag | Fly Ash | Super-Plasticizer | Actual | Predicted in Ref. [16] | Predicted by Present Model |
194 | 223 | 669 | 1040 | 76 | 72 | 0.74 | 44.10 | 34.43 | 40.20 |
184 | 244 | 649 | 1104 | 105 | 19 | 0.79 | 47.99 | 32.26 | 42.87 |
187 | 194 | 650 | 1072 | 171 | 22 | 0.81 | 49.75 | 34.85 | 42.60 |
189 | 272 | 670 | 1040 | 121 | 14 | 0.70 | 52.87 | 35.60 | 47.14 |
191 | 346 | 549 | 1136 | 38 | 41 | 0.73 | 46.70 | 45.96 | 43.99 |
189 | 261 | 619 | 1072 | 93 | 57 | 0.88 | 47.06 | 39.04 | 45.78 |
204 | 331 | 457 | 1136 | 99 | 54 | 0.77 | 54.52 | 54.55 | 44.53 |
191 | 280 | 555 | 1104 | 121 | 46 | 0.68 | 47.61 | 50.16 | 46.91 |
210 | 300 | 535 | 1040 | 131 | 51 | 0.54 | 46.06 | 52.05 | 47.60 |
207 | 430 | 604 | 960 | 20 | 61 | 0.76 | 54.30 | 40.08 | 52.32 |
190 | 329 | 516 | 1104 | 112 | 52 | 0.87 | 54.98 | 55.07 | 50.83 |
208 | 351 | 554 | 960 | 52 | 121 | 0.72 | 55.13 | 40.91 | 52.00 |
Ingredients (kg/m3) | Compressive Strength (MPa) | Ingredients (kg/m3) | Compressive Strength (MPa) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Water | Cement | Fine Aggregate | Coarse Aggregate | Fly Ash | Actual | Predicted | Water | Cement | Fine Aggregate | Coarse Aggregate | Fly Ash | Actual | Predicted |
198.75 | 375.00 | 592.50 | 1143.75 | 0.00 | 36.84 | 37.51 | 191.25 | 425.00 | 463.25 | 1139.00 | 0.00 | 50.35 | 42.83 |
200.00 | 400.00 | 572.00 | 1128.00 | 0.00 | 43.13 | 39.88 | 189.00 | 450.00 | 441.00 | 1102.50 | 0.00 | 54.11 | 47.58 |
212.00 | 400.00 | 616.00 | 1196.00 | 0.00 | 38.58 | 34.23 | 198.75 | 375.00 | 551.25 | 903.75 | 0.00 | 37.3 | 50.61 |
199.75 | 425.00 | 544.00 | 1096.50 | 0.00 | 47.16 | 43.36 | 200.00 | 400.00 | 528.00 | 884.00 | 0.00 | 44.04 | 54.08 |
208.25 | 425.00 | 590.75 | 1177.25 | 0.00 | 45.05 | 37.44 | 212.00 | 400.00 | 576.00 | 944.00 | 0.00 | 39.61 | 45.73 |
198.00 | 450.00 | 513.00 | 1057.50 | 0.00 | 49.63 | 47.81 | 199.75 | 425.00 | 505.75 | 862.75 | 0.00 | 47.37 | 58.13 |
211.50 | 450.00 | 562.50 | 1143.00 | 0.00 | 47.42 | 39.59 | 208.25 | 425.00 | 548.25 | 926.50 | 0.00 | 44.69 | 50.23 |
199.50 | 475.00 | 498.75 | 1040.25 | 0.00 | 54.01 | 50.01 | 198.00 | 450.00 | 481.50 | 837.00 | 0.00 | 50.93 | 63.16 |
209.00 | 475.00 | 565.25 | 1168.50 | 0.00 | 50.05 | 40.59 | 211.50 | 450.00 | 526.50 | 900.00 | 0.00 | 48.08 | 52.86 |
198.75 | 375.00 | 592.50 | 1143.75 | 0.00 | 37.81 | 37.51 | 199.50 | 475.00 | 451.25 | 798.00 | 0.00 | 54.14 | 68.13 |
200.00 | 400.00 | 572.00 | 1128.00 | 0.00 | 44.11 | 39.88 | 209.00 | 475.00 | 503.50 | 874.00 | 0.00 | 51.31 | 57.50 |
212.00 | 400.00 | 616.00 | 1196.00 | 0.00 | 40.9 | 34.23 | 180.00 | 400.00 | 440.00 | 1080.00 | 60.00 | 39.04 | 48.88 |
199.75 | 425.00 | 544.00 | 1096.50 | 0.00 | 47.51 | 43.36 | 178.50 | 425.00 | 416.50 | 1045.50 | 63.75 | 45.09 | 53.70 |
208.25 | 425.00 | 590.75 | 1177.25 | 0.00 | 45.3 | 37.44 | 191.25 | 425.00 | 463.25 | 1139.00 | 63.75 | 41.14 | 44.16 |
216.75 | 425.00 | 641.75 | 1253.75 | 0.00 | 42.54 | 33.08 | 199.75 | 425.00 | 544.00 | 1096.50 | 63.75 | 38.35 | 45.00 |
198.00 | 450.00 | 513.00 | 1057.50 | 0.00 | 52.03 | 47.81 | 189.00 | 450.00 | 441.00 | 1102.50 | 67.50 | 46.13 | 48.59 |
211.50 | 450.00 | 562.50 | 1143.00 | 0.00 | 48.74 | 39.59 | 198.00 | 450.00 | 513.00 | 1057.50 | 67.50 | 42.5 | 49.15 |
220.50 | 450.00 | 616.50 | 1228.50 | 0.00 | 46.59 | 34.47 | 211.50 | 450.00 | 562.50 | 1143.00 | 67.50 | 39.58 | 41.91 |
199.50 | 475.00 | 498.75 | 1040.25 | 0.00 | 54.49 | 50.01 | 199.50 | 475.00 | 498.75 | 1040.25 | 71.25 | 47.34 | 51.29 |
209.00 | 475.00 | 565.25 | 1168.50 | 0.00 | 53.06 | 40.59 | 209.00 | 475.00 | 565.25 | 1168.50 | 71.25 | 43.55 | 43.09 |
218.50 | 475.00 | 584.25 | 1192.25 | 0.00 | 49.18 | 37.41 | 191.25 | 425.00 | 463.25 | 1139.00 | 63.75 | 42.01 | 44.16 |
221.00 | 425.00 | 607.75 | 858.50 | 0.00 | 40.02 | 48.94 | 199.75 | 425.00 | 544.00 | 1096.50 | 63.75 | 38.85 | 45.00 |
220.50 | 450.00 | 580.50 | 837.00 | 0.00 | 45.25 | 52.77 | 189.00 | 450.00 | 441.00 | 1102.50 | 67.50 | 47.25 | 48.59 |
229.50 | 450.00 | 175.95 | 855.00 | 0.00 | 42.68 | 49.07 | 198.00 | 450.00 | 513.00 | 1057.50 | 67.50 | 43.09 | 49.15 |
218.50 | 475.00 | 555.75 | 817.00 | 0.00 | 48.67 | 56.97 | 211.50 | 450.00 | 562.50 | 1143.00 | 67.50 | 40.26 | 41.91 |
228.00 | 475.00 | 598.50 | 869.25 | 0.00 | 45.52 | 49.91 | 220.50 | 450.00 | 616.50 | 1228.50 | 67.50 | 37.15 | 37.48 |
178.50 | 350.00 | 486.50 | 1141.00 | 0.00 | 39.52 | 40.43 | 199.50 | 475.00 | 498.75 | 1040.25 | 71.25 | 48.41 | 51.29 |
189.00 | 350.00 | 521.50 | 1197.00 | 0.00 | 31.66 | 34.46 | 209.00 | 475.00 | 565.25 | 1168.50 | 71.25 | 44.02 | 43.09 |
180.00 | 375.00 | 468.75 | 1121.25 | 0.00 | 42.73 | 43.49 | 218.50 | 475.00 | 584.25 | 1192.25 | 71.25 | 40.73 | 40.26 |
191.25 | 375.00 | 506.25 | 1196.25 | 0.00 | 40.69 | 35.95 | 199.75 | 425.00 | 505.75 | 862.75 | 63.75 | 38.9 | 58.24 |
180.00 | 400.00 | 440.00 | 1080.00 | 0.00 | 47.99 | 48.40 | 198.00 | 450.00 | 481.50 | 837.00 | 67.50 | 43.22 | 62.94 |
192.00 | 400.00 | 484.00 | 1168.00 | 0.00 | 44.89 | 39.14 | 211.50 | 450.00 | 526.50 | 900.00 | 67.50 | 39.85 | 53.71 |
178.50 | 425.00 | 416.50 | 1049.75 | 0.00 | 51.25 | 53.24 | 220.50 | 450.00 | 580.50 | 837.00 | 67.50 | 36.87 | 53.69 |
191.25 | 425.00 | 463.25 | 1139.00 | 0.00 | 49.05 | 42.83 | 229.50 | 450.00 | 625.50 | 891.00 | 67.50 | 35.23 | 47.81 |
189.00 | 450.00 | 441.00 | 1102.50 | 0.00 | 53.69 | 47.58 | 199.50 | 475.00 | 451.25 | 798.00 | 71.25 | 47.94 | 67.52 |
189.00 | 350.00 | 521.50 | 1197.00 | 0.00 | 36.64 | 34.46 | 209.00 | 475.00 | 503.50 | 874.00 | 71.25 | 43.87 | 58.03 |
191.25 | 375.00 | 506.25 | 1196.25 | 0.00 | 41.57 | 35.95 | 218.50 | 475.00 | 555.75 | 817.00 | 71.25 | 40.34 | 57.64 |
192.00 | 400.00 | 484.00 | 1168.00 | 0.00 | 46.22 | 39.14 | 228.00 | 475.00 | 598.50 | 869.25 | 71.25 | 37.65 | 51.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, C.-J.; Wu, N.-J. An ANN Model for Predicting the Compressive Strength of Concrete. Appl. Sci. 2021, 11, 3798. https://doi.org/10.3390/app11093798
Lin C-J, Wu N-J. An ANN Model for Predicting the Compressive Strength of Concrete. Applied Sciences. 2021; 11(9):3798. https://doi.org/10.3390/app11093798
Chicago/Turabian StyleLin, Chia-Ju, and Nan-Jing Wu. 2021. "An ANN Model for Predicting the Compressive Strength of Concrete" Applied Sciences 11, no. 9: 3798. https://doi.org/10.3390/app11093798
APA StyleLin, C. -J., & Wu, N. -J. (2021). An ANN Model for Predicting the Compressive Strength of Concrete. Applied Sciences, 11(9), 3798. https://doi.org/10.3390/app11093798