Real-Time Psychological Stress Detection According to ECG Using Deep Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiments and Data Acquisition
2.2. Conventional Methods
2.3. The Proposed Network
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Beanland, V.; Fitzharris, M.; Young, K.L. Driver inattention and driver distraction in serious casualty crashes: Data from the Australian National Crash In-depth Study. Accid. Anal. Prev. 2013, 54, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Sauter, S.L.; Murphy, L.R.; Hurrell, J.J. Prevention of work-related psychological disorders: A national strategy proposed by the National Institute for Occupational Safety and Health (NIOSH). Am. Psychol. 1990, 45, 1146. [Google Scholar] [CrossRef] [PubMed]
- Hillebrandt, J. Work-Related Stress and Organizational Level Interventions Addressing the Problem at Source; GRIN: München, Germany, 2008. [Google Scholar]
- Ebner-Priemer, U.W.; Trull, T.J. Ecological momentary assessment of mood disorders and mood dysregulation. Psychol. Assess. 2009, 21, 463–475. [Google Scholar] [CrossRef] [PubMed]
- Spruijt-Metz, D.; Nilsen, W. Dynamic Models of Behavior for Just-in-Time Adaptive Interventions. IEEE Pervasive Comput. 2014, 13, 13–17. [Google Scholar] [CrossRef]
- Tsigos, C.; Chrousos, G.P. Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J. Psychosomat. Res. 2002, 53, 865–871. [Google Scholar] [CrossRef] [Green Version]
- Electrophysiology. Task Force of the European Society of Cardiology the North American Society of Pacing. Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Circulation 1996, 93, 1043–1065. [Google Scholar] [CrossRef] [Green Version]
- Hovsepian, K.; Al’Absi, M.; Ertin, E.; Kamarck, T.; Nakajima, M.; Kumar, S. CStress: Towards a gold standard for continuous stress assessment in the mobile environment. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp ’15). Association for Computing Machinery, New York, NY, USA, 10 September 2015; pp. 493–504. [Google Scholar] [CrossRef] [Green Version]
- Winata, G.I.; Kampman, O.P.; Fung, P. Attention-based lstm for psychological stress detection from spoken language using distant supervision. In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018; IEEE: New York, NY, USA, 2018; pp. 6204–6208. [Google Scholar]
- Jin, L.; Xue, Y.; Li, Q. Integrating human mobility and social media for adolescent psychological stress detection. In Proceedings of the International Conference on Database Systems for Advanced Applications; Springer: Cham, Switzerland, 2016; pp. 367–382. [Google Scholar]
- Lin, H.; Jia, J.; Guo, Q.; Xue, Y.; Huang, J.; Cai, L.; Feng, L. Psychological stress detection from cross-media microblog data using deep sparse neural network. In Proceedings of the 2014 IEEE International Conference on Multimedia and Expo (ICME), Chengdu, China, 14–18 July 2014; IEEE: New York, NY, USA, 2014; pp. 1–6. [Google Scholar]
- Hwang, B.; You, J.; Vaessen, T.; Myin-Germeys, I.; Park, C.; Zhang, B.-T. Deep ECGNet: An Optimal Deep Learning Framework for Monitoring Mental Stress Using Ultra Short-Term ECG Signals. Telemed. e-Health 2018, 24, 753–772. [Google Scholar] [CrossRef] [PubMed]
- Song, S.H.; Kim, D.K. Development of a stress classification model using deep belief networks for stress monitoring. Healthc. Inform. Res. 2017, 23, 285. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Li, M.; Chen, H. Using MongoDB to implement textbook management system instead of MySQL. In Proceedings of the IEEE 3rd International Conference on Communication Software and Networks, Xi’an, China, 27–29 May 2011; IEEE: New York, NY, USA, 2011; pp. 303–305. [Google Scholar]
- Chi, X.; Liu, B.; Niu, Q.; Wu, Q. Web load balance and cache optimization design based nginx under high-concurrency environment. In Proceedings of the Third International Conference on Digital Manufacturing & Automation, Guilin, China, 31 July–2 August 2012; IEEE: New York, NY, USA, 2012; pp. 1029–1032. [Google Scholar]
- Pan, L.; Lee, S.; Zhang, J.; Tang, B.; Zhai, C.; Jiang, J.H.; Wang, W.; Bao, Q.; Qi, M.; Kubar, T.L.; et al. Software architecture and design of the web services facilitating climate model diagnostic analysis. In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 14 December 2015. IN31A-1753. [Google Scholar]
- Dedovic, K.; Renwick, R.; Mahani, N.K.; Engert, V.; Lupien, S.J.; Lupien, J.C. The Montreal Imaging Stress Task: Using functional imaging to investigate the effects of perceiving and processing psychosocial stress in the human brain. J. Psychiatr. Neurosci. 2005, 30, 319. [Google Scholar]
- Cella, D.F.; Perry, S.W. Reliability and concurrent validity of three visual-analogue mood scales. Psychol. Rep. 1986, 59, 827–833. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Tompkins, W.J. A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 1985, 3, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Piccirillo, G.; Vetta, F.; Fimognari, F.L.; Ronzoni, S.; Lama, J.; Cacciafesta, M.; Marigliano, V. Power spectral analysis of heart rate variability in obese subjects: Evidence of decreased cardiac sympathetic responsiveness. Int. J. Obes. Relat. Metab. Disord. 1996, 20, 825–829. [Google Scholar] [PubMed]
- Chen, T.; He, T.; Benesty, M.; Khotilovich, V.; Tang, Y.; Cho, H. Xgboost: Extreme Gradient Boosting, R Package Version. 0.4-2; 2015. Available online: https://mran.microsoft.com/web/packages/xgboost/vignettes/xgboost.pdf (accessed on 23 April 2021).
- Lemeshow, S. A review of goodness of fit statistics for use in the development of logistic regression models. Am. J. Epidemiol. 1982, 115, 92–106. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Liu, Z. Parameter selection in SVM with RBF kernel function. J. Zhejiang Univ.-Sci. B 2007, 85, 1–4. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems—Volume 1 (NIPS’12), Lake Tahoe, NV, USA, 3–6 December 2012; Curran Associates Inc.: Red Hook, NY, USA, 2012; pp. 1097–1105. [Google Scholar]
- Williams, G.; Baxter, R.; He, H.; Hawkins, S.; Gu, L. A comparative study of RNN for outlier detection in data mining. In Proceedings of the IEEE International Conference on Data Mining, Maebashi City, Japan, 9–12 December 2002; pp. 709–712. [Google Scholar]
- Nguyen, N.K.; Le, A.C.; Pham, H.T. Deep bi-directional long short-term memory neural networks for sentiment analysis of social data. In Proceedings of the International Symposium on Integrated Uncertainty in Knowledge Modelling and Decision Making; Springer: Cham, Switzerland, 2016; pp. 255–268. [Google Scholar]
- Huan, J.; Ma, S.; Zhang, C.H. Adaptive LASSO for sparse high-dimensional regression. Stat. Sin. 2006, 18, 1603–1618. [Google Scholar]
Features | Machine Learning Methods | |
---|---|---|
Probabilistic Model | Non-Probabilistic Model | |
RR-interval’s statistic features | Decision Tree, Logistic regression, Naïve Bayes byes, Random forest, XG-boost | K-Nearest Neighbors, Ada Boost, Linear-SVM, RBF-SVM |
Algorithms | Accuracy | Recall | Specificity |
---|---|---|---|
XGboost | 0.620 | 0.517 | 0.769 |
Logistic | 0.667 | 0.564 | 0.792 |
LinearSVM | 0.676 | 0.604 | 0.784 |
Randomforest | 0.649 | 0.559 | 0.837 |
Decision Tree | 0.636 | 0.523 | 0.816 |
Bayes | 0.666 | 0.681 | 0.829 |
Gauss SVM | 0.676 | 0.459 | 0.799 |
KNN | 0.636 | 0.581 | 0.834 |
Adaboost | 0.600 | 0.527 | 0.830 |
Average | 0.647 | 0.557 | 0.810 |
Algorithms | Accuracy | Recall | Specificity |
---|---|---|---|
XGboost | 0.637 | 0.492 | 0.765 |
Logistic | 0.614 | 0.462 | 0.760 |
LinearSVM | 0.624 | 0.468 | 0.748 |
Randomforest | 0.502 | 0.424 | 0.708 |
Decision Tree | 0.482 | 0.407 | 0.694 |
Bayes | 0.459 | 0.497 | 0.741 |
Gauss SVM | 0.632 | 0.492 | 0.747 |
KNN | 0.575 | 0.483 | 0.755 |
Adaboost | 0.547 | 0.393 | 0.667 |
Average | 0.563 | 0.457 | 0.731 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, P.; Li, F.; Zhao, R.; Zhou, R.; Du, L.; Zhao, Z.; Chen, X.; Fang, Z. Real-Time Psychological Stress Detection According to ECG Using Deep Learning. Appl. Sci. 2021, 11, 3838. https://doi.org/10.3390/app11093838
Zhang P, Li F, Zhao R, Zhou R, Du L, Zhao Z, Chen X, Fang Z. Real-Time Psychological Stress Detection According to ECG Using Deep Learning. Applied Sciences. 2021; 11(9):3838. https://doi.org/10.3390/app11093838
Chicago/Turabian StyleZhang, Pengfei, Fenghua Li, Rongjian Zhao, Ruishi Zhou, Lidong Du, Zhan Zhao, Xianxiang Chen, and Zhen Fang. 2021. "Real-Time Psychological Stress Detection According to ECG Using Deep Learning" Applied Sciences 11, no. 9: 3838. https://doi.org/10.3390/app11093838
APA StyleZhang, P., Li, F., Zhao, R., Zhou, R., Du, L., Zhao, Z., Chen, X., & Fang, Z. (2021). Real-Time Psychological Stress Detection According to ECG Using Deep Learning. Applied Sciences, 11(9), 3838. https://doi.org/10.3390/app11093838