Effects of Spontaneous Neural Activity during Learning Football Juggling—A Randomized Control Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Subjects
2.3. Procedure
2.4. Physical Measurement
2.5. Learning Program
2.6. MRI Acquisition
3. Statistical Analysis
4. Results
4.1. Participant Characteristics
4.2. Spontaneous Nerve Activity
5. Discussion
5.1. Spontaneous Nerve Activity
5.2. Strengths and Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Gaetano, R. Motor learning and didactics into physical education and sport documents in middle school-first cycle of education in Italy. J. Phys. Educ. Sport 2012, 12, 157. [Google Scholar]
- Weigelt, C.; Williams, A.; Wingrove, T.; Scott, M. Transfer and motor skill learning in association football. Ergonomics 2000, 43, 1698–1707. [Google Scholar] [CrossRef] [PubMed]
- Wei, G.; Luo, J. Sport expert’s motor imagery: Functional imaging of professional motor skills and simple motor skills. Brain Res. 2010, 1341, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Niu, C.; Cohen, A.D.; Wen, X.; Chen, Z.; Lin, P.; Liu, X.; Menze, B.H.; Wiestler, B.; Wang, Y.; Zhang, M. Modeling motor task activation from resting-state fMRI using machine learning in individual subjects. Brain Imaging Behav. 2020, 15, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Hirano, M.; Kubota, S.; Morishita, T.; Uehara, K.; Fujimoto, S.; Funase, K. Long-term practice induced plasticity in the primary motor cortex innervating the ankle flexor in football juggling experts. Mot. Control 2014, 18, 310–321. [Google Scholar] [CrossRef]
- Green, C.S.; Bavelier, D. Exercising your brain: A review of human brain plasticity and training-induced learning. Psychol. Aging 2008, 23, 692. [Google Scholar] [CrossRef] [Green Version]
- Shea, C.H.; Wulf, G. Enhancing motor learning through external-focus instructions and feedback. Hum. Mov. Sci. 1999, 18, 553–571. [Google Scholar] [CrossRef]
- Kim, J.J.; Cunnington, R.; Kirby, J.N. The neurophysiological basis of compassion: An fMRI meta-analysis of compassion and its related neural processes. Neurosci. Biobehav. Rev. 2020, 108, 112–123. [Google Scholar] [CrossRef]
- Berchicci, M.; Quinzi, F.; Dainese, A.; Di Russo, F. Time-source of neural plasticity in complex bimanual coordinative tasks: Juggling. Behav. Brain Res. 2017, 328, 87–94. [Google Scholar] [CrossRef]
- Calmels, C. Neural correlates of motor expertise: Extensive motor training and cortical changes. Brain Res. 2020, 1739, 146323. [Google Scholar] [CrossRef]
- Caceres, A.; Hall, D.L.; Zelaya, F.O.; Williams, S.C.; Mehta, M.A. Measuring fMRI reliability with the intra-class correlation coefficient. NeuroImage 2009, 45, 758–768. [Google Scholar] [CrossRef]
- Bennett, C.M.; Miller, M.B. fMRI reliability: Influences of task and experimental design. Cogn. Affect. Behav. Neurosci. 2013, 13, 690–702. [Google Scholar] [CrossRef]
- Wang, J.-J.; Chen, X.; Sah, S.; Zeng, C.; Li, Y.-M.; Li, N.; Liu, M.-Q.; Du, S.-L. Amplitude of low-frequency fluctuation (ALFF) and fractional ALFF in migraine patients: A resting-state functional MRI study. Clin. Radiol. 2016, 71, 558–564. [Google Scholar] [CrossRef] [PubMed]
- Zou, Q.-H.; Zhu, C.-Z.; Yang, Y.; Zuo, X.-N.; Long, X.-Y.; Cao, Q.-J.; Wang, Y.-F.; Zang, Y.-F. An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: Fractional ALFF. J. Neurosci. Methods 2008, 172, 137–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guerra-Carrillo, B.; Mackey, A.P.; Bunge, S.A. Resting-state fMRI: A window into human brain plasticity. Neuroscientist 2014, 20, 522–533. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Narayana, S.; Robin, D.A.; Fox, P.T.; Xiong, J. Changes occur in resting state network of motor system during 4 weeks of motor skill learning. NeuroImage 2011, 58, 226–233. [Google Scholar] [CrossRef] [Green Version]
- Lefebvre, S.; Dricot, L.; Gradkowski, W.; Laloux, P.; Vandermeeren, Y. Brain activations underlying different patterns of performance improvement during early motor skill learning. NeuroImage 2012, 62, 290–299. [Google Scholar] [CrossRef]
- Alesi, M.; Bianco, A.; Padulo, J.; Luppina, G.; Petrucci, M.; Paoli, A.; Palma, A.; Pepi, A. Motor and cognitive growth following a Football Training Program. Front. Psychol. 2015, 6, 1627. [Google Scholar] [CrossRef] [Green Version]
- Hou, W. A comparison of attention between outstanding young female soccer athletes and ordinary female middle-school students: Constructing a distinction equation based on parameter differences. Chin. J. Tissue Eng. Res. 2007, 7. [Google Scholar]
- Bech, P.; Allerup, P.; Maier, W.; Albus, M.; Lavori, P.; Ayuso, J. The Hamilton Scales and the Hopkins Symptom Checklist (SCL–90). Br. J. Psychiatry 1992, 160, 206–211. [Google Scholar] [CrossRef]
- Raven, J.C.; Court, J.H. Raven’s Progressive Matrices and Vocabulary Scales; Oxford pyschologists Press: Oxford, UK, 1998; Volume 759. [Google Scholar]
- Li, X.-T. The distribution of left and right handedness in Chinese people. Acta Psychol. Sin. 1983, 15, 27–35. [Google Scholar]
- Jiao, T.; Yong-Hong, M.; Ming-Juan, S.; Jing, L.; Ke, M.; ZHANG, R.-Q. Survey on Mental Health Status of Urban Community Residents in Xi’an Based on SCL-90 Psychological Scale. Soc. Sci. Educ. Hum. Sci 2019. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.-C. Standardization research on Raven’s standard progressive matrices in China. Acta Psychol. Sin. 1989, 21, 3–11. [Google Scholar]
- Bilker, W.B.; Hansen, J.A.; Brensinger, C.M.; Richard, J.; Gur, R.E.; Gur, R.C. Development of abbreviated nine-item forms of the Raven’s standard progressive matrices test. Assessment 2012, 19, 354–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taubert, M.; Draganski, B.; Anwander, A.; Müller, K.; Horstmann, A.; Villringer, A.; Ragert, P. Dynamic properties of human brain structure: Learning-related changes in cortical areas and associated fiber connections. J. Neurosci. 2010, 30, 11670–11677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu-Feng, Z.; Yong, H.; Chao-Zhe, Z.; Qing-Jiu, C.; Man-Qiu, S.; Meng, L.; Yu-Feng, W. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev. 2007, 29, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Yin, Y.; Li, L.; Jin, C.; Hu, X.; Duan, L.; Eyler, L.T.; Gong, Q.; Song, M.; Jiang, T.; Liao, M. Abnormal baseline brain activity in posttraumatic stress disorder: A resting-state functional magnetic resonance imaging study. Neurosci. Lett. 2011, 498, 185–189. [Google Scholar] [CrossRef]
- Di, X.; Zhu, S.; Jin, H.; Wang, P.; Ye, Z.; Zhou, K.; Zhuo, Y.; Rao, H. Altered resting brain function and structure in professional badminton players. Brain Connect. 2012, 2, 225–233. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Han, J.K.; Kim, B.-N.; Han, D.H. Brain networks governing the golf swing in professional golfers. J. Sports Sci. 2015, 33, 1980–1987. [Google Scholar] [CrossRef]
- Tokuda, I.T.; Hoang, H.; Kawato, M. New insights into olivo-cerebellar circuits for learning from a small training sample. Curr. Opin. Neurobiol. 2017, 46, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Daskalakis, Z.J.; Paradiso, G.O.; Christensen, B.K.; Fitzgerald, P.B.; Gunraj, C.; Chen, R. Exploring the connectivity between the cerebellum and motor cortex in humans. J. Physiol. 2004, 557, 689–700. [Google Scholar] [CrossRef] [PubMed]
- Gordon, A.; Lee, J.-H.; Flament, D.; Ugurbil, K.; Ebner, T.J. Functional magnetic resonance imaging of motor, sensory, and posterior parietal cortical areas during performance of sequential typing movements. Exp. Brain Res. 1998, 121, 153–166. [Google Scholar] [CrossRef] [PubMed]
- Bloedel, J.R.; Bracha, V. Duality of cerebellar motor and cognitive functions. Int. Rev. Neurobiol. 1997, 41, 613–634. [Google Scholar]
- Sanes, J.N.; Dimitrov, B.; Hallett, M. Motor learning in patients with cerebellar dysfunction. Brain 1990, 113, 103–120. [Google Scholar] [CrossRef]
- Appollonio, I.; Grafman, J.; Schwartz, V.; Massaquoi, S.; Hallett, M. Memory in patients with cerebellar degeneration. Neurology 1993, 43, 1536. [Google Scholar] [CrossRef]
- Akshoomoff, N.A.; Courchesne, E. A new role for the cerebellum in cognitive operations. Behav. Neurosci. 1992, 106, 731. [Google Scholar] [CrossRef]
- Van Mier, H.I.; Petersen, S.E. Role of the cerebellum in motor cognition. Ann. N. Y. Acad. Sci. 2002, 978, 334–353. [Google Scholar] [CrossRef]
FJ Group | Control Group | |
---|---|---|
Age (years) | 18.24 ± 0.55 | 18.27 ± 0.46 |
Gender (males/females) | 25/12 | 15/7 |
BMI | 20.65 ± 2.95 | 21.17 ± 2.79 |
Strength (cm) | 1.96 ± 0.26 | 2.05 ± 0.41 |
Speed (s) | 7.93 ± 0.75 | 7.79 ± 0.86 |
Flexibility (cm) | 13.18 ± 7.31 | 13.56 ± 7.71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, D.; Liu, M.; Klich, S.; Zhu, L.; Dong, X.; Xiong, X.; Chen, A. Effects of Spontaneous Neural Activity during Learning Football Juggling—A Randomized Control Trial. Appl. Sci. 2021, 11, 4079. https://doi.org/10.3390/app11094079
Chen D, Liu M, Klich S, Zhu L, Dong X, Xiong X, Chen A. Effects of Spontaneous Neural Activity during Learning Football Juggling—A Randomized Control Trial. Applied Sciences. 2021; 11(9):4079. https://doi.org/10.3390/app11094079
Chicago/Turabian StyleChen, Dandan, Min Liu, Sebastian Klich, Lina Zhu, Xiaoxiao Dong, Xuan Xiong, and Aiguo Chen. 2021. "Effects of Spontaneous Neural Activity during Learning Football Juggling—A Randomized Control Trial" Applied Sciences 11, no. 9: 4079. https://doi.org/10.3390/app11094079