Soil Erosion Assessment and Prediction in Urban Landscapes: A New G2 Model Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Random Forest Method for Land Cover Classification
2.4. Soil Erosion Using the G2 Model
2.4.1. Rainfall Erosivity (Factor R)
2.4.2. Vegetation Retention (Factor V)
2.4.3. Soil Erodibility (Factor S)
2.4.4. Terrain Influence (Factor T)
2.4.5. Landscape Effect (L)
3. Results
3.1. Land Cover Accuracy Assessment and Change Analysis
3.2. G2 Model Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jain, M.K.; Das, D. Estimation of sediment yield and areas of soil erosion and deposition for watershed prioritization using GIS and remote sensing. Water Resour. Manag. 2010, 24, 2091–2112. [Google Scholar] [CrossRef]
- Milliman, J.D.; Syvitski, J.P. Geomorphic/tectonic control of sediment discharge to the ocean: The importance of small mountainous rivers. J. Geol. 1992, 100, 525–544. [Google Scholar] [CrossRef]
- Zhang, X.; Cao, W.; Guo, Q.; Wu, S. Effects of landuse change on surface runoff and sediment yield at different watershed scales on the Loess Plateau. Int. J. Sediment Res. 2010, 25, 283–293. [Google Scholar] [CrossRef]
- Zhu, C.; Li, Y. Long-Term Hydrological Impacts of Land Use/Land Cover Change from 1984 to 2010 in the Little River Watershed, Tennessee. Int. Soil Water Conserv. Res. 2014, 2, 11–21. [Google Scholar] [CrossRef] [Green Version]
- Bennett, H.H. Elements of Soil Conservation; McGraw-Hill Book Company, Inc.: New York, NY, USA, 1947; 406p. [Google Scholar] [CrossRef]
- Ahmadi, H. Applied Geomorphology (Water Erosion)-Google Scholar. Available online: https://scholar.google.com/scholar?hl=fr&as_sdt=0,5&cluster=9947268861899941313 (accessed on 18 April 2021).
- Zhang, W.; Zhou, J.; Feng, G.; Weindorf, D.C.; Hu, G.; Sheng, J. Characteristics of water erosion and conservation practice in arid regions of Central Asia: Xinjiang Province, China as an example. Int. Soil Water Conserv. Res. 2015, 3, 97–111. [Google Scholar] [CrossRef] [Green Version]
- Lal, R. Soil degradation by erosion. Land Degrad. Dev. 2001, 12, 519–539. [Google Scholar] [CrossRef]
- Pimentel, D.; Kounang, N. Ecology of soil erosion in ecosystems. Ecosystems 1998, 1, 416–426. [Google Scholar] [CrossRef]
- Pimentel, D. Soil erosion: A food and environmental threat. Environ. Dev. Sustain. 2006, 8, 119–137. [Google Scholar] [CrossRef]
- Shikangalah, R.N.; Jeltsch, F.; Blaum, N.; Mueller, E.N. A review on urban soil water erosion. J. Stud. Humanit. Soc. Sci. 2016, 5, 163–178. [Google Scholar]
- Radić, B.; Gavrilović, S. Natural Habitat Loss: Causes and Implications of Structural and Functional Changes; Springer: Cham, Switzerland, 2020; pp. 1–14. Available online: https://link.springer.com/referenceworkentry/10.1007/978-3-319-71065-5_6-1 (accessed on 2 April 2020).
- Kundzewicz, Z. Flood risk and vulnerability in the changing climate. Ann. Wars. Univ. Life Sci. SGGW Land Reclam. 2008, 39, 21–31. [Google Scholar] [CrossRef]
- Kusky, M.T. Encyclopedia of Earth and Space Science; Science Encyclopedia; Katherine, E.C., Ed.; Facts on File: New York, NY, USA, 2020; ISBN 9780816070053. Available online: https://www.amazon.com/Encyclopedia-Earth-Space-Science-Set/dp/0816070059 (accessed on 24 March 2021).
- Pribadi, D.O.; Vollmer, D.; Pauleit, S. Impact of peri-urban agriculture on runoff and soil erosion in the rapidly developing metropolitan area of Jakarta, Indonesia. Reg. Environ. Chang. 2018, 18, 2129–2143. [Google Scholar] [CrossRef]
- Szendreine-Koren, E.; Nemeskeri, I. Water Management of forest soils below different soil types. Carpathian J. Earth Environ. Sci. 2007, 2, 17–24. [Google Scholar]
- Ristić, R.; Kostadinov, S.; Abolmasov, B.; Dragićević, S.; Trivan, G.; Radić, B.; Trifunović, M.; Radosavljević, Z. Torrential floods and town and country planning in Serbia. Nat. Hazards Earth Syst. Sci. 2012, 12, 23–35. [Google Scholar] [CrossRef]
- Herslund, L.B.; Jalayer, F.; Jean-Baptiste, N.; Jørgensen, G.; Kabisch, S.; Kombe, W.; Lindley, S.; Nyed, P.K.; Pauleit, S.; Printz, A.; et al. A multi-dimensional assessment of urban vulnerability to climate change in Sub-Saharan Africa. Nat. Hazards 2016, 82, 149–172. [Google Scholar] [CrossRef]
- de Vente, J.; Poesen, J. Predicting soil erosion and sediment yield at the basin scale: Scale issues and semi-quantitative models. Earth Sci. Rev. 2005, 71, 95–125. [Google Scholar] [CrossRef]
- Foster, G.R. Advances in wind and water erosion prediction. J. Soil Water Conserv. 1991, 46, 27–29. [Google Scholar]
- Laflen, J.M.; Lane, L.J.; Foster, G. WEPP: A new generation of erosion prediction technology. J. Soil Water Conserv. 1991, 46, 34–38. [Google Scholar]
- Boardman, J. Soil erosion science: Reflections on the limitations of current approaches. Catena 2006, 68, 73–86. [Google Scholar] [CrossRef]
- Renschler, C.S.; Harbor, J. Soil erosion assessment tools from point to regional scales—The role of geomorphologists in land management research and implementation. Geomorphology 2002, 47, 189–209. [Google Scholar] [CrossRef]
- Renschler, C.S. Designing geo-spatial interfaces to scale process models: The GeoWEPP approach. Hydrol. Process. 2003, 17, 1005–1017. [Google Scholar] [CrossRef]
- Wu, J.; Li, H. Concepts of scale and scaling. In Scaling and Uncertainty Analysis in Ecology: Methods and Applications; Springer: Dodlerk, The Netherlands, 2006; pp. 3–15. ISBN 1402046642. Available online: http://www.informationweek.com/news/201202317 (accessed on 2 April 2020).
- Mitasova, H.; Barton, M.; Ullah, I.; Hofierka, J.; Harmon, R.S. GIS-Based Soil Erosion Modeling. In Treatise on Geomorphology; Elsevier Inc.: Amsterdam, The Netherlands, 2013; Volume 3, pp. 228–258. ISBN 9780080885223. Available online: https://www.sciencedirect.com/science/article/pii/B978012374739600052X (accessed on 2 April 2020).
- Panagos, P.; Karydas, C.G.; Gitas, I.Z.; Montanarella, L. Monthly soil erosion monitoring based on remotely sensed biophysical parameters: A case study in Strymonas river basin towards a functional pan-European service. Int. J. Digit. Earth 2012, 5, 461–487. [Google Scholar] [CrossRef]
- Panagos, P.; Christos, K.; Cristiano, B.; Ioannis, G. Seasonal monitoring of soil erosion at regional scale: An application of the G2 model in crete focusing on agricultural land uses. Int. J. Appl. Earth Obs. Geoinf. 2014, 27, 147–155. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses—A Guide to Conservation Planning; United States Department of Agriculture: Washington, DC, USA, 1978. Available online: https://naldc.nal.usda.gov/download/CAT79706928/PDF (accessed on 5 March 2021).
- Renard, K.; Foster, G.; Weesies, G.; McCool, D.; Yoder, D. Predicting soil erosion by water: A guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). In Agriculture Handbook No. 703; United States Department of Agriculture: Washington, DC, USA, 1997. Available online: https://www.ars.usda.gov/ARSUserFiles/64080530/RUSLE/AH_703.pdf (accessed on 12 March 2021).
- Gavrilović, S. Engineering of Torrents and Erosion; Journal of Construction (Special Issue): Belgrade, Yugoslavia, 1972. (In Serbia) [Google Scholar]
- Karydas, C.G.; Zdruli, P.; Koci, S.; Sallaku, F. Monthly Time-Step Erosion Risk Monitoring of Ishmi-Erzeni Watershed, Albania, Using the G2 Model. Environ. Model. Assess. 2015, 20, 657–672. [Google Scholar] [CrossRef]
- Zdruli, P.; Karydas, C.G.; Dedaj, K.; Salillari, I.; Cela, F.; Lushaj, S.; Panagos, P. High resolution spatiotemporal analysis of erosion risk per land cover category in Korçe region, Albania. Earth Sci. Inform. 2016, 9, 481–495. [Google Scholar] [CrossRef]
- Karydas, C.G.; Panagos, P. Modelling monthly soil losses and sediment yields in Cyprus. Int. J. Digit. Earth 2016, 9, 766–787. [Google Scholar] [CrossRef]
- Artun, O.; Dinc, A.O.; Satir, O. Estimation of soil losses using various soil erosion models in a sample plot in Mediterranean part of Turkey. Fresenius Environ. Bull. 2017, 26, 3385–3394. [Google Scholar]
- Halecki, W.; Kruk, E.; Ryczek, M. Evaluation of water erosion at a mountain catchment in Poland using the G2 model. Catena 2018, 164, 116–124. [Google Scholar] [CrossRef]
- Karydas, C.; Bouarour, O.; Zdruli, P. Mapping Spatio-Temporal Soil Erosion Patterns in the Candelaro River Basin, Italy, Using the G2 Model with Sentinel2 Imagery. Geosciences 2020, 10, 89. [Google Scholar] [CrossRef] [Green Version]
- Antonović, G.; Živanović, Ž.; Bogdanović, M.; Ćorović, R.; Trifunović, M. Soils of South-Eastern Srem; City Geodetic Authority: Belgrade, Yugoslavia, 1976.
- Antonović, G.; Živanović, Ž.; Bogdanović, M.; Ćorović, R.; Trifunović, M. Soils in the Area of Belgrade South of the Sava and Danube; City Geodetic Authority: Belgrade, Yugoslavia, 1976.
- Đurđević, V.; Vuković, A.; Vujadinović-Mandić, M. Climate Changes Observed in Serbia and Future Climate Projections Based on Different Scenarios of Future Emissions. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjp5_iY7cHvAhXI26QKHc0_AKoQFjAAegQIB-BAD&url=http%3A%2F%2Fwww.klimatskepromene.rs%2Fwp-content%2Fuploads%2F2019%2F11%2FCLIMATE-CHANGES-OBSERVED-IN-SERBIA-AND-FUTURE-CLIMATE-PROJECTIO (accessed on 15 February 2021).
- Ristić, R.; Radić, B.; Miljanović, V.; Trivan, G.; Ljujić, M.; Letić, L.; Savić, R. Blue-green corridors as a tool for mitigation of natural hazards and restoration of urbanized areas: A case study of belgrade city. Spatium 2013, 504, 18–22. [Google Scholar] [CrossRef]
- Ristić, R.; Radić, B.; Trivan, G.; Malusevic, I. “Blue-green” corridors as a tool for erosion and stream control in highly urbanized areas—Case study of Belgrade city. IAHS-AISH Proc. Rep. 2014, 363, 315–320. [Google Scholar]
- Souverijns, N.; Buchhorn, M.; Horion, S.; Fensholt, R.; Verbeeck, H.; Verbesselt, J.; Herold, M.; Tsendbazar, N.E.; Bernardino, P.N.; Somers, B.; et al. Thirty Years of Land Cover and Fraction Cover Changes over the Sudano-Sahel Using Landsat Time Series. Remote Sens. 2020, 12, 3817. [Google Scholar] [CrossRef]
- Phiri, D.; Morgenroth, J. Review Developments in Landsat Land Cover Classification Methods: A Review. Remote Sens. 2017, 9, 967. [Google Scholar] [CrossRef] [Green Version]
- Hansen, M.C.; Loveland, T.R. A review of large area monitoring of land cover change using Landsat data. Remote Sens. Environ. 2012, 122, 66–74. [Google Scholar] [CrossRef]
- Afrin, S.; Gupta, A.; Farjad, B.; Ahmed, M.R.; Achari, G.; Hassan, Q.K. Development of Land-Use/Land-Cover Maps Using Landsat-8 and MODIS Data, and Their Integration for Hydro-Ecological Applications. Sensors 2019, 19, 4891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alam, A.; Bhat, M.S.; Maheen, M. Using Landsat satellite data for assessing the land use and land cover change in Kashmir valley. GeoJournal 2019, 85, 1529–1543. [Google Scholar] [CrossRef] [Green Version]
- Fassnacht, F.E.; Schiller, C.; Kattenborn, T.; Zhao, X.; Qu, J. A Landsat-based vegetation trend product of the Tibetan Plateau for the time-period 1990–2018. Sci. Data 2019, 6, 1–11. [Google Scholar] [CrossRef]
- Cai, Y.; Liu, S.; Lin, H. Monitoring the Vegetation Dynamics in the Dongting Lake Wetland from 2000 to 2019 Using the BEAST Algorithm Based on Dense Landsat Time Series. Appl. Sci. 2020, 10, 4209. [Google Scholar] [CrossRef]
- Lin, L.; Hao, Z.; Post, C.J.; Mikhailova, E.A.; Yu, K.; Yang, L.; Liu, J. Monitoring land cover change on a rapidly urbanizing island using google earth engine. Appl. Sci. 2020, 10, 7336. [Google Scholar] [CrossRef]
- Schultz, M.; Clevers, J.G.; Carter, S.; Verbesselt, J.; Avitabile, V.; Quang, H.V.; Herold, M. Performance of vegetation indices from Landsat time series in deforestation monitoring. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 318–327. [Google Scholar] [CrossRef]
- Wagle, N.; Acharya, T.D.; Kolluru, V.; Huang, H.; Lee, D.H. Multi-temporal land cover change mapping using google earth engine and ensemble learning methods. Appl. Sci. 2020, 10, 8083. [Google Scholar] [CrossRef]
- Carreño-Conde, F.; Sipols, A.E.; Simón, C.; Mostaza-Colado, D. A forecast model applied to monitor crops dynamics using vegetation indices (Ndvi). Appl. Sci. 2021, 11, 1859. [Google Scholar] [CrossRef]
- Wiesmeier, M.; Barthold, F.; Blank, B.; Kögel-Knabner, I. Digital mapping of soil organic matter stocks using Random Forest modeling in a semi-arid steppe ecosystem. Plant Soil 2011, 340, 7–24. [Google Scholar] [CrossRef]
- Ballabio, C.; Jiskra, M.; Osterwalder, S.; Borrelli, P.; Montanarella, L.; Panagos, P. A spatial assessment of mercury content in the European Union topsoil. Sci. Total Environ. 2021, 769, 144755. [Google Scholar] [CrossRef] [PubMed]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Louis, J.; Debaecker, V.; Pflug, B.; Main-Knorn, M.; Bieniarz, J.; Mueller-Wilm, U.; Cadau, E.; Gascon, F. Sentinel-2 SEN2COR: L2A processor for users. Eur. Sp. Agency 2016, SP-740, 9–13. [Google Scholar]
- Thanh Noi, P.; Kappas, M. Comparison of Random Forest, k-Nearest Neighbor, and Support Vector Machine Classifiers for Land Cover Classification Using Sentinel-2 Imagery. Sensors 2017, 18, 18. [Google Scholar] [CrossRef] [Green Version]
- Morgan, R.P. Soil Erosion and Conservation, 3rd ed.; National Soil Resources Institute, Cranfield University: Bedford, UK, 2005; Available online: https://www.wiley.com/en-us/Soil+Erosion+and+Conservation%2C+3rd+Edition-p-9781405117814 (accessed on 15 February 2021).
- Van der Knijff, J.M.; Jones, R.J.; Montanarella, L. Assessment in Italy Soil Erosion Risk. EUR 19044 EN; The Official Publications Office of the European Communities: Luxembourg, 2000. [Google Scholar]
- Grimm, M.; Jones, R.J.; Rusco, E.; Montanarella, L. Soil erosion risk in Italy: A revised USLE approach. Eur. Soil Bur. Res. Rep. 2003, 11, 23. [Google Scholar]
- Perović, V.; Kadović, R.; Djurdjević, V.; Braunović, S.; Čakmak, D.; Mitrović, M.; Pavlović, P. Effects of changes in climate and land use on soil erosion: A case study of the Vranjska Valley, Serbia. Reg. Environ. Chang. 2019, 19, 1035–1046. [Google Scholar] [CrossRef]
- Panagos, P.; Ballabio, C.; Borrelli, P.; Meusburger, K.; Klik, A.; Rousseva, S.; Tadić, M.P.; Michaelides, S.; Hrabalíková, M.; Olsen, P.; et al. Rainfall erosivity in Europe. Sci. Total Environ. 2015, 511, 801–814. [Google Scholar] [CrossRef] [Green Version]
- Bezak, N.; Ballabio, C.; Mikoš, M.; Petan, S.; Borrelli, P.; Panagos, P. Reconstruction of past rainfall erosivity and trend detection based on the REDES database and reanalysis rainfall. J. Hydrol. 2020, 590, 125372. [Google Scholar] [CrossRef]
- Karydas, C.G.; Panagos, P. The G2 erosion model: An algorithm for month-time step assessments. Environ. Res. 2018, 161, 256–267. [Google Scholar] [CrossRef]
- Carlson, T.N.; Ripley, D.A. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens. Environ. 1997, 62, 241–252. [Google Scholar] [CrossRef]
- Gutman, G.; Ignatov, A. The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. Int. J. Remote Sens. 1998, 19, 1533–1543. [Google Scholar] [CrossRef]
- Moore, I.D.; Burch, G.J. Physical Basis of the Length-slope Factor in the Universal Soil Loss Equation. Soil Sci. Soc. Am. J. 1986, 50, 1294–1298. [Google Scholar] [CrossRef]
- Radić, B. Erosion as Factor of Landscape Degradation in Serbian Ski-Resorts. Ph.D. Thesis, Faculty of Forestry, University of Belgrade, Belgrade, Serbia, 2014. [Google Scholar]
- Abdi, A.M. Land cover and land use classification performance of machine learning algorithms in a boreal landscape using Sentinel-2 data. GIScience Remote Sens. 2020, 57, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Niculescu, S.; Talab Ou Ali, H.; Billey, A. Random forest classification using Sentinel-1 and Sentinel-2 series for vegetation monitoring in the Pays de Brest (France). In Remote Sensing for Agriculture, Ecosystems, and Hydrology XX; Neale, C.M., Maltese, A., Eds.; SPIE: Washington, DC, USA, 2018; Volume 10783, p. 6. Available online: https://spie.org/Publications/Proceedings/Paper/10.1117/12.2325546?SSO=1 (accessed on 8 March 2021).
- Deering, D.W. Rangeland Reflectance Characteristics Measured by Aircraft and Spacecraft Sensors; Texas A&M University Libraries: College Station, TX, USA, 1978; Available online: https://oaktrust.library.tamu.edu/handle/1969.1/DISSERTATIONS-253780 (accessed on 9 March 2021).
- Didan, K.; Munoz, A.B.; Solano, R.; Huete, A. MODIS Vegetation Index User’s Guide (Collection 6); University of Arizona: Tucson, AZ, USA, 2015; p. 31. Available online: https://vip.arizona.edu/documents/MODIS/MODIS_VI_UsersGuide_June_2015_C6.pdf (accessed on 12 March 2021).
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Congalton, R.G. A review of assessing the accuracy of classification of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Goodchild, M.F.; Guoqing, S.U.; Shiren, Y. Development and test of an error model for categorical data. Int. J. Geogr. Inf. Syst. 1992, 6, 87–103. [Google Scholar] [CrossRef]
- Khorram, S.; van der Wiele, C.F.; Koch, F.H.; Nelson, S.A.; Potts, M.D. Data Acquisition. In Principles of Applied Remote Sensing; Springer International Publishing: Cham, Switzerland, 2016; pp. 21–67. [Google Scholar]
- Paine, D.P.; Kiser, J.D. Aerial Photography and Image Interpretation, 2nd ed.; John Wiley, Inc.: New York, NY, USA, 2003. [Google Scholar]
- Levin, N. Fundamentals of Remote Sensing; Remote Sensing Laboratory, Geography Department, Tel Aviv University: Tel Aviv, Israel, 1999. [Google Scholar]
- Tempfli, K.; Huurneman, G.C.; Bakker, W.H.; Janssen, L.L.; Feringa, W.F.; Gieske, A.S.; Grabmaier, K.A.; Hecker, C.A.; Horn, J.A.; Kerle, N.; et al. Principles of Remote Sensing: An Introductory Textbook; International Institute for Geo-Information Science and Earth Observation: Enschede, The Netherlands, 2009; ISBN 978-90-6164-270-1. Available online: https://research.utwente.nl/en/publications/principles-of-remote-sensing-an-introductory-textbook-4 (accessed on 12 March 2021).
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Chen, T.; Ren, L.; Yuan, F.; Yang, X.; Jiang, S.; Tang, T.; Liu, Y.; Zhao, C.; Zhang, L. Comparison of spatial interpolation schemes for rainfall data and application in hydrological modeling. Water 2017, 9, 342. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Xie, X.; Liu, D.L.; Ji, F.; Wang, L. Spatial Interpolation of Daily Rainfall Data for Local Climate Impact Assessment over Greater Sydney Region. Adv. Meteorol. 2015, 2015, 563629. [Google Scholar] [CrossRef] [Green Version]
- Robinson, T.P.; Metternicht, G. Testing the performance of spatial interpolation techniques for mapping soil properties. Comput. Electron. Agric. 2006, 50, 97–108. [Google Scholar] [CrossRef]
- Scalenghe, R.; Ajmone-Marsan, F. The anthropogenic sealing of soils in urban areas. Landsc. Urban Plan. 2009, 90, 1–10. [Google Scholar] [CrossRef]
- Strahler, A.H. Introducing Physical Geography, 5th ed.; John Wiley & Sons: Chichester, UK, 2010. [Google Scholar]
- Merz, B.; Kreibich, H.; Schwarze, R.; Thieken, A. Review article “assessment of economic flood damage”. Nat. Hazards Earth Syst. Sci. 2010, 10, 1697–1724. [Google Scholar] [CrossRef]
- Gaffield, S.J.; Goo, R.L.; Richards, L.A.; Jackson, R.J. Public Health Effects of Inadequately Managed Stormwater Runoff. Am. J. Public Health 2003, 93, 1527–1533. [Google Scholar] [CrossRef]
- Poesen, J.W.; Hooke, J.M. Erosion, flooding and channel management in Mediterranean environments of southern Europe. Prog. Phys. Geogr. 1997, 21, 157–199. [Google Scholar] [CrossRef]
- Kheir, R.B. A conditional GIS-interpolation-based model for mapping soil-water erosion processes in Lebanon. Land Degrad. Dev. 2008, 19, 122–135. [Google Scholar] [CrossRef]
- Gaiser, T.; Stahr, K.; Billen, N.; Mohammad, M.A. Modeling carbon sequestration under zero tillage at the regional scale. I. The effect of soil erosion. Ecol. Model. 2008, 218, 110–120. [Google Scholar] [CrossRef]
- Karsidi, A. Spatial Analysis of Land Use/Land Cover Change Dynamics Using Remote Sensing and Geographic Information Systems: A Case Study in the Down Stream and Surroundings of the Ci Tarum Watershed/Asep Karsidi. 2004. Available online: https://digital.library.adelaide.edu.au/dspace/handle/2440/22077 (accessed on 11 March 2021).
- Turner, B.; Meyer, W.B.; Skole, D.L. Global land-use/land-cover change: Towards an integrated study. Ambio Stockh. 1994, 23, 91–95. [Google Scholar]
- Brovelli, M.A.; Fahl, F.C.; Minghini, M.; Molinari, M.E. Land user and land cover maps of Europe: A webgis platform. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences-ISPRS Archives; International Society for Photogrammetry and Remote Sensing: Christian Heipke, Germany, 2016; Volume 41, pp. 913–917. Available online: https://ui.adsabs.harvard.edu/abs/2016ISPAr41B7..913B/abstract (accessed on 12 March 2021).
Land Cover | 2001 | 2019 | ||||||
---|---|---|---|---|---|---|---|---|
Training Count | Area (km2) | Validation Count | Area (km2) | Training Count | Area (km2) | Validation Count | Area (km2) | |
Artificial surfaces | 119 | 25.40 | 9 | 1.09 | 120 | 21.80 | 12 | 0.98 |
Water bodies | 14 | 5.23 | 8 | 1.24 | 11 | 7.47 | 9 | 1.90 |
Forests | 67 | 14.08 | 11 | 2.85 | 74 | 12.42 | 15 | 3.32 |
Grasslands | 10 | 1.05 | 15 | 0.93 | 14 | 1.55 | 10 | 1.09 |
Agricultural areas | 76 | 17.88 | 16 | 1.13 | 46 | 14.09 | 15 | 0.72 |
Shrubs | 14 | 1.08 | 11 | 9.59 | 23 | 1.89 | 11 | 10.06 |
Total | 300 | 64.72 | 70 | 16.83 | 288 | 59.22 | 72 | 18.08 |
2001 | Reference [Pixels] | ||||||||
---|---|---|---|---|---|---|---|---|---|
Prediction [pixels] | Class ID | 1 | 2 | 3 | 4 | 5 | 6 | Total | UA (%) |
1 | 1477 | 0 | 0 | 0 | 0 | 0 | 1477 | 100.00 | |
2 | 0 | 2009 | 4 | 12 | 33 | 1 | 2059 | 97.57 | |
3 | 0 | 0 | 3109 | 6 | 1 | 14 | 3130 | 99.33 | |
4 | 0 | 22 | 118 | 803 | 36 | 3 | 982 | 81.77 | |
5 | 0 | 29 | 140 | 45 | 1001 | 207 | 1422 | 70.39 | |
6 | 0 | 30 | 5 | 165 | 235 | 10,686 | 11,121 | 96.09 | |
Total | 1477 | 2090 | 3376 | 1031 | 1306 | 10,911 | 20,191 | OA (%) 94.52 | |
PA (%) | 100 | 96.12 | 92.09 | 77.89 | 76.65 | 97.94 | Kappa 0.91 |
2019 | Reference [Pixels] | ||||||||
---|---|---|---|---|---|---|---|---|---|
Prediction [pixels] | Class ID | 1 | 2 | 3 | 4 | 5 | 6 | Total | UA (%) |
1 | 1087 | 2 | 0 | 0 | 0 | 0 | 1089 | 99.82 | |
2 | 0 | 76 | 0 | 10 | 0 | 0 | 86 | 88.37 | |
3 | 0 | 0 | 4646 | 40 | 5 | 10 | 4701 | 98.83 | |
4 | 0 | 14 | 99 | 1040 | 0 | 0 | 1153 | 90.20 | |
5 | 0 | 10 | 19 | 109 | 915 | 231 | 1284 | 71.26 | |
6 | 0 | 12 | 2 | 12 | 21 | 10,935 | 10,982 | 99.57 | |
Total | 1087 | 114 | 4766 | 1211 | 941 | 11,176 | 19,295 | OA (%) 96.91 | |
PA (%) | 100 | 66.67 | 97.48 | 85.88 | 97.24 | 97.84 | Kappa 0.95 |
Land Cover | 2001 | 2019 | Change in Area (km2) | Change in Area (%) |
---|---|---|---|---|
Agricultural areas | 309.10 | 251.41 | −57.69 | −18.66 |
Grasslands | 88.75 | 67.14 | −21.62 | −24.36 |
Shrubs | 77.26 | 111.07 | 33.80 | 43.75 |
Forests | 73.12 | 75.35 | 2.23 | 3.06 |
Artificial surfaces | 190.87 | 234.88 | 44.00 | 23.05 |
Water bodies | 39.40 | 38.69 | −0.71 | −1.80 |
Total | 778.51 | 778.51 | 0.0 | 25.04 |
Input Dataset | Spatial Representation | Preprocessing Procedure | G2 Model Inputs |
---|---|---|---|
Climate data | Location of the meteorological stations | IDW | Factor R |
EU-DEM | Raster (25 m) | Bilinear resampling | Factor T |
Pedological map | Polygons obtained from scanned and georeferenced map (scale 1:20,000) | Rasterization | Factor S |
Soil samples | 47 sites in study area | IDW | Factor S |
Landsat satellite images and LC maps | Raster (30 m) | / | Factor V Factor L |
Soil Loss Class t·ha−1·y−1 | 2001 | 2019 | 2001–2019 | ||||
---|---|---|---|---|---|---|---|
km2 | % | km2 | % | Variation (km2) | Change (%) | ||
Very Low | <0.05 | 331.15 | 62.90 | 299.73 | 62.26 | −31.42 | −9.49 |
Low | 0.05–1 | 7.59 | 1.44 | 7.40 | 1.54 | −0.20 | −2.62 |
Low Medium | 1–2 | 12.80 | 2.43 | 14.21 | 2.95 | 1.40 | 10.95 |
Medium | 2–5 | 28.33 | 5.38 | 38.75 | 8.05 | 10.42 | 36.78 |
High Medium | 5–10 | 63.86 | 12.13 | 58.73 | 12.20 | −5.13 | −8.04 |
High | 10–20 | 57.92 | 11.00 | 45.22 | 9.39 | −12.69 | −21.92 |
Very High | >20 | 24.81 | 4.71 | 17.36 | 3.61 | −7.45 | −30.02 |
Total | 526.46 | 100.00 | 481.39 | 100.00 | −45.07 | −8.56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polovina, S.; Radić, B.; Ristić, R.; Kovačević, J.; Milčanović, V.; Živanović, N. Soil Erosion Assessment and Prediction in Urban Landscapes: A New G2 Model Approach. Appl. Sci. 2021, 11, 4154. https://doi.org/10.3390/app11094154
Polovina S, Radić B, Ristić R, Kovačević J, Milčanović V, Živanović N. Soil Erosion Assessment and Prediction in Urban Landscapes: A New G2 Model Approach. Applied Sciences. 2021; 11(9):4154. https://doi.org/10.3390/app11094154
Chicago/Turabian StylePolovina, Siniša, Boris Radić, Ratko Ristić, Jovan Kovačević, Vukašin Milčanović, and Nikola Živanović. 2021. "Soil Erosion Assessment and Prediction in Urban Landscapes: A New G2 Model Approach" Applied Sciences 11, no. 9: 4154. https://doi.org/10.3390/app11094154
APA StylePolovina, S., Radić, B., Ristić, R., Kovačević, J., Milčanović, V., & Živanović, N. (2021). Soil Erosion Assessment and Prediction in Urban Landscapes: A New G2 Model Approach. Applied Sciences, 11(9), 4154. https://doi.org/10.3390/app11094154