Towards a Better Understanding of Nutritional and Therapeutic Effects of Honey and Their Applications in Apitherapy
Abstract
:1. Introduction
2. Nutritional Properties of Honey Corresponding to Its General and Specific Chemical Composition
2.1. General Chemical Composition of Honey
2.1.1. Carbohydrates
2.1.2. Lipids
2.1.3. Proteins
2.1.4. Vitamins
2.1.5. Minerals
2.2. Specific Chemical Composition on Honey
2.2.1. Phenolic Compounds
2.2.2. Volatile Compounds
3. Physicochemical Properties of Honey
3.1. Colour
3.2. Moisture and Water Content
3.3. Organic Acids, Acidity and pH
3.4. Ash Content and Electrical Conductivity
4. Therapeutic Effects of Honey
4.1. Antioxidant Effects
4.2. Antibacterial Effects
4.3. Antifungal Effects
4.4. Antiviral Effects
4.5. Other Honeys Properties Valuable for Apitherapy
5. Authenticity, Processing and Adulteration for Apitherapy Use
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pasupuleti, V.R.; Sammugam, L.; Ramesh, N.; Gan, S.H. Honey, Propolis, and Royal Jelly: A Comprehensive Review of Their Biological Actions and Health Benefits. Oxid. Med. Cell. Longev. 2017. [Google Scholar] [CrossRef] [PubMed]
- Papadaki, A.; Kachrimanidou, V.; Lappa, I.K.; Eriotou, E.; Sidirokastritis, N.; Kampioti, A.; Kopsahelis, N. Mediterranean Raisins/Currants as Traditional Superfoods: Processing, Health Benefits, Food Applications and Future Trends within the Bio-Economy Era. Appl. Sci. 2021, 11, 1605. [Google Scholar] [CrossRef]
- Uran, H.; Aksu, F.; Dülger Altiner, D. A Research on the Chemical and Microbiological Qualities of Honeys Sold in Istanbul. Food Sci. Technol. 2017, 37, 30–33. [Google Scholar] [CrossRef] [Green Version]
- Adaškevičiūtė, V.; Kaškonienė, V.; Kaškonas, P.; Barčauskaitė, K.; Maruška, A. Comparison of Physicochemical Properties of Bee Pollen with Other Bee Products. Biomolecules 2019, 9, 819. [Google Scholar] [CrossRef] [Green Version]
- Habryka, C.; Socha, R.; Juszczak, L. The Effect of Enriching Honey with Propolis on the Antioxidant Activity, Sensory Characteristics, and Quality Parameters. Molecules 2020, 25, 1176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aylanc, V.; Falcão, S.I.; Ertosun, S.; Vilas-Boas, M. From the Hive to the Table: Nutrition Value, Digestibility and Bioavailability of the Dietary Phytochemicals Present in the Bee Pollen and Bee Bread. Trends Food Sci. Technol. 2021, 109, 464–481. [Google Scholar] [CrossRef]
- Martinello, M.; Mutinelli, F. Antioxidant Activity in Bee Products: A Review. Antioxidants 2021, 10, 71. [Google Scholar] [CrossRef]
- Zou, P. Traditional Chinese Medicine, Food Therapy, and Hypertension Control: A Narrative Review of Chinese Literature. Am. J. Chin. Med. 2016, 44, 1579–1594. [Google Scholar] [CrossRef]
- Cianciosi, D.; Forbes-Hernández, T.Y.; Afrin, S.; Gasparrini, M.; Reboredo-Rodriguez, P.; Manna, P.P.; Zhang, J.; Lamas, L.B.; Flórez, S.M.; Toyos, P.A.; et al. Phenolic Compounds in Honey and Their Associated Health Benefits: A Review. Molecules 2018, 23, 2322. [Google Scholar] [CrossRef] [Green Version]
- Bobiş, O.; Dezmirean, D.S.; Moise, A.R. Honey and Diabetes: The Importance of Natural Simple Sugars in Diet for Preventing and Treating Different Type of Diabetes. Oxid. Med. Cell. Longev. 2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramli, N.Z.; Chin, K.Y.; Zarkasi, K.A.; Ahmad, F. A Review on the Protective Effects of Honey against Metabolic Syndrome. Nutrients 2018, 10, 1009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, H.T.L.; Panyoyai, N.; Kasapis, S.; Pang, E.; Mantri, N. Honey and Its Role in Relieving Multiple Facets of Atherosclerosis. Nutrients 2019, 11, 167. [Google Scholar] [CrossRef] [Green Version]
- Elamine, Y.; Lyoussi, B.; Miguel, M.G.; Anjos, O.; Estevinho, L.; Alaiz, M.; Girón-Calle, J.; Martín, J.; Vioque, J. Physicochemical Characteristics and Antiproliferative and Antioxidant Activities of Moroccan Zantaz Honey Rich in Methyl Syringate. Food Chem. 2021, 339. [Google Scholar] [CrossRef] [PubMed]
- Jurado-Fasoli, L.; Amaro-Gahete, F.J. Honey Intake for Preventing Cancer: Angel or Demon: Comment on: Honey and Cancer: A Mechanistic Review. Clin. Nutr. 2020, 39, 1623–1624. [Google Scholar] [CrossRef] [PubMed]
- Olas, B. Honey and Its Phenolic Compounds as an Effective Natural Medicine for Cardiovascular Diseases in Humans? Nutrients 2020, 12, 283. [Google Scholar] [CrossRef] [Green Version]
- Saraiva, A.; Carrascosa, C.; Raheem, D.; Ramos, F.; Raposo, A. Natural Sweeteners: The Relevance of Food Naturalness for Consumers, Food Security Aspects, Sustainability and Health Impacts. Int. J. Environ. Res. Public Health 2020, 17, 6285. [Google Scholar] [CrossRef] [PubMed]
- Küster-Boluda, I.; Vidal-Capilla, I. Consumer Attitudes in the Election of Functional Foods. Spanish J. Mark. ESIC 2017, 21 (S1), 65–79. [Google Scholar] [CrossRef]
- Testa, R.; Asciuto, A.; Schifani, G.; Schimmenti, E.; Migliore, G. Quality Determinants and Effect of Therapeutic Properties in Honey Consumption. An Exploratory Study on Italian Consumers. Agriculture 2019, 9, 174. [Google Scholar] [CrossRef] [Green Version]
- Vapa-Tankosić, J.; Ignjatijević, S.; Kiurski, J.; Milenković, J.; Milojević, I. Analysis of Consumers’willingness to Pay for Organic and Local Honey in Serbia. Sustainability 2020, 12, 4686. [Google Scholar] [CrossRef]
- Wojciechowska-Solis, J.; Barska, A. Exploring the Preferences of Consumers’ Organic Products in Aspects of Sustainable Consumption: The Case of the Polish Consumer. Agriculture 2021, 11, 138. [Google Scholar] [CrossRef]
- Pauliuc, D.; Dranca, F.; Oroian, M. Antioxidant Activity, Total Phenolic Content, Individual Phenolics and Physicochemical Parameters Suitability for Romanian Honey Authentication. Foods 2020, 9, 306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puścion-Jakubik, A.; Borawska, M.H.; Socha, K. Modern Methods for Assessing the Quality of Bee Honey and Botanical Origin Identification. Foods 2020, 9, 1028. [Google Scholar] [CrossRef]
- De Beer, T.; Otto, M.; Pretoruis, B.; Schönfeldt, H.C. Monitoring the Quality of Honey: South African Case Study. Food Chem. 2021, 343. [Google Scholar] [CrossRef] [PubMed]
- Zhu, R.; Lv, H.; Liu, T.; Yang, Y.; Wu, J.; Yan, S. Feeding Kinematics and Nectar Intake of the Honey Bee Tongue. J. Insect Behav. 2016, 29, 325–339. [Google Scholar] [CrossRef]
- Zafar, M.; Latafat, T.; Zehra, A.; Farooqui, Y. Therapeutic Properties of Honey: A Review of Literature. Res. Rev. A J. Pharmacol. 2020, 10, 41–49. [Google Scholar]
- Rossi, M.; Marrazzo, P. The Potential of Honeybee Products for Biomaterial Applications. Biomimetics 2021, 6, 6. [Google Scholar] [CrossRef] [PubMed]
- Ciucure, C.T.; Geană, E.I. Phenolic Compounds Profile and Biochemical Properties of Honeys in Relationship to the Honey Floral Sources. Phytochem. Anal. 2019, 30, 481–492. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, I.; Baptista-Silva, S.; Pintado, M.; Oliveira, A.L. Polyphenols: A Promising Avenue in Therapeutic Solutions for Wound Care. Appl. Sci. 2021, 11, 1230. [Google Scholar] [CrossRef]
- Salehnezhad, S. Characterization of Apitherapy Honeys for Medical Applications. Biomed. J. Sci. Tech. Res. 2019, 22. [Google Scholar] [CrossRef] [Green Version]
- Homrani, M.; Escuredo, O.; Rodríguez-Flores, M.S.; Fatiha, D.; Mohammed, B.; Homrani, A.; Seijo, M.C. Botanical Origin, Pollen Profile, and Physicochemical Properties of Algerian Honey from Different Bioclimatic Areas. Foods 2020, 9, 938. [Google Scholar] [CrossRef]
- Suhandy, D.; Yulia, M. The Use of UV Spectroscopy and SIMCA for the Authentication of Indonesian Honeys According to Botanical, Entomological and Geographical Origins. Molecules 2021, 26, 915. [Google Scholar] [CrossRef]
- Da Silva, P.M.; Gauche, C.; Gonzaga, L.V.; Costa, A.C.O.; Fett, R. Honey: Chemical Composition, Stability and Authenticity. Food Chem. 2016, 196, 309–323. [Google Scholar] [CrossRef] [PubMed]
- Escuredo, O.; Carmen Seijo, M. Honey: Chemical Composition, Stability and Authenticity. Foods 2019, 8, 577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, A.M.; Kunugi, H. Apitherapy for Age-Related Skeletal Muscle Dysfunction (Sarcopenia): A Review on the Effects of Royal Jelly, Propolis, and Bee Pollen. Foods 2020, 9, 1362. [Google Scholar] [CrossRef] [PubMed]
- Kavanagh, S.; Gunnoo, J.; Marques Passos, T.; Stout, J.C.; White, B. Physicochemical Properties and Phenolic Content of Honey from Different Floral Origins and from Rural versus Urban Landscapes. Food Chem. 2019, 272, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Stângaciu, S.; Mărghitaş, L.A.; Dezmirean, D.S.; Bonta, V.; Mărgăoan, R.; Bobiş, O. Quality Parameters Needed for Bee Products Used in Apitherapy. Bull. UASVM Anim. Sci. Biotechnol. 2015, 72. [Google Scholar] [CrossRef] [Green Version]
- Wehbe, R.; Frangieh, J.; Rima, M.; El Obeid, D.; Sabatier, J.M.; Fajloun, Z. Bee Venom: Overview of Main Compounds and Bioactivities for Therapeutic Interests. Molecules 2019, 24, 2997. [Google Scholar] [CrossRef] [Green Version]
- Oryan, A.; Alemzadeh, E.; Moshiri, A. Biological Properties and Therapeutic Activities of Honey in Wound Healing: A Narrative Review and Meta-Analysis. J. Tissue Viability 2016, 25, 98–118. [Google Scholar] [CrossRef]
- Martinotti, S.; Ranzato, E. Honey, Wound Repair and Regenerative Medicine. J. Funct. Biomater. 2018, 9, 34. [Google Scholar] [CrossRef] [Green Version]
- Afrin, S.; Giampieri, F.; Cianciosi, D.; Pistollato, F.; Ansary, J.; Pacetti, M.; Amici, A.; Reboredo-Rodríguez, P.; Simal-Gandara, J.; Quiles, J.L.; et al. Strawberry Tree Honey as a New Potential Functional Food. Part 1: Strawberry Tree Honey Reduces Colon Cancer Cell Proliferation and Colony Formation Ability, Inhibits Cell Cycle and Promotes Apoptosis by Regulating EGFR and MAPKs Signaling Pathways. J. Funct. Foods 2019, 57, 439–452. [Google Scholar] [CrossRef]
- Đogo Mračević, S.; Krstić, M.; Lolić, A.; Ražić, S. Comparative Study of the Chemical Composition and Biological Potential of Honey from Different Regions of Serbia. Microchem. J. 2019, 152. [Google Scholar] [CrossRef]
- Bobis, O.; Moise, A.R.; Ballesteros, I.; Reyes, E.S.; Durán, S.S.; Sánchez-Sánchez, J.; Cruz-Quintana, S.; Giampieri, F.; Battino, M.; Alvarez-Suarez, J.M. Eucalyptus Honey: Quality Parameters, Chemical Composition and Health-Promoting Properties. Food Chem. 2020. [Google Scholar] [CrossRef]
- Karabagias, I.K.; Karabournioti, S.; Karabagias, V.K.; Badeka, A.V. Palynological, Physico-Chemical and Bioactivity Parameters Determination, of a Less Common Greek Honeydew Honey: “Dryomelo”. Food Control 2020, 109. [Google Scholar] [CrossRef]
- Schmidt, C.; Eichelberger, K.; Rohm, H. New Zealand Mānuka Honey—A Review on Specific Properties and Possibilities to Distinguish Mānuka from Kānuka Honey. LWT 2021. [Google Scholar] [CrossRef]
- Swears, R.M.; Manley-Harris, M. Composition and Potential as a Prebiotic Functional Food of a Giant Willow Aphid (Tuberolachnus Salignus) Honeydew Honey Produced in New Zealand. Food Chem. 2021, 345. [Google Scholar] [CrossRef]
- Kamal, D.A.M.; Ibrahim, S.F.; Kamal, H.; Kashim, M.I.A.M.; Mokhtar, M.H. Physicochemical and Medicinal Properties of Tualang, Gelam and Kelulut Honeys: A Comprehensive Review. Nutrients 2021, 13, 197. [Google Scholar] [CrossRef]
- Terzo, S.; Mulè, F.; Amato, A. Honey and Obesity-Related Dysfunctions: A Summary on Health Benefits. J. Nutr. Biochem. 2020, 82, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Machado, A.M.; Miguel, M.G.; Vilas-Boas, M.; Figueiredo, A.C. Honey Volatiles as a Fingerprint for Botanical Origin—A Review on Their Occurrence on Monofloral Honeys. Molecules 2020, 25, 374. [Google Scholar] [CrossRef] [Green Version]
- El-Haskoury, R.; Kriaa, W.; Lyoussi, B.; Makni, M. Ceratonia Siliqua Honeys from Morocco: Physicochemical Properties, Mineral Contents, and Antioxidant Activities. J. Food Drug Anal. 2018, 26, 67–73. [Google Scholar] [CrossRef]
- Silva, C.F.; Rosalen, P.L.; Soares, J.C.; Massarioli, A.P.; Campestrini, L.H.; Semarini, R.A.; Ikegaki, M.; Alencar, S.M. Polyphenols in Brazilian Organic Honey and Their Scavenging Capacity against Reactive Oxygen and Nitrogen Species. J. Apic. Res. 2019, 59, 136–145. [Google Scholar] [CrossRef]
- Combarros-Fuertes, P.; Valencia-Barrera, R.M.; Estevinho, L.M.; Dias, L.G.; Castro, J.M.; Tornadijo, M.E.; Fresno, J.M. Spanish Honeys with Quality Brand: A Multivariate Approach to Physicochemical Parameters, Microbiological Quality, and Floral Origin. J. Apic. Res. 2019, 58, 92–103. [Google Scholar] [CrossRef] [Green Version]
- Parri, E.; Santinami, G.; Domenici, V. Front-Face Fluorescence of Honey of Different Botanic Origin: A Case Study from Tuscany (Italy). Appl. Sci. 2020, 10, 1776. [Google Scholar] [CrossRef] [Green Version]
- Machado De-Melo, A.A.; de Almeida-Muradian, L.B.; Sancho, M.T.; Pascual-Maté, A. Composición y Propiedades de La Miel de Apis Mellifera: Una Revisión. J. Apic. Res. 2017, 57, 5–37. [Google Scholar] [CrossRef]
- Fröschle, M.; Horn, H.; Spring, O. Characterization of Jatropha Curcas Honeys Originating from the Southern Highlands of Madagascar. LWT 2018, 93, 525–533. [Google Scholar] [CrossRef]
- Khan, S.U.; Anjum, S.I.; Rahman, K.; Ansari, M.J.; Khan, W.U.; Kamal, S.; Khattak, B.; Muhammad, A.; Khan, H.U. Honey: Single Food Stuff Comprises Many Drugs. Saudi J. Biol. Sci. 2018, 320–325. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Sulaiman, S.A.; Baig, A.A.; Ibrahim, M.; Liaqat, S.; Fatima, S.; Jabeen, S.; Shamim, N.; Othman, N.H. Honey as a Potential Natural Antioxidant Medicine: An Insight into Its Molecular Mechanisms of Action. Oxid. Med. Cell. Longev. 2018, 2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramsay, E.I.; Rao, S.; Madathil, L.; Hegde, S.K.; Baliga-Rao, M.P.; George, T.; Baliga, M.S. Honey in Oral Health and Care: A Mini Review. J. Oral Biosci. 2019, 61, 32–36. [Google Scholar] [CrossRef] [PubMed]
- Seraglio, S.K.T.; Silva, B.; Bergamo, G.; Brugnerotto, P.; Gonzaga, L.V.; Fett, R.; Costa, A.C.O. An Overview of Physicochemical Characteristics and Health-Promoting Properties of Honeydew Honey. Food Res. Int. 2019, 119, 44–66. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Zhao, H.; Wang, Q.; Wu, F.; Cao, W. A Novel Chinese Honey from Amorpha Fruticosa L.: Nutritional Composition and Antioxidant Capacity In Vitro. Molecules 2020, 25, 5211. [Google Scholar] [CrossRef]
- Miguel, M.G.; Antunes, M.D.; Faleiro, M.L. Honey as a Complementary Medicine. Integr. Med. Insights 2017, 12, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Santos-Buelga, C.; González-Paramás, A.M. Chemical composition of honey. In Bee Products—Chemical and Biological Properties; Alvarez-Suarez, J.M., Ed.; Springer International Publishing: Basel, Switzerland, 2017; pp. 43–82. [Google Scholar] [CrossRef]
- Jarukas, L.; Kuraite, G.; Baranauskaite, J.; Marksa, M.; Bezruk, I.; Ivanauskas, L. Optimization and Validation of the GC/FID Method for the Quantification of Fatty Acids in Bee Products. Appl. Sci. 2021, 11, 83. [Google Scholar] [CrossRef]
- Čeksteryte, V.; Navakauskiene, R.; Treigyte, G.; Jansen, E.; Kurtinaitiene, B.; Dabkevičiene, G.; Balžekas, J. Fatty Acid Profiles of Monofloral Clover Beebread and Pollen and Proteomics of Red Clover (Trifolium Pratense) Pollen. Biosci. Biotechnol. Biochem. 2016, 80, 2100–2108. [Google Scholar] [CrossRef] [Green Version]
- Muth, F.; Breslow, P.R.; Masek, P.; Leonard, A.S. A Pollen Fatty Acid Enhances Learning and Survival in Bumblebees. Behav. Ecol. 2018, 29, 1371–1379. [Google Scholar] [CrossRef]
- Cornara, L.; Biagi, M.; Xiao, J.; Burlando, B. Therapeutic Properties of Bioactive Compounds from Different Honeybee Products. Front. Pharmacol. 2017. [Google Scholar] [CrossRef] [PubMed]
- Fechner, D.C.; Moresi, A.L.; Ruiz Díaz, J.D.; Pellerano, R.G.; Vazquez, F.A. Multivariate Classification of Honeys from Corrientes (Argentina) According to Geographical Origin Based on Physicochemical Properties. Food Biosci. 2016, 15, 49–54. [Google Scholar] [CrossRef]
- Anand, S.; Pang, E.; Livanos, G.; Mantri, N. Characterization of Physico-Chemical Properties and Antioxidant Capacities of Bioactive Honey Produced from Australian Grown Agastache Rugosa and Its Correlation with Colour and Poly-Phenol Content. Molecules 2018, 23, 108. [Google Scholar] [CrossRef] [Green Version]
- Azevedo, M.S.; Valentim-Neto, P.A.; Seraglio, S.K.T.; da Luz, C.F.P.; Arisi, A.C.M.; Costa, A.C.O. Proteome Comparison for Discrimination between Honeydew and Floral Honeys from Botanical Species Mimosa Scabrella Bentham by Principal Component Analysis. J. Sci. Food Agric. 2017, 97, 4515–4519. [Google Scholar] [CrossRef]
- Karabagias, I.K.; Maia, M.; Karabagias, V.K.; Gatzias, I.; Badeka, A.V. Characterization of Eucalyptus, Chestnut and Heather Honeys from Portugal Using Multi-Parameter Analysis and Chemo-Calculus. Foods 2018, 7, 194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwiecińska-Piróg, J.; Skowron, K.; Bogiel, T.; Białucha, A.; Przekwas, J.; Gospodarek-Komkowska, E. Vitamin C in the Presence of Sub-Inhibitory Concentration of Aminoglycosides and Fluoroquinolones Alters Proteus Mirabilis Biofilm Inhibitory Rate. Antibiotics 2019, 8, 116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nayik, G.A.; Nanda, V. Physico-Chemical, Enzymatic, Mineral and Colour Characterization of Three Different Varieties of Honeys from Kashmir Valley of India with a Multivariate Approach. Pol. J. Food Nutr. Sci. 2015, 65, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Kadri, S.M.; Zaluski, R.; de Oliveira Orsi, R. Nutritional and Mineral Contents of Honey Extracted by Centrifugation and Pressed Processes. Food Chem. 2017, 218, 237–241. [Google Scholar] [CrossRef] [PubMed]
- Sousa, J.M.; de Souza, E.L.; Marques, G.; Meireles, B.; de Magalhães Cordeiro, Â.T.; Gullón, B.; Pintado, M.M.; Magnani, M. Polyphenolic Profile and Antioxidant and Antibacterial Activities of Monofloral Honeys Produced by Meliponini in the Brazilian Semiarid Region. Food Res. Int. 2016, 84, 61–68. [Google Scholar] [CrossRef]
- Sakač, M.B.; Jovanov, P.T.; Marić, A.Z.; Pezo, L.L.; Kevrešan, Ž.S.; Novaković, A.R.; Nedeljković, N.M. Physicochemical Properties and Mineral Content of Honey Samples from Vojvodina (Republic of Serbia). Food Chem. 2018, 276, 15–21. [Google Scholar] [CrossRef]
- Solayman, M.; Islam, M.A.; Paul, S.; Ali, Y.; Khalil, M.I.; Alam, N.; Gan, S.H. Physicochemical Properties, Minerals, Trace Elements, and Heavy Metals in Honey of Different Origins: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2016, 15, 219–233. [Google Scholar] [CrossRef]
- Karabagias, I.K.; Louppis, A.P.; Kontakos, S.; Drouza, C.; Papastephanou, C. Characterization and Botanical Differentiation of Monofloral and Multifloral Honeys Produced in Cyprus, Greece, and Egypt Using Physicochemical Parameter Analysis and Mineral Content in Conjunction with Supervised Statistical Techniques. J. Anal. Methods Chem. 2018, 2018. [Google Scholar] [CrossRef]
- Tariba Lovaković, B.; Lazarus, M.; Brčić Karačonji, I.; Jurica, K.; Živković Semren, T.; Lušić, D.; Brajenović, N.; Pelaić, Z.; Pizent, A. Multi-Elemental Composition and Antioxidant Properties of Strawberry Tree (Arbutus Unedo L.) Honey from the Coastal Region of Croatia: Risk-Benefit Analysis. J. Trace Elem. Med. Biol. 2018, 45, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Oroian, M.; Prisacaru, A.; Hretcanu, E.C.; Stroe, S.G.; Leahu, A.; Buculei, A. Heavy Metals Profile in Honey as a Potential Indicator of Botanical and Geographical Origin. Int. J. Food Prop. 2015, 19, 1825–1836. [Google Scholar] [CrossRef]
- European Commission 2015/1006 of 25 June 2015 Amending Regulation (EC) No 1881/2006 as Regards Maximum Levels of Lead in Foodstuff. Off. J. Eur. Union 2015, 2015, 1–5. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv%3AOJ.L_.2015.161.01.0009.01.ENG (accessed on 31 March 2021).
- Aghamirlou, H.M.; Khadem, M.; Rahmani, A.; Sadeghian, M.; Mahvi, A.H.; Akbarzadeh, A.; Nazmara, S. Heavy Metals Determination in Honey Samples Using Inductively Coupled Plasma-Optical Emission Spectrometry. J. Environ. Health Sci. Eng. 2015, 13, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Bucekova, M.; Jardekova, L.; Juricova, V.; Bugarova, V.; Di Marco, G.; Gismondi, A.; Leonardi, D.; Farkasovska, J.; Godocikova, J.; Laho, M.; et al. Antibacterial Activity of Different Blossom Honeys: New Findings. Molecules 2019, 24, 1573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuś, P.M.; Jerković, I.; Marijanović, Z.; Kranjac, M.; Tuberoso, C.I.G. Unlocking Phacelia Tanacetifolia Benth. Honey Characterization through Melissopalynological Analysis, Colour Determination and Volatiles Chemical Profiling. Food Res. Int. 2018, 106, 243–253. [Google Scholar] [CrossRef]
- Ávila, S.; Beux, M.R.; Ribani, R.H.; Zambiazi, R.C. Stingless Bee Honey: Quality Parameters, Bioactive Compounds, Health-Promotion Properties and Modification Detection Strategies. Trends Food Sci. Technol. 2019, 37–50. [Google Scholar] [CrossRef]
- Matović, K.; Ćirić, J.; Kaljević, V.; Nedić, N.; Jevtić, G.; Vasković, N.; Baltić, M. Physicochemical Parameters and Microbiological Status of Honey Produced in an Urban Environment in Serbia. Environ. Sci. Pollut. Res. 2018, 25, 14148–14157. [Google Scholar] [CrossRef] [PubMed]
- Cheung, Y.; Meenu, M.; Yu, X.; Xu, B. Phenolic Acids and Flavonoids Profiles of Commercial Honey from Different Floral Sources and Geographic Sources. Int. J. Food Prop. 2019, 22, 290–308. [Google Scholar] [CrossRef]
- Pauliuc, D.; Dranca, F.; Oroian, M. Raspberry, Rape, Thyme, Sunflower and Mint Honeys Authentication Using Voltammetric Tongue. Sensors 2020, 20, 2565. [Google Scholar] [CrossRef]
- Hossen, M.S.; Ali, M.Y.; Jahurul, M.H.A.; Abdel-Daim, M.M.; Gan, S.H.; Khalil, M.I. Beneficial Roles of Honey Polyphenols against Some Human Degenerative Diseases: A Review. Pharmacol. Rep. 2017, 1194–1205. [Google Scholar] [CrossRef]
- Do Nascimento, K.S.; Gasparotto Sattler, J.A.; Lauer Macedo, L.F.; Serna González, C.V.; Pereira de Melo, I.L.; da Silva Araújo, E.; Granato, D.; Sattler, A.; de Almeida-Muradian, L.B. Phenolic Compounds, Antioxidant Capacity and Physicochemical Properties of Brazilian Apis Mellifera Honeys. LWT Food Sci. Technol. 2018, 91, 85–94. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhang, Y.; Wang, J.; Li, X.; Wang, W.; Huang, Z. Sugaring-out Assisted Liquid-Liquid Extraction Coupled with High Performance Liquid Chromatography-Electrochemical Detection for the Determination of 17 Phenolic Compounds in Honey. J. Chromatogr. A 2019, 1601, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Rodopoulou, M.A.; Tananaki, C.; Dimou, M.; Liolios, V.; Kanelis, D.; Goras, G.; Thrasyvoulou, A. The Determination of the Botanical Origin in Honeys with Over-Represented Pollen: Combination of Melissopalynological, Sensory and Physicochemical Analysis. J. Sci. Food Agric. 2018, 98, 2705–2712. [Google Scholar] [CrossRef] [PubMed]
- Patrignani, M.; Fagúndez, G.A.; Tananaki, C.; Thrasyvoulou, A.; Lupano, C.E. Volatile Compounds of Argentinean Honeys: Correlation with Floral and Geographical Origin. Food Chem. 2018, 246, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.C.V.; Garruti, D.S.; Madruga, M.S. The Power of Odour Volatiles from Unifloral Melipona Honey Evaluated by Gas Chromatography–Olfactometry Osme Techniques. J. Sci. Food Agric. 2019, 99, 4493–4497. [Google Scholar] [CrossRef]
- Demir Kanbur, E.; Yuksek, T.; Atamov, V.; Ozcelik, A.E. A Comparison of the Physicochemical Properties of Chestnut and Highland Honey: The Case of Senoz Valley in the Rize Province of Turkey. Food Chem. 2021, 345. [Google Scholar] [CrossRef] [PubMed]
- Gerhardt, N.; Birkenmeier, M.; Schwolow, S.; Rohn, S.; Weller, P. Volatile-Compound Fingerprinting by Headspace-Gas-Chromatography Ion-Mobility Spectrometry (HS-GC-IMS) as a Benchtop Alternative to 1H NMR Profiling for Assessment of the Authenticity of Honey. Anal. Chem. 2018, 90, 1777–1785. [Google Scholar] [CrossRef] [PubMed]
- Pita-Calvo, C.; Vázquez, M. Differences between Honeydew and Blossom Honeys: A Review. Trends Food Sci. Technol. 2016, 59, 79–87. [Google Scholar] [CrossRef]
- Belay, A.; Solomon, W.K.; Bultossa, G.; Adgaba, N.; Melaku, S. Botanical origin, colour, granulation, and sensory properties of the Harenna forest honey, Bale, Ethiopia. Food Chem. 2015, 167, 213–219. [Google Scholar] [CrossRef]
- Debela, H.; Belay, A. Caffeine, invertase enzyme and triangle test sensory panel used to differentiate Coffea arabica and Vernonia amygdalina honey. Food Control. 2021, 123. [Google Scholar] [CrossRef]
- Can, Z.; Yildiz, O.; Sahin, H.; Akyuz Turumtay, E.; Silici, S.; Kolayli, S. An Investigation of Turkish Honeys: Their Physico-Chemical Properties, Antioxidant Capacities and Phenolic Profiles. Food Chem. 2015, 180, 133–141. [Google Scholar] [CrossRef]
- Karabagias, I.K.; Casiello, G.; Kontakos, S.; Louppis, A.P.; Longobardi, F.; Kontominas, M.G. Investigating the Impact of Botanical Origin and Harvesting Period on Carbon Stable Isotope Ratio Values (13C/12C) and Different Parameter Analysis of Greek Unifloral Honeys: A Chemometric Approach for Correct Botanical Discrimination. Int. J. Food Sci. Technol. 2016, 51, 2460–2467. [Google Scholar] [CrossRef]
- Oroian, M.; Ropciuc, S.; Paduret, S.; Sanduleac, E.T. Authentication of Romanian Honeys Based on Physicochemical Properties, Texture and Chemometric. J. Food Sci. Technol. 2017, 54, 4240–4250. [Google Scholar] [CrossRef]
- Szabó, R.T.; Mézes, M.; Szalai, T.; Zajácz, E.; Weber, M. Colour Identification of Honey and Methodical Development of Its Instrumental Measuring. Columella J. Agric. Environ. Sci. 2016, 3. [Google Scholar] [CrossRef]
- Shantal Rodríguez Flores, M.; Escuredo, O.; Carmen Seijo, M. Assessment of Physicochemical and Antioxidant Characteristics of Quercus Pyrenaica Honeydew Honeys. Food Chem. 2015, 166, 101–106. [Google Scholar] [CrossRef]
- Boussaid, A.; Chouaibi, M.; Rezig, L.; Hellal, R.; Donsì, F.; Ferrari, G.; Hamdi, S. Physicochemical and Bioactive Properties of Six Honey Samples from Various Floral Origins from Tunisia. Arab. J. Chem. 2018, 11, 265–274. [Google Scholar] [CrossRef] [Green Version]
- European Council Directive 2001/110 Relating to Honey. Off. J. Eur. Comm. 2001, L10, 47–52. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32001L0110 (accessed on 1 April 2021).
- Terio, V.; Bozzo, G.; Ceci, E.; Savarino, A.E.; Barrasso, R.; Di Pinto, A.; Mottola, A.; Marchetti, P.; Tantillo, G.; Bonerba, E. Methylglyoxal (MGO) in Italian Honey. Appl. Sci. 2021, 11, 831. [Google Scholar] [CrossRef]
- Albaridi, N.A. Antibacterial Potency of Honey. Int. J. Microbiol. 2019. [Google Scholar] [CrossRef]
- Combarros-Fuertes, P.; Fresno, J.M.; Estevinho, M.M.; Sousa-Pimenta, M.; Tornadijo, M.E.; Estevinho, L.M. Honey: Another Alternative in the Fight against Antibiotic-Resistant Bacteria? Antibiotics 2020, 9, 774. [Google Scholar] [CrossRef] [PubMed]
- Proaño, A.; Coello, D.; Villacrés-Granda, I.; Ballesteros, I.; Debut, A.; Vizuete, K.; Brenciani, A.; Álvarez-Suarez, J.M. The Osmotic Action of Sugar Combined with Hydrogen Peroxide and Bee-Derived Antibacterial Peptide Defensin-1 Is Crucial for the Antibiofilm Activity of Eucalyptus Honey. LWT 2020, 136, 110379. [Google Scholar] [CrossRef]
- Suto, M.; Kawashima, H.; Nakamura, Y. Determination of Organic Acids in Honey by Liquid Chromatography with Tandem Mass Spectrometry. Food Anal. Methods 2020, 13, 2249–2257. [Google Scholar] [CrossRef]
- Bogdanov, S. Honey Composition. In Honey Book; Bee Produc Science: Muehlethurnen, Switzerland, 2011; pp. 1–10. Available online: https://www.researchgate.net/publication/304011775_Honey_Composition (accessed on 10 April 2021).
- El Sohaimy, S.A.; Masry, S.H.D.; Shehata, M.G. Physicochemical Characteristics of Honey from Different Origins. Ann. Agric. Sci. 2015, 60, 279–287. [Google Scholar] [CrossRef] [Green Version]
- Brugnerotto, P.; Della Betta, F.; Gonzaga, L.V.; Fett, R.; Oliveira Costa, A.C. A Capillary Electrophoresis Method to Determine Aliphatic Organic Acids in Bracatinga Honeydew Honey and Floral Honey. J. Food Compos. Anal. 2019, 82, 103243. [Google Scholar] [CrossRef]
- Bergamo, G.; Tischer Seraglio, S.K.; Gonzaga, L.V.; Fett, R.; Costa, A.C.O. Mineral Profile as a Potential Parameter for Verifying the Authenticity of Bracatinga Honeydew Honeys. LWT 2018, 97, 390–395. [Google Scholar] [CrossRef]
- Ghanavati Nasab, S.; Javaheran Yazd, M.; Marini, F.; Nescatelli, R.; Biancolillo, A. Classification of Honey Applying High Performance Liquid Chromatography, near-Infrared Spectroscopy and Chemometrics. Chemom. Intell. Lab. Syst. 2020, 202, 104037. [Google Scholar] [CrossRef]
- Guzelmeric, E.; Ciftci, I.; Yuksel, P.I.; Yesilada, E. Importance of Chromatographic and Spectrophotometric Methods in Determining Authenticity, Classification and Bioactivity of Honey. LWT 2020, 132, 109921. [Google Scholar] [CrossRef]
- Bromke, M.A.; Hochmuth, A.; Tohge, T.; Fernie, A.R.; Giavalisco, P.; Burgos, A.; Willmitzer, L.; Brotman, Y. Liquid Chromatography High-Resolution Mass Spectrometry for Fatty Acid Profiling. Plant J. 2015, 81, 529–536. [Google Scholar] [CrossRef] [PubMed]
- An, N.; Cai, W.J.; Zhu, Q.F.; Wang, W.; Hussain, D.; Feng, Y.Q. Metabolic Profiling of Organic Acids in Honey by Stable Isotope Labeling Assisted Liquid Chromatography-Mass Spectrometry. J. Food Compos. Anal. 2020, 87. [Google Scholar] [CrossRef]
- Mato, I.; Huidobro, J.F.; Simal-Lozano, J.; Sancho, M.T. Rapid Determination of Nonaromatic Organic Acids in Honey by Capillary Zone Electrophoresis with Direct Ultraviolet Detection. J. Agric. Food Chem. 2006, 54, 1541–1550. [Google Scholar] [CrossRef] [PubMed]
- Bergamo, G.; Seraglio, S.K.T.; Gonzaga, L.V.; Fett, R.; Costa, A.C.O. Use of Visible Spectrophotometric Fingerprint and Chemometric Approaches for the Differentiation of Mimosa Scabrella Bentham Honeydew Honey. J. Food Sci. Technol. 2020, 57, 3966–3972. [Google Scholar] [CrossRef] [PubMed]
- Fuentes Molina, O.; Alizadeh, K.; Bucarey, S.A.; Castaneza Zúñiga, E.; Vásquez-Quitral, P. Analysis of Organic Molecules, Physicochemical Parameters, and Pollen as Indicators for Authenticity, Botanical Origin, Type and Quality of Honey Samples Examined. Int. J. Food Prop. 2020, 23, 2242–2256. [Google Scholar] [CrossRef]
- Seraglio, S.K.T.; Bergamo, G.; Brugnerotto, P.; Gonzaga, L.V.; Fett, R.; Costa, A.C.O. Aliphatic Organic Acids as Promising Authenticity Markers of Bracatinga Honeydew Honey. Food Chem. 2021, 343. [Google Scholar] [CrossRef]
- Jara-Palacios, M.J.; Ávila, F.J.; Escudero-Gilete, M.L.; Gómez Pajuelo, A.; Heredia, F.J.; Hernanz, D.; Terrab, A. Physicochemical Properties, Colour, Chemical Composition, and Antioxidant Activity of Spanish Quercus Honeydew Honeys. Eur. Food Res. Technol. 2019, 245, 2017–2026. [Google Scholar] [CrossRef]
- Geană, E.I.; Ciucure, C.T.; Costinel, D.; Ionete, R.E. Evaluation of Honey in Terms of Quality and Authenticity Based on the General Physicochemical Pattern, Major Sugar Composition and Δ13C Signature. Food Control 2019, 109. [Google Scholar] [CrossRef]
- Bogdanov, S.; Lüllmann, C.; Martin, P.; von der Ohe, W.; Russmann, H.; Vorwohl, G.; Oddo, L.P.; Sabatini, A.G.; Marcazzan, G.L.; Piro, R.; et al. Honey Quality and International Regulatory Standards: Review by the International Honey Commission. Bee World 1999, 80, 61–69. [Google Scholar] [CrossRef]
- De Almeida, A.M.M.; Oliveira, M.B.S.; Da Costa, J.G.; Valentim, I.B.; Goulart, M.O.F. Antioxidant Capacity, Physicochemical and Floral Characterization of Honeys from the Northeast of Brazil. Rev. Virtual Quim. 2016, 8, 57–77. [Google Scholar] [CrossRef]
- Battino, M.; Giampieri, F.; Cianciosi, D.; Ansary, J.; Chen, X.; Zhang, D.; Gil, E.; Forbes-Hernández, T. The Roles of Strawberry and Honey Phytochemicals on Human Health: A Possible Clue on the Molecular Mechanisms Involved in the Prevention of Oxidative Stress and Inflammation. Phytomedicine 2020. [Google Scholar] [CrossRef] [PubMed]
- Tong, L.; Chuang, C.C.; Wu, S.; Zuo, L. Reactive Oxygen Species in Redox Cancer Therapy. Cancer Lett. 2015, 367, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Sancho, M.T.; Pascual-Maté, A.; Rodríguez-Morales, E.G.; Osés, S.M.; Escriche, I.; Periche, Á.; Fernández-Muiño, M.A. Critical Assessment of Antioxidant-Related Parameters of Honey. Int. J. Food Sci. Technol. 2016, 51, 30–36. [Google Scholar] [CrossRef]
- Talebi, M.M.; Talebi, M.M.; Farkhondeh, T.; Samarghandian, S. Molecular Mechanism-Based Therapeutic Properties of Hmechanism-Based Therapeutic Properties of Honey. Biomed. Pharmacother. 2020. [Google Scholar] [CrossRef] [PubMed]
- Cheng, N.; Wu, L.; Zheng, J.; Cao, W. Buckwheat Honey Attenuates Carbon Tetrachloride-Induced Liver and DNA Damage in Mice. Evid. Based Complementary Altern. Med. 2015. [Google Scholar] [CrossRef] [Green Version]
- Almasaudi, S.B.; Abbas, A.T.; Al-Hindi, R.R.; El-Shitany, N.A.; Abdel-Dayem, U.A.; Ali, S.S.; Saleh, R.M.; Al Jaouni, S.K.; Kamal, M.A.; Harakeh, S.M. Manuka Honey Exerts Antioxidant and Anti-Inflammatory Activities That Promote Healing of Acetic Acid-Induced Gastric Ulcer in Rats. Evid. Based Complementary Altern. Med. 2017, 1–13. [Google Scholar] [CrossRef]
- Tomczyk, M.; Tarapatskyy, M.; Dżugan, M. The Influence of Geographical Origin on Honey Composition Studied by Polish and Slovak Honeys. Czech J. Food Sci. 2019, 37, 232–238. [Google Scholar] [CrossRef]
- Kek, S.P.; Chin, N.L.; Yusof, Y.A.; Tan, S.W.; Chua, L.S. Classification of Entomological Origin of Honey Based on Its Physicochemical and Antioxidant Properties. Int. J. Food Prop. 2018, 20, S2723–S2738. [Google Scholar] [CrossRef]
- Dezmirean, D.S.; Mărghitaş, L.A.; Fiţ, N.; Chirilă, F.; Gherman, B.; Mărgăoan, R.; Aurori, A.; Bobiş, O. Antibacterial Effect of Heather Honey (Calluna Vulgaris) against Different Microorganisms of Clinical Importance. Bull. UASVM Anim. Sci. Biotechnol. 2015, 72. [Google Scholar] [CrossRef]
- Chis, A.M.; Purcarea, C.; Dzugan, M.; Teusdea, A. Comparative Antioxidant Content and Antioxidant Activity of Selected Romanian and Polish Honeydew Honey. Rev. Chim. 2016, 67, 214–218. [Google Scholar]
- Srećković, N.; Mihailović, V.; Katanić-Stanković, J. Physico-Chemical, Antioxidant and Antimicrobial Properties of Three Different Types of Honey from Central Serbia. Kragujev. J. Sci. 2019, 41, 53–68. [Google Scholar] [CrossRef]
- Gül, A.; Pehlivan, T. Antioxidant Activities of Some Monofloral Honey Types Produced across Turkey. Saudi J. Biol. Sci. 2018, 25, 1056–1065. [Google Scholar] [CrossRef]
- Attanzio, A.; Tesoriere, L.; Allegra, M.; Livrea, M.A. Monofloral Honeys by Sicilian Black Honeybee (Apis Mellifera Ssp. Sicula) Have High Reducing Power and Antioxidant Capacity. Heliyon 2016, 2. [Google Scholar] [CrossRef] [Green Version]
- Das, A.; Datta, S.; Mukherjee, S.; Bose, S.; Ghosh, S.; Dhar, P. Evaluation of Antioxidative, Antibacterial and Probiotic Growth Stimulatory Activities of Sesamum Indicum Honey Containing Phenolic Compounds and Lignans. LWT 2015, 61, 244–250. [Google Scholar] [CrossRef]
- Pascual-Maté, A.; Osés, S.M.; Fernández-Muiño, M.A.; Sancho, M.T. Métodos Analíticos En Mieles. J. Apic. Res. 2018, 57, 38–74. [Google Scholar] [CrossRef]
- Moise, A.; Liviu, A.M.; Dezmirean, D.; Bobis, O. Nutraceutical Properties of Romanian Heather Honey. Nutr. Food Sci. 2013, 43, 218–227. [Google Scholar] [CrossRef]
- Alvarez-Suarez, J.M. (Ed.) Bee Products—Chemical and Biological Properties; Springer International Publishing: Basel, Switzerland, 2017; pp. 1–306. [Google Scholar] [CrossRef]
- Ng, W.J.; Sit, N.W.; Ooi, P.A.C.; Ee, K.Y.; Lim, T.M. The Antibacterial Potential of Honeydew Honey Produced by Stingless Bee (Heterotrigona Itama) against Antibiotic Resistant Bacteria. Antibiotics 2020, 9, 871. [Google Scholar] [CrossRef]
- Cilia, G.; Fratini, F.; Marchi, M.; Sagona, S.; Turchi, B.; Adamchuk, L.; Felicioli, A.; Kačániová, M. Antibacterial Activity of Honey Samples from Ukraine. Vet. Sci. 2020, 7, 181. [Google Scholar] [CrossRef] [PubMed]
- Nolan, V.C.; Harrison, J.; Cox, J.A.G. Dissecting the Antimicrobial Composition of Honey. Antibiotics 2019, 8, 251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brudzynski, K. A Current Perspective on Hydrogen Peroxide Production in Honey. A Review. Food Chem. 2020, 332, 127229. [Google Scholar] [CrossRef]
- Kurek-Górecka, A.; Górecki, M.; Rzepecka-Stojko, A.; Balwierz, R.; Stojko, J. Bee Products in Dermatology and Skin Care. Molecules 2020, 25, 556. [Google Scholar] [CrossRef] [Green Version]
- Juliano, C.; Magrini, G.A. Methylglyoxal, the Major Antibacterial Factor in Manuka Honey: An Alternative to Preserve Natural Cosmetics? Cosmetics 2018, 6, 1. [Google Scholar] [CrossRef] [Green Version]
- Minden-Birkenmaier, B.A.; Smith, R.A.; Radic, M.Z.; van der Merwe, M.; Bowlin, G.L. Manuka Honey Reduces NETosis on an Electrospun Template within a Therapeutic Window. Polymers 2020, 12, 1430. [Google Scholar] [CrossRef] [PubMed]
- Rabie, E.; Serem, J.C.; Oberholzer, H.M.; Gaspar, A.R.M.; Bester, M.J. How Methylglyoxal Kills Bacteria: An Ultrastructural Study. Ultrastruct. Pathol. 2016, 40, 107–111. [Google Scholar] [CrossRef] [Green Version]
- Valachová, I.; Bučeková, M.; Majtán, J. Quantification of Bee-Derived Peptide. Czech J. Food Sci. 2016, 34, 233–243. [Google Scholar] [CrossRef] [Green Version]
- Bilikova, K.; Krakova, T.K.; Yamaguchi, K.; Yamaguchi, Y. Major Royal Jelly Proteins as Markers of Authenticity and Quality of Honey. Arh. Hig. Rada Toksikol. 2015, 66, 259–267. [Google Scholar] [CrossRef] [Green Version]
- Bucekova, M.; Sojka, M.; Valachova, I.; Martinotti, S.; Ranzato, E.; Szep, Z.; Majtan, V.; Klaudiny, J.; Majtan, J. Bee-Derived Antibacterial Peptide, Defensin-1, Promotes Wound Re-Epithelialisation in Vitro and in Vivo. Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Shirlaw, O.; Billah, Z.; Attar, B.; Hughes, L.; Qasaymeh, R.M.; Seidel, V.; Efthimiou, G. Antibiofilm Activity of Heather and Manuka Honeys and Antivirulence Potential of Some of Their Constituents on the DsbA1 Enzyme of Pseudomonas Aeruginosa. Antibiotics 2020, 9, 911. [Google Scholar] [CrossRef] [PubMed]
- Horniackova, M.; Bucekova, M. Effect of gamma radiation on the antibacterial and antibiofilm activity of honeydew honey. Eur. Food Res. Technol. 2016, 243, 81–88. [Google Scholar] [CrossRef]
- Ahmad, A.; Kaleem, M.; Ahmed, Z.; Shafiq, H. Therapeutic Potential of Flavonoids and Their Mechanism of Action against Microbial and Viral Infections—A Review. Food Res. Int. 2015, 77, 221–235. [Google Scholar] [CrossRef]
- Leyva-Jimenez, F.J.; Lozano-Sanchez, J.; Borras-Linares, I.; de la LuzCadiz-Gurrea, M.; Mahmoodi-Khaledi, E. Potential Antimicrobial Activity of Honey Phenolic Compounds against Gram Positive and Gram Negative Bacteria. LWT 2018, 101, 236–245. [Google Scholar] [CrossRef]
- Fyfe, L.; Okoro, P.; Paterson, E.; Coyle, S.; McDougall, G.J. Compositional Analysis of Scottish Honeys with Antimicrobial Activity against Antibiotic-Resistant Bacteria Reveals Novel Antimicrobial Components. LWT Food Sci. Technol. 2017, 79, 52–59. [Google Scholar] [CrossRef]
- Matzen, R.D.; Leth-Espensen, J.Z.; Jansson, T.; Nielsen, D.S.; Lund, M.N.; Matzen, S. The Antibacterial Effect in Vitro of Honey Derived from Various Danish Flora. Dermatol. Res. Pract. 2018. [Google Scholar] [CrossRef] [Green Version]
- John-Isa, J.F.; Adebolu, T.T.; Oyetayo, V.O. Antibacterial Effects of Honey in Nigeria on Selected Diarrhoeagenic Bacteria. South Asian J. Res. Microbiol. 2019, 1–11. [Google Scholar] [CrossRef]
- Miklasińska-Majdanik, M.; Kępa, M.; Wojtyczka, R.D.; Idzik, D.; Wąsik, T.J. Phenolic Compounds Diminish Antibiotic Resistance of Staphylococcus Aureus Clinical Strains. Int. J. Environ. Res. Public Health 2018, 15, 2321. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Yao, J.; Zhou, B.; Yang, J.; Chaudry, M.T.; Wang, M.; Xiao, F.; Li, Y.; Yin, W. Bacteriostatic Effect of Quercetin as an Antibiotic Alternative in Vivo and Its Antibacterial Mechanism in Vitro. J. Food Prot. 2018, 81, 68–78. [Google Scholar] [CrossRef]
- Anand, S.; Deighton, M.; Livanos, G.; Morrison, P.D.; Pang, E.C.K.; Mantri, N. Antimicrobial Activity of Agastache Honey and Characterization of Its Bioactive Compounds in Comparison with Important Commercial Honeys. Front. Microbiol. 2019, 10, 263. [Google Scholar] [CrossRef]
- Majtan, J.; Sojka, M.; Palenikova, H.; Bucekova, M.; Majtan, V. Vitamin C Enhances the Antibacterial Activity of Honey against Planktonic and Biofilm-Embedded Bacteria. Molecules 2020, 25, 992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bucekova, M.; Buriova, M.; Pekarik, L.; Majtan, V.; Majtan, J. Phytochemicals-Mediated Production of Hydrogen Peroxide Is Crucial for High Antibacterial Activity of Honeydew Honey. Sci. Rep. 2018, 8, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grecka, K.; Kús, P.M.; Worobo, R.W.; Szweda, P. Study of the Anti-Staphylococcal Potential of Honeys Produced in Northern Poland. Molecules 2019, 23, 260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farkasovska, J.; Bugarova, V.; Godocikova, J.; Majtan, V.; Majtan, J. The Role of Hydrogen Peroxide in the Antibacterial Activity of Different Floral Honeys. Eur. Food Res. Technol. 2019, 245, 2739–2744. [Google Scholar] [CrossRef]
- Bucekova, M.; Bugarova, V.; Godocikova, J.; Majtan, J. Demanding New Honey Qualitative Standard Based on Antibacterial Activity. Foods 2020, 9, 1263. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Liu, R.; Lu, Q.; Hao, P.; Xu, A.; Zhang, J.; Tan, J. Biochemical Properties, Antibacterial and Cellular Antioxidant Activities of Buckwheat Honey in Comparison to Manuka Honey. Food Chem. 2018, 252, 243–249. [Google Scholar] [CrossRef]
- Al-Ghamdi, A.A.; Ansari, M.J. Biological and Therapeutic Roles of Saudi Arabian Honey: A Comparative Review. J. King Saud Univ. Sci. 2021, 33, 101329. [Google Scholar] [CrossRef]
- Gucwa, K.; Kusznierewicz, B.; Milewski, S.; van Dijck, P.; Szweda, P. Antifungal Activity and Synergism with Azoles of Polish Propolis. Pathogens 2018, 7, 56. [Google Scholar] [CrossRef] [Green Version]
- Sayadi, S.A.; Zohdi, R.M.; Shamshuddin, N.S.S.; Khairy, M.S.; Hasan, N.A.; Yasin, A.S.; Ramasamy, K. Antifungal Activity of Selected Malaysian Honeys: A Comparison with Manuka Honey. J. Coast. Life Med. 2015, 3, 539–542. [Google Scholar] [CrossRef]
- Phuna, Z.X.; Yu, J.K.E.; Tee, J.Y.; Chuah, S.Q.; Tan, N.W.H.; Vijayabalan, S.; Manap, A.S.A.; Sisinthy, S.P.; Madhavan, P. In Vitro Evaluation of Nanoemulsions of Curcumin, Piperine and Tualang Honey as Antifungal Agents for Candida Species. J. Appl. Biotechnol. Rep. 2020, 7, 190–198. [Google Scholar] [CrossRef]
- Azonwade, F.E.; Bertin, G.; Armand, P.; Durand, M.D.-N.; Elvire, G.; Farid, B.-M.; Madjid, A.; Latifou, L.; Victorien, D.; Lamine, B.-M. Polyphenolic Profile, and Antioxidant and Antifungal Activities of Honey Products in Benin. Afr. J. Microbiol. Res. 2018, 12, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Zam, W.; Harfouch, R.; Mais, A.D.; Rand, K. Anti-Staphylococcus Aureus Efficacy of Six Natural Honey Samples Originated from Syria. Res. J. Pharmacogn. Phytochem. 2018, 10, 23. [Google Scholar] [CrossRef]
- Ahmad, K.; Khalil, A.T.; Somayya, R.; Khan, F.N.; Shah, A.R.; Shinwari, Z.K. Potential Antifungal Activity of Different Honey Brands From Pakistan. Afr. J. Tradit. Complement. Altern. Med. 2017, 14, 18–23. [Google Scholar] [CrossRef] [Green Version]
- Kalakattawi, A.; Al Attas, S.G.; Edris, S.; Abdel Azeiz, A.Z.; AlGuthami, A.F.; Hegazi, A.G.; Almasaudi, S.B.; Al-Hindi, R.R.; Bahieldin, A. In Vitro Anti-Candida Activity of Different Saudi Honeys and Honey Mixed with Taifi Rose Oil. Biosci. Biotechnol. Res. Asia 2019, 16, 779–787. [Google Scholar] [CrossRef]
- Alvarez-Suarez, J.; Gasparrini, M.; Forbes-Hernández, T.; Mazzoni, L.; Giampieri, F. The Composition and Biological Activity of Honey: A Focus on Manuka Honey. Foods 2014, 3, 420–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandes, L.; Ribeiro, H.; Oliveira, A.; Sanches Silva, A.; Freitas, A.; Henriques, M.; Rodrigues, M.E. Portuguese Honeys as Antimicrobial Agents against Candida Species. J. Tradit. Complementary Med. 2020. [Google Scholar] [CrossRef] [PubMed]
- Guttentag, A.; Krishnakumar, K.; Cokcetin, N.; Hainsworth, S.; Harry, E.; Carter, D. Inhibition of Dermatophyte Fungi by Australian Jarrah Honey. Pathogens 2021, 10, 194. [Google Scholar] [CrossRef]
- Hamid, Z.; Mohamad, I.; Harun, A.; Salim, R.; Sulaiman, S.A. Antifungal Effect of Three Local Malaysian Honeys on Selected Pathogenic Fungi of Otomycosis: An in Vitro Evaluation. J. Young Pharm. 2018, 10, 414–417. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, L.; Oliveira, A.; Henriques, M.; Rodrigues, M.E. Honey as a Strategy to Fight Candida Tropicalis in Mixed-Biofilms with Pseudomonas Aeruginosa. Antibiotics 2020, 9, 43. [Google Scholar] [CrossRef] [Green Version]
- De Groot, T.; Janssen, T.; Faro, D.; Cremers, N.A.J.; Chowdhary, A.; Meis, J.F. Antifungal Activity of a Medical-Grade Honey Formulation against Candida Auris. J. Fungi 2021, 7, 50. [Google Scholar] [CrossRef] [PubMed]
- Mehta, D.R.; Ashkar, A.A.; Mossman, K.L. The Nitric Oxide Pathway Provides Innate Antiviral Protection in Conjunction with the Type I Interferon Pathway in Fibroblasts. PLoS ONE 2012, 7, e31688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Waili, N.S. Identification of Nitric Oxide Metabolites in Various Honeys: Effects of Intravenous Honey on Plasma and Urinary Nitric Oxide Metabolites Concentrations. J. Med. Food 2003, 6, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Viuda-Martos, M.; Ruiz-Navajas, Y.; Fernández-López, J.; Pérez-Álvarez, J.A. Functional Properties of Honey, Propolis, and Royal Jelly. J. Food Sci. 2008. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Li, R.; Li, X.; He, J.; Jiang, S.; Liu, S.; Yang, J. Quercetin as an Antiviral Agent Inhibits Influenza a Virus (IAV) Entry. Viruses 2015, 8. [Google Scholar] [CrossRef] [PubMed]
- Vahed, H.; Batool Jafri, S. Propagation of Influenza Virus in Lymphocytes Determine by Antiviral Effects of Honey, Ginger and Garlic Decoction. J. Antivir. Antiretrovir. 2016, 8, 12–19. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, K.; Rahmasari, R.; Matsunaga, A.; Haruyama, T.; Kobayashi, N. Anti-Influenza Viral Effects of Honey In Vitro: Potent High Activity of Manuka Honey. Arch. Med. Res. 2014, 45, 359–365. [Google Scholar] [CrossRef]
- Charyasriwong, S.; Haruyama, T.; Kobayashi, N. In Vitro Evaluation of the Antiviral Activity of Methylglyoxal against Influenza B Virus Infection. Drug Discov. Ther. 2016, 10, 201–210. [Google Scholar] [CrossRef] [Green Version]
- Shahzad, A.; Cohrs, R.J. In Vitro Antiviral Activity of Honey against Varicella Zoster Virus (VZV): A Translational Medicine Study for Potential Remedy for Shingles. Int. Arch. Med. 2012. [Google Scholar] [CrossRef] [Green Version]
- Al-Waili, N.S. Topical Honey Application vs. Acyclovir for the Treatment of Recurrent Herpes Simplex Lesions. Med. Sci. Monit. 2004, 10, 94–99. [Google Scholar]
- Semprini, A.; Singer, J.; Braithwaite, I.; Shortt, N.; Thayabaran, D.; McConnell, M.; Weatherall, M.; Beasley, R. Kanuka Honey versus Aciclovir for the Topical Treatment of Herpes Simplex Labialis: A Randomised Controlled Trial. BMJ Open 2019, 9. [Google Scholar] [CrossRef] [Green Version]
- Wan Yusuf, W.N.; Wan Mohammad, W.M.Z.; Gan, S.H.; Mustafa, M.; Abd Aziz, C.B.; Sulaiman, S.A. Tualang Honey Ameliorates Viral Load, CD4 Counts and Improves Quality of Life in Asymptomatic Human Immunodeficiency Virus Infected Patients. J. Tradit. Complementary Med. 2019, 9, 249–256. [Google Scholar] [CrossRef]
- Sheikh, B.Y.; Sarker, M.M.R.; Kamarudin, M.N.A.; Ismail, A. Prophetic Medicine as Potential Functional Food Elements in the Intervention of Cancer: A Review. Biomed. Pharmacother. 2017, 614–648. [Google Scholar] [CrossRef]
- Jentzsch, V.; Davis, J.A.A.; Djamgoz, M.B.A. Pancreatic Cancer (PDAC): Introduction of Evidence-Based Complementary Measures into Integrative Clinical Management. Evid. Based Complementary Altern. Med. 2020, 10, 3096. [Google Scholar] [CrossRef]
- Ahmed, S.; Sulaiman, S.A.; Othman, N.H. Oral Administration of Tualang and Manuka Honeys Modulates Breast Cancer Progression in Sprague-Dawley Rats Model. Evid. Based Complementary Altern. Med. 2017. [Google Scholar] [CrossRef] [PubMed]
- Ashraf Mohd Salleh, M.; Eshak, Z.; Iryani Wan, W. Acacia Honey induces apostosis in human beast adenocarcinoma cell lines (MCF-7). J. Teknol. 2017, 3, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Hizan, N.S.; Hassan, N.H.M.; Haron, J.; Abubakar, M.B.; Mahdi, N.M.N.; Gan, S.H. Tualang Honey Adjunct with Anastrozole Improve Parenchyma Enhancement of Breast Tissue in Breast Cancer Patients: A Randomized Controlled Trial. Integr. Med. Res. 2018, 7, 322–327. [Google Scholar] [CrossRef] [PubMed]
- Afrin, S.; Giampieri, F.; Forbes-Hernández, T.Y.; Gasparrini, M.; Amici, A.; Cianciosi, D.; Quiles, J.L.; Battino, M. Manuka Honey Synergistically Enhances the Chemopreventive Effect of 5-Fluorouracil on Human Colon Cancer Cells by Inducing Oxidative Stress and Apoptosis, Altering Metabolic Phenotypes and Suppressing Metastasis Ability. Free Radic. Biol. Med. 2018, 126, 41–54. [Google Scholar] [CrossRef] [PubMed]
- Afrin, S.; Forbes-Hernández, T.Y.; Cianciosi, D.; Pistollato, F.; Zhang, J.J.; Pacetti, M.; Amici, A.; Reboredo-Rodríguez, P.; Simal-Gandara, J.; Bompadre, S.; et al. Strawberry Tree Honey as a New Potential Functional Food. Part 2: Strawberry Tree Honey Increases ROS Generation by Suppressing Nrf2-ARE and NF-KB Signaling Pathways and Decreases Metabolic Phenotypes and Metastatic Activity in Colon Cancer Cells. J. Funct. Foods 2019, 57, 477–487. [Google Scholar] [CrossRef]
- Osama, H.; Abdullah, A.; Gamal, B.; Emad, D.; Sayed, D.; Hussein, E.; Mahfouz, E.; Tharwat, J.; Sayed, S.; Medhat, S.; et al. Effect of Honey and Royal Jelly against Cisplatin-Induced Nephrotoxicity in Patients with Cancer. J. Am. Coll. Nutr. 2017, 36, 342–346. [Google Scholar] [CrossRef]
- Abdulrhman, M.A. Honey as a Sole Treatment of Type 2 Diabetes Mellitus. Endocrinol. Metab. Syndr. 2016, 5. [Google Scholar] [CrossRef]
- Lori, G.; Cecchi, L.; Mulinacci, N.; Melani, F.; Caselli, A.; Cirri, P.; Pazzagli, L.; Luti, S.; Mazzoli, L.; Paoli, P. Honey Extracts Inhibit PTP1B, Upregulate Insulin Receptor Expression, and Enhance Glucose Uptake in Human HepG2 Cells. Biomed. Pharmacother. 2019, 113, 108752. [Google Scholar] [CrossRef]
- Zamanian, M.; Azizi-Soleiman, F. Honey and Glycemic Control: A Systematic Review. Pharma Nutr. 2020. [Google Scholar] [CrossRef]
- Yaghoobi, N.; Al-Waili, N.; Ghayour-Mobarhan, M.; Parizadeh, S.M.R.; Abasalti, Z.; Yaghoobi, Z.; Yaghoobi, F.; Esmaeili, H.; Kazemi-Bajestani, S.M.R.; Aghasizadeh, R.; et al. Natural Honey and Cardiovascular Risk Factors; Effects on Blood Glucose, Cholesterol, Triacylglycerole, CRP, and Body Weight Compared with Sucrose. Sci. World J. 2008, 8, 463–469. [Google Scholar] [CrossRef]
- Samat, S.; Kanyan Enchang, F.; Nor Hussein, F.; Wan Ismail, W.I. Four-Week Consumption of Malaysian Honey Reduces Excess Weight Gain and Improves Obesity-Related Parameters in High Fat Diet Induced Obese Rats. Evid. Based Complementary Altern. Med. 2017. [Google Scholar] [CrossRef]
- Rafie, A.Z.M.; Syahir, A.; Ahmad, W.A.N.W.; Mustafa, M.Z.; Mariatulqabtiah, A.R. Supplementation of Stingless Bee Honey from Heterotrigona Itama Improves Antiobesity Parameters in High-Fat Diet Induced Obese Rat Model. Evid. Based Complementary Altern. Med. 2018. [Google Scholar] [CrossRef] [Green Version]
- Khalil, M.I.; Tanvir, E.M.; Afroz, R.; Sulaiman, S.A.; Gan, S.H. Cardioprotective Effects of Tualang Honey: Amelioration of Cholesterol and Cardiac Enzymes Levels. Biomed Res. Int. 2015. [Google Scholar] [CrossRef] [Green Version]
- Hasenan, S.M.; Karsani, S.A.; Jubri, Z. Modulation of Age Related Protein Expression Changes by Gelam Honey in Cardiac Mitochondrial Rats. Exp. Gerontol. 2018, 113, 1–9. [Google Scholar] [CrossRef]
- Idrus, R.B.H.; Sainik, N.Q.A.V.; Nordin, A.; Bin Saim, A.; Sulaiman, N. Cardioprotective Effects of Honey and Its Constituent: An Evidence-Based Review of Laboratory Studies and Clinical Trials. Int. J. Environ. Res. Public Health 2020, 17, 3613. [Google Scholar] [CrossRef] [PubMed]
- Mohd Sairazi, N.S.; Sirajudeen, K.N.S.; Asari, M.A.; Mummedy, S.; Muzaimi, M.; Sulaiman, S.A. Effect of Tualang Honey against KA-Induced Oxidative Stress and Neurodegeneration in the Cortex of Rats. BMC Complementary Altern. Med. 2017, 17, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goes, A.T.R.; Jesse, C.R.; Antunes, M.S.; Lobo Ladd, F.V.; Lobo Ladd, A.A.B.; Luchese, C.; Paroul, N.; Boeira, S.P. Protective Role of Chrysin on 6-Hydroxydopamine-Induced Neurodegeneration a Mouse Model of Parkinson’s Disease: Involvement of Neuroinflammation and Neurotrophins. Chem. Biol. Interact. 2018, 279, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Arshad, A.N.; Lin, T.S.; Yahaya, M.F. Stingless Bee Honey Reduces Anxiety and Improves Memory of the Metabolic Disease-induced Rats. CNS Neur. Dis. Drug Targets 2020, 19, 115. [Google Scholar] [CrossRef]
- Abuelgasim, H.; Albury, C.; Lee, J. Effectiveness of Honey for Symptomatic Relief in Upper Respiratory Tract Infections: A Systematic Review and Meta-Analysis. BMJ Evid. Based Med. 2020, 1–8. [Google Scholar] [CrossRef]
- Choi, J.K.; Jang, Y.H.; Lee, S.; Lee, S.R.; Choi, Y.A.; Jin, M.; Choi, J.H.; Park, J.H.; Park, P.H.; Choi, H.; et al. Chrysin Attenuates Atopic Dermatitis by Suppressing Inflammation of Keratinocytes. Food Chem. Toxicol. 2017, 110, 142–150. [Google Scholar] [CrossRef]
- Zaid, S.S.M.; Sulaiman, S.A.; Sirajudeen, K.N.M.; Othman, N.H. The Effects of Tualang Honey on Female Reproductive Organs, Tibia Bone and Hormonal Profile in Ovariectomised Rats—Animal Model for Menopause. BMC Complementary Altern. Med. 2010, 10, 82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haron, M.N.; Mohamed, M. Effect of Honey on the Reproductive System of Male Rat Offspring Exposed to Prenatal Restraint Stress. Andrologia 2016, 48, 525–531. [Google Scholar] [CrossRef]
- Ismail, N.H.; Ibrahim, S.F.; Jaffar, F.H.F.; Mokhtar, M.H.; Chin, K.Y.; Osman, K. Augmentation of the Female Reproductive System Using Honey: A Mini Systematic Review. Molecules 2021, 26, 649. [Google Scholar] [CrossRef]
- Soares, S.; Amaral, J.S.; Oliveira, M.B.P.P.; Mafra, I. A Comprehensive Review on the Main Honey Authentication Issues: Production and Origin. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1072–1100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olawode, E.O.; Tandlich, R.; Cambray, G. 1H-NMR Profiling and Chemometric Analysis of Selected Honeys from South Africa, Zambia, and Slovakia. Molecules 2018, 23, 578. [Google Scholar] [CrossRef] [Green Version]
- FAO. Codex Alimentarius International Food Standards, Standard for Honey, Codex STAN 12–1981, Rev. 1, Rev. 2, Amended (2019). 2001. Available online: http://www.fao.org/fao-who-codexalimentarius/codex-texts/list-standards/en/ (accessed on 3 April 2021).
- Bergamo, G.; Seraglio, S.K.T.; Gonzaga, L.V.; Fett, R.; Costa, A.C.O. Physicochemical Characteristics of Bracatinga Honeydew Honey and Blossom Honey Produced in the State of Santa Catarina: An Approach to Honey Differentiation. Food Res. Int. 2019, 116, 745–754. [Google Scholar] [CrossRef] [PubMed]
- Di Bella, G.; Potortì, A.G.; Beltifa, A.; Ben Mansour, H.; Nava, V.; Lo Turco, V. Discrimination of Tunisian Honey by Mineral and Trace Element Chemometrics Profiling. Foods 2021, 10, 724. [Google Scholar] [CrossRef]
- Escuredo, O.; Rodríguez-Flores, M.S.; Meno, L.; Seijo, M.C. Prediction of Physicochemical Properties in Honeys with Portable Near-Infrared (MicroNIR) Spectroscopy Combined with Multivariate Data Processing. Foods 2021, 10, 317. [Google Scholar] [CrossRef] [PubMed]
- Kivima, E.; Tanilas, K.; Martverk, K.; Rosenvald, S.; Timberg, L.; Laos, K. The Composition, Physicochemical Properties, Antioxidant Activity, and Sensory Properties of Estonian Honeys. Foods 2021, 10, 511. [Google Scholar] [CrossRef]
- Fechner, D.C.; Hidalgo, M.J.; Ruiz Díaz, J.D.; Gil, R.A.; Pellerano, R.G. Geographical Origin Authentication of Honey Produced in Argentina. Food Biosci. 2019, 33, 100483. [Google Scholar] [CrossRef]
- Zhou, X.; Taylor, M.P.; Salouros, H.; Prasad, S. Authenticity and Geographic Origin of Global Honeys Determined Using Carbon Isotope Ratios and Trace Elements. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Sipos, L.; Végh, R.; Bodor, Z.; Zaukuu, J.L.Z.; Hitka, G.; Bázár, G.; Kovacs, Z. Classification of Bee Pollen and Prediction of Sensory and Colourimetric Attributes—a Sensometric Fusion Approach by E-nose, E-tongue and Nir. Sensors 2020, 20, 6768. [Google Scholar] [CrossRef] [PubMed]
- Mădaş, M.N.; Mărghitaş, L.A.; Dezmirean, D.S.; Bobiş, O.; Abbas, O.; Danthine, S.; Francis, F.; Haubruge, E.; Nguyen, B.K. Labeling Regulations and Quality Control of Honey Origin: A Review. Food Rev. Int. 2019, 36, 215–240. [Google Scholar] [CrossRef]
- Razali, M.T.A.; Zainal, Z.A.; Maulidiani, M.; Shaari, K.; Zamri, Z.; Idrus, M.Z.M.; Khatib, A.; Abas, F.; Ling, Y.S.; Rui, L.L.; et al. Classification of Raw Stingless Bee Honeys by Bee Species Origins Using the NMR- and LC-MS-Based Metabolomics Approach. Molecules 2018, 23, 2160. [Google Scholar] [CrossRef] [Green Version]
- Tedesco, R.; Barbaro, E.; Zangrando, R.; Rizzoli, A.; Malagnini, V.; Gambaro, A.; Fontana, P.; Capodaglio, G. Carbohydrate Determination in Honey Samples by Ion Chromatography–Mass Spectrometry (HPAEC-MS). Anal. Bioanal. Chem. 2020, 412, 5217–5227. [Google Scholar] [CrossRef]
- Bonta, V.; Dezmirean, D.S.; Mărghitaș, L.A.; Urcan, A.C.; Bobiş, O. Sugar Spectrum, Hydroxymethylfurfural and Diastase Activity in Honey: A Validated Approach as Indicator of Possible Adulteration. Bull. UASVM Anim. Sci. Biotechnol. 2020, 77, 44. [Google Scholar] [CrossRef]
- Osés, S.M.; Marcos, P.; Azofra, P.; de Pabl, A.; Fernández-Muíño, M.Á.; Sancho, M.T. Phenolic Profile, Antioxidant Capacities and Enzymatic Inhibitory Activities of Propolis from Different Geographical Areas: Needs for Analytical Harmonization. Antioxidants 2020, 9, 75. [Google Scholar] [CrossRef] [Green Version]
- Dekebo, A.; Kwon, S.-Y.; Kim, D.-H.; Jung, C. Volatiles Analysis of Honey by Gas Chromatography-Mass Spectrometry (GC-MS): Comparison of SPME Volatiles Extraction Methods. J. Apic. 2018, 33, 117–128. [Google Scholar] [CrossRef] [Green Version]
- Bicudo de Almeida-Muradian, L.; Monika Barth, O.; Dietemann, V.; Eyer, M.; Freitas, A.d.S.d.; Martel, A.C.; Marcazzan, G.L.; Marchese, C.M.; Mucignat-Caretta, C.; Pascual-Maté, A.; et al. Standard Methods for Apis Mellifera Honey Research. J. Apic. Res. 2020, 59, 1–62. [Google Scholar] [CrossRef]
- Gerginova, D.; Simova, S.; Popova, M.; Stefova, M.; Stanoeva, J.P.; Bankova, V. NMR Profiling of North Macedonian and Bulgarian Honeys for Detection of Botanical and Geographical Origin. Molecules 2020, 25, 4687. [Google Scholar] [CrossRef] [PubMed]
- Girelli, C.R.; Schiavone, R.; Vilella, S.; Fanizzi, F.P. Salento Honey (Apulia, South-East Italy): A Preliminary Characterization by 1H-NMR Metabolomic Fingerprinting. Sustainability 2020, 12, 5009. [Google Scholar] [CrossRef]
- Albu, A.; Radu-Rusu, C.-G.; Pop, I.M.; Frunza, G.; Nacu, G. Quality Assessment of Raw Honey Issued from Eastern Romania. Agriculture 2021, 11, 247. [Google Scholar] [CrossRef]
- Bogdanov, S.; Fluri, P.; Imdorf, A.; Charrièrre, J.D. Self Control System for the Production of High Quality Honey: The Swiss Example. Apiacta 2005, 40, 28–33. [Google Scholar]
- Bett, C.K. Factors Influencing Quality Honey Production. Int. J. Acad. Res. Bus. Soc. Sci. 2017, 7, 281–292. [Google Scholar] [CrossRef] [Green Version]
- Regulation (EC) 470/2009. Laying Down Community Procedures for the Establishment of Residue Limits pf Pharmacologically Active Substances in Foodstuff of Animal Origin, Repealing Council Reguation (EEC) No 2377/90 and Amending Directive 2001/82/EC of the European Parliament and of the Council and Regulation (EC) No 726/2004 of the European Parliament and of the Council. Off. J. Eur. Union 2009, L152, 1–22. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:152:0011:0022:en:PDF (accessed on 4 April 2021).
- Commission Regulation (EU) No 37/2010 of 22. December 2009 on Pharmacologically Active Substances and Their Classification Regarding Maximum Residue Limits in Foodstuffs of Animal Origin. Off. J. Eur. Union 2010, L15, 1–72. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:015:0001:0072:EN:PDF (accessed on 4 April 2021).
- Lazarus, M.; Tariba Lovaković, B.; Orct, T.; Sekovanić, A.; Bilandžić, N.; Đokić, M.; Solomun Kolanović, B.; Varenina, I.; Jurič, A.; Denžić Lugomer, M.; et al. Difference in Pesticides, Trace Metal(Loid)s and Drug Residues between Certified Organic and Conventional Honeys from Croatia. Chemosphere 2021, 266. [Google Scholar] [CrossRef]
- Blaga, G.V.; Chițescu, C.L.; Lisă, E.L.; Dumitru, C.; Vizireanu, C.; Borda, D. Antifungal Residues Analysis in Various Romanian Honey Samples Analysis by High Resolution Mass Spectrometry. J. Environ. Sci. Health Part B Pestic. Food Contam. Agric. Wastes 2020, 55, 484–494. [Google Scholar] [CrossRef] [PubMed]
- Regulation (EC) No 396/2005. Maximum Residue Levels of Pesticides in/on Food and Feed of Plant and Animal Origin and Amending Council Directive 91/414/EEC. Off. J. Eur. Union 2005, L70, 3–1766. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:2005R0396:20121026:EN:PDF (accessed on 4 April 2021).
- Baša Česnik, H.; Kmecl, V.; Velikonja Bolta, Š. Pesticide and Veterinary Drug Residues in Honey—Validation of Methods and a Survey of Organic and Conventional Honeys from Slovenia. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2019, 36, 1358–1375. [Google Scholar] [CrossRef] [PubMed]
- Bommuraj, V.; Chen, Y.; Klein, H.; Sperling, R.; Barel, S.; Shimshoni, J.A. Pesticide and Trace Element Residues in Honey and Beeswax Combs from Israel in Association with Human Risk Assessment and Honey Adulteration. Food Chem. 2019, 299, 125123. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Song, M.; Wang, K.; Fang, X.; Peng, W.; Wu, L.; Xue, X. Detection of Acacia Honey Adulteration with High Fructose Corn Syrup through Determination of Targeted α-Dicarbonyl Compound Using Ion Mobility-Mass Spectrometry Coupled with UHPLC-MS/MS. Food Chem. 2021, 129312. [Google Scholar] [CrossRef] [PubMed]
- Chalupová, M.; Rojík, S.; Kotouĉková, H.; Kauerová, L. Food Labels (Quality, Origin, and Sustainability): The Experience of Czech Producers. Sustainability 2021, 13, 318. [Google Scholar] [CrossRef]
Geographical Origin | Honey Type | Analytical Method/Unit | Values/Unit | Reference |
---|---|---|---|---|
China | Amorpha fruticosa L. honey | DPPH (IC50) | 100.41 ± 15.35 mg/mL | [59] |
Romania | Thyme | DPPH assay | 67.3% | [21] |
Mint | 74.03% | |||
Raspberry | 79.05% | |||
Sunflower | 68.03% | |||
Polyflower | 70.7% | |||
Heather | [134] | |||
Honeydew | DPPH assay FRAP assay DPPH assay (IC50) | 4.39 mmol Trolox/g 10.92 μmol Fe2+/g 3.93 ± 0.6% | [135] | |
Iran | Saffron | DPPH assay FRAP assay | 82.4 ± 7.4% 1247.5 ± 13.5 μM | [29] |
Sunflower | 45.77 ± 2.16% 309.7 ± 24.1 μM | |||
Serbia | Acacia honey | ABTS assay DPPH assay | 26.72 ± 0.99 mg Trolox/kg honey 8.36 ± 0.42 mg Trolox/kg honey | [136] |
Polyforal honey | 37.02 ± 0.86 mg Trolox/kg honey 11.97 ± 0.35 mg Trolox/kg honey | |||
Forest honey | 594.77 ± 38.30 mg Trolox/kg honey 260.77 ± 0.45 mg Trolox/kg honey | |||
Brazil | Eucalyptus spp. | ORAC assay DPPH assay (EC50) FRAP assay | 3.41–18.48 µmol ET/g honey 25.4–105.3 mg/mL honey 0.4–2.11 µmol ET/g honey | [88] |
Polyfloral | 2.8–10.10.68 µmol ET/g honey 37.6–139.07 mg/mL honey 0.5–1.76 µmol ET/g honey | |||
Turkey | 23 monofloral honey samples | (a) TPC assay (b) DPPH assay (c) FRAP assay (d) β-Karoten assay | (a) 470.70 ± 7.43 and 34.37 ± 0.44 mg/100 g GAE (b) 29.07 ± 1.42 mg/mL (c) 0.0022–0.0091 mg/100 g honey (d) 32.09 and 94.87% OE | [137] |
Acacia | DPPH assay (EC50) FRAP assay | 152.40 ± 62.004 mg/mL 0.64 ± 0.34 μmol FeSO47H2O/g | [98] | |
Astragalus | 123.56 ± 25.12 mg/mL 0.66 ± 0.74 μmol FeSO47H2O/g | |||
Heather | 27.84 ± 13.20 mg/mL 1.42 ± 0.28 μmol FeSO47H2O/g | |||
Rhododendron | 78.06 ± 28.65 mg/mL 0.67 ± 0.22 μmol FeSO47H2O/g | |||
Italy (Sicily) | Dill | DPPH assay FRAP assay | 114.2–238.4 µmol ET/100 g 159.3–173.6 mg AAE/100 g | [138] |
Eucalyptus globes | 180.6–194.3 µmol ET/100 g 62.8–75.2 mg AAE/100 g | |||
Ferula | 114.2–150.4 µmol ET/100 g 93.7–110.2 mg AAE/100 g | |||
India | Sesamum indicum | DPPH assay (EC50) FRAP assay | 39.5 ± 0.4 mg/mL honey 2.75 × 106 ± 4.8 µmol Fe(II)/L | [139] |
Geographical Origin | Honey Type | Analytical Method/Unit | Sample | Values/Unit | Reference |
---|---|---|---|---|---|
Ukraine | Brassica spp. | Microdilution method | (a) S. aureus—CCM 4223 (b) L. monocytogenes—ATCC 7644 (c) Sal. enterica Serovar Typhimurium—CCM 3807 (d) E. coli—ATCC 25922 | (a) 0.188–0.375g/mL MIC (b) 0.188g/mL MIC (c) 0.188–0.375g/mL MIC (d) 0.375g/mL MIC | [144] |
Helianthus spp. | (a) 0.094–0.375g/mL MIC (b) 0.094–0.375g/mL MIC (c) 0.094–0.375g/mL MIC (d) 0.188–0.375g/mL MIC | ||||
Robinia spp. | (a) 0.188–0.375g/mL MIC (b) 0.188–0.375g/mL MIC (c) 0.188–0.750g/mL MIC (d) 0.188–0.750g/mL MIC | ||||
Serbia | Linden | Microdilution method | E. coli—ATCC 25922 S. aureus—ATCC 25923 C. albicans—ATCC 10231 | 46.1–92.2% MIC 0.01–39.7% MIC 0.01–44.8% MIC | [41] |
Honeydew | 5.0–40.3% MIC 39.7–67.7% MIC 0.01–12.2% MIC | ||||
Acacia | 68.1–70.0% MIC 21.8–63.0% MIC 0.01–13.8% MIC | ||||
Slovakia | Wildflower honeys (WH) | MIC method | S. aureus—CCM4223 P. aeruginosa—CCM1960 | WH > AH > RH MIC < 20% | [81] |
Acacia honeys (AH) | |||||
Rapeseed honeys (RH) | |||||
China New Zealand | Buckwheat honey (BH) Manuka honey (MH) | Agar well-diffusion method | S. aureus P. aeruginosa | <5–60% w/v honey no inhibition for both samples 70–80% w/v honey BH>MH 90–100% w/v honey MH>BH (a) > (b) | [169] |
Broth microdilution method | (22.5%) MICs for both honey samples | ||||
Iran | Eucalyptus spp. | Disc-diffusion method | E. faecalis—ATCC 11700 S. aureus—ATCC 25923 E. coli—ATCC 25922 P. aeruginosa—ATCC 27853 | 12.0–15.0 mm IZ 10.0–11.0 mm of IZ 8.0–9.0 mm IZ <7.00 mm IZ | [157] |
India | Sesamum indicum honey | Agar well-diffusion method | E. coli S. Typhi S. Typhimurium | 15 mm MIC 12.5 mm MIC 12.5 mm MIC | [139] |
Romania | Heather honey | Disc-diffusion | S. aureus—ATCC 6538P B. cereus—ATCC 14579 P E. coli—ATCC 10536 P. aeruginosa—ATCC 27853 Sal. enteritidis ATCC—13076 Sal. typhi—ATCC—14028 | 9–11mm IZ 9–11 mm IZ 9–11 mm IZ 10–12 mm IZ 10–12 mm IZ 9–10 mm IZ | [134] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cucu, A.-A.; Baci, G.-M.; Moise, A.R.; Dezsi, Ş.; Marc, B.D.; Stângaciu, Ş.; Dezmirean, D.S. Towards a Better Understanding of Nutritional and Therapeutic Effects of Honey and Their Applications in Apitherapy. Appl. Sci. 2021, 11, 4190. https://doi.org/10.3390/app11094190
Cucu A-A, Baci G-M, Moise AR, Dezsi Ş, Marc BD, Stângaciu Ş, Dezmirean DS. Towards a Better Understanding of Nutritional and Therapeutic Effects of Honey and Their Applications in Apitherapy. Applied Sciences. 2021; 11(9):4190. https://doi.org/10.3390/app11094190
Chicago/Turabian StyleCucu, Alexandra-Antonia, Gabriela-Maria Baci, Adela Ramona Moise, Ştefan Dezsi, Bianca Dana Marc, Ştefan Stângaciu, and Daniel Severus Dezmirean. 2021. "Towards a Better Understanding of Nutritional and Therapeutic Effects of Honey and Their Applications in Apitherapy" Applied Sciences 11, no. 9: 4190. https://doi.org/10.3390/app11094190