Sharing Soil and Building Geophysical Data for Seismic Characterization of Cities Using CLARA WebGIS: A Case Study of Matera (Southern Italy)
Abstract
:1. Introduction
2. CLARA WebGIS: Data Sources
2.1. Open Data
2.2. Pre-Existing Data
2.3. CLARA Data
2.3.1. Ground-Based Geophysical Data
Soil HVNSR
Building HVNSR
2.3.2. Digital Surface Model from Satellite Data
3. CLARA WebGIS Products
3.1. Soil Isofrequency, Soil Iso-Amplitude, and Building Frequency Distribution Maps
3.2. Soil-Building Resonance Map
3.3. Digital Surface Model and Building Height Rasters
4. Discussion
CLARA WebGIS Potential and Perspectives
5. Conclusions
- the estimation of fundamental resonance frequencies for all urban soils;
- the estimation of the main vibrational frequencies for 4043 overlying buildings;
- the resonance effect of each building with respect to the relative foundation soil;
- the DSM generated using satellite imagery composed of a WorldView-3 stereo pair, a GeoEye-1 image, and a building height map obtained from the produced DSM and RSDI open data.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations. 2014 Revision of the World Urbanization Prospects. 2014. Available online: https://www.un.org/en/development/desa/publications/2014-revision-world-urbanization-prospects.html (accessed on 31 March 2021).
- Steffen, W.; Sanderson, A.; Tyson, P.; Jäger, J.; Matson, P.; Moore, B.; Oldfield, F.; Richardson, K.; Schellnhuber, H.J.; Turner, B.L.; et al. Global Change and the Earth System; Global Change—The IGBP Series; Springer: Berlin/Heidelberg, Germany, 2005; ISBN 978-3-540-26594-8. [Google Scholar]
- United Nations Office for Disaster Risk Reduction. Sendai Framework for Disaster Risk Reduction 2015–2030. Available online: https://www.undrr.org/publication/sendai-framework-disaster-risk-reduction-2015-2030 (accessed on 31 March 2021).
- SDGS. Transforming Our World: The 2030 Agenda for Sustainable Development | Department of Economic and Social Affairs. Available online: https://sdgs.un.org/2030agenda (accessed on 30 March 2021).
- European Comission. The Urban Agenda for the EU—Regional Policy—European Commission. Available online: https://ec.europa.eu/regional_policy/en/policy/themes/urban-development/agenda/ (accessed on 31 March 2021).
- Lapenna, V. Resilient and sustainable cities of tomorrow: The role of applied geophysics. Boll. Geofis. Teor. Appl. 2017, 58, 237–251. [Google Scholar] [CrossRef]
- Bellanova, J.; Calamita, G.; Catapano, I.; Ciucci, A.; Cornacchia, C.; Gennarelli, G.; Giocoli, A.; Fisangher, F.; Ludeno, G.; Morelli, G.; et al. GPR and ERT Investigations in Urban Areas: The Case-Study of Matera (Southern Italy). Remote Sens. 2020, 12, 1879. [Google Scholar] [CrossRef]
- Gallipoli, M.; Calamita, G.; Tragni, N.; Pisapia, D.; Lupo, M.; Mucciarelli, M.; Stabile, T.; Perrone, A.; Amato, L.; Izzi, F.; et al. Evaluation of soil-building resonance effect in the urban area of the city of Matera (Italy). Eng. Geol. 2020, 272, 105645. [Google Scholar] [CrossRef]
- Lapenna, V. CLoud plAtform and smart underground imaging for natural risk assessment in urban areas: The Clara project. In Proceedings of the SEG 2019 Workshop: Geophysics for Smart City Development, Beijing, China, 29–31 July 2019; Society of Exploration Geophysicists, 2019; p. 18. [Google Scholar] [CrossRef]
- Massolino, G.; Sandron, D.; Gallipoli, M.R.; Rebez, A.; Mucciarelli, M.; Stabile, T.A. Ambient Vibration Measures on Strategic Buildings in Matera in the Framework of the CLARA-Smart Cities Project ESC2016-591. In Proceedings of the 2016 35th General Assembly of the European Seismological Commission, Trieste, Italy, 4–10 September 2016. [Google Scholar]
- Shi, X.; Yang, G.; Yu, D.; Xu, S.; Warner, E.D.; Petersen, G.W.; Sun, W.; Zhao, Y.; Easterling, W.E.; Wang, H. A WebGIS system for relating genetic soil classification of China to soil taxonomy. Comput. Geosci. 2010, 36, 768–775. [Google Scholar] [CrossRef]
- Manna, P.; Bonfante, A.; Colandrea, M.; Di Vaio, C.; Langella, G.; Marotta, L.; Mileti, F.A.; Minieri, L.; Terribile, F.; Vingiani, S.; et al. A geospatial decision support system to assist olive growing at the landscape scale. Comput. Electron. Agric. 2020, 168, 105143. [Google Scholar] [CrossRef]
- (PDF) WebGIS e Divulgazione del Dato Archeologico con Software Open Source. Il Progetto “Siponto Aperta" | Ginevra Panzarino—Academia.edu. Available online: https://www.academia.edu/20286522/WebGIS_e_divulgazione_del_dato_archeologico_con_software_open_source_Il_progetto_Siponto_aperta_ (accessed on 31 March 2021).
- Colucci, E.; Spanò, A.; Chiabrando, F. WebGIS tools to disseminate archaeological landscape memory. Territ. Ital. 2017, 2, 3. [Google Scholar] [CrossRef]
- Filocamo, F.; Di Paola, G.; Mastrobuono, L.; Rosskopf, C.M. MoGeo, a Mobile Application to Promote Geotourism in Molise Region (Southern Italy). Resources 2020, 9, 31. [Google Scholar] [CrossRef] [Green Version]
- Müller, M.; Vorogushyn, S.; Maier, P.; Thieken, A.H.; Petrow, T.; Kron, A.; Büchele, B.; Wächter, J. CEDIM Risk Explorer—A map server solution in the project “Risk Map Germany”. Nat. Hazards Earth Syst. Sci. 2006, 6, 711–720. [Google Scholar] [CrossRef]
- Frigerio, S.; Van Westen, C.J. RiskCity and WebRiskCity: Data Collection, Display, and Dissemination in a Multi-Risk Training Package. Cartogr. Geogr. Inf. Sci. 2010, 37, 119–135. [Google Scholar] [CrossRef]
- Frigerio, S.; Kappes, M.; Blahůt, J.; Skupinski, G. The use of geo-information and modern visualization tools for risk communication. In Advances in Natural and Technological Hazards Research; Springer: Berlin/Heidelberg, Germany, 2014; Volume 34, pp. 383–407. [Google Scholar]
- Fago, P.; Pignatelli, C.; Piscitelli, A.; Milella, M.; Venerito, M.; Sansò, P.; Mastronuzzi, G. WebGIS for Italian tsunami: A useful tool for coastal planners. Mar. Geol. 2014, 355, 369–376. [Google Scholar] [CrossRef]
- Aye, Z.C.; Sprague, T.; Cortes, V.J.; Prenger-Berninghoff, K.; Jaboyedoff, M.; Derron, M.-H. A collaborative (web-GIS) framework based on empirical data collected from three case studies in Europe for risk management of hydro-meteorological hazards. Int. J. Disaster Risk Reduct. 2016, 15, 10–23. [Google Scholar] [CrossRef] [Green Version]
- Aye, Z.C.; Jaboyedoff, M.; Derron, M.H.; Van Westen, C.J.; Hussin, H.Y.; Ciurean, R.L.; Frigerio, S.; Pasuto, A. An interactive web-GIS tool for risk analysis: A case study in the Fella River basin, Italy. Nat. Hazards Earth Syst. Sci. 2016, 16, 85–101. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Huang, R.; Ju, N.; Xu, Q.; He, C. 3D WebGIS-based platform for debris flow early warning: A case study. Eng. Geol. 2015, 197, 57–66. [Google Scholar] [CrossRef]
- Thiebes, B.; Bell, R.; Glade, T.; Jäger, S.; Anderson, M.; Holcombe, L. A WebGIS decision-support system for slope stability based on limit-equilibrium modelling. Eng. Geol. 2013, 158, 109–118. [Google Scholar] [CrossRef]
- Oppikofer, T.; Nordahl, B.; Bunkholt, H.; Nicolaisen, M.; Jarna, A.; Iversen, S.; Hermanns, R.L.; Böhme, M.; Molina, F.X.Y. Database and online map service on unstable rock slopes in Norway—From data perpetuation to public information. Geomorphology 2015, 249, 69–81. [Google Scholar] [CrossRef]
- Salvati, P.; Balducci, V.; Bianchi, C.; Guzzetti, F.; Tonelli, G. A WebGIS for the dissemination of information on historical landslides and floods in Umbria, Italy. GeoInformatica 2009, 13, 305–322. [Google Scholar] [CrossRef]
- Pessina, V.; Meroni, F. A WebGis tool for seismic hazard scenarios and risk analysis. Soil Dyn. Earthq. Eng. 2009, 29, 1274–1281. [Google Scholar] [CrossRef] [Green Version]
- Bozzoni, F.; Famà, A.; Lai, C.G.; Mirfattah, S.A. Seismic risk assessment of seaports using GIS: The port of Gioia Tauro in Southern Italy. In Proceedings of the 33rd PIANC World Congress, San Francisco, CA, USA, 1–5 June 2014. [Google Scholar]
- Francini, M.; Artese, S.; Gaudio, S.; Palermo, A.; Viapiana, M.F. To support urban emergency planning: A GIS instrument for the choice of optimal routes based on seismic hazards. Int. J. Disaster Risk Reduct. 2018, 31, 121–134. [Google Scholar] [CrossRef]
- Rovithis, E.; Makra, K.; Kirtas, E.; Manesis, C.; Bliziotis, D.; Konstantinidou, K. Field Monitoring of Strong Ground Motion in Urban Areas: The Kalochori Accelerometric Network (KAN), Database and Web-GIS Portal. Earthq. Spectra 2018, 34, 471–501. [Google Scholar] [CrossRef]
- Scibek, J. Multidisciplinary database of permeability of fault zones and surrounding protolith rocks at world-wide sites. Sci. Data 2020, 7, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Di Felice, P.; Spadoni, M. MAHA: A comprehensive system for the storage and visualization of subsoil data for seismic microzonation. Comput. Geosci. 2013, 54, 113–121. [Google Scholar] [CrossRef]
- Bard, P.Y.; Gueguen, G.; Wirgin, A. A note on the seismic wavefield radiated from large building structures into soft soils. In Proceedings of the 11th World Conference on Earthquake Engineering, Acapulco, Mexico, 23–28 June 1996. [Google Scholar]
- Tsogka, C.; Wirgin, A. Simulation of seismic response in an idealized city. Soil Dyn. Earthq. Eng. 2003, 23, 391–402. [Google Scholar] [CrossRef] [Green Version]
- Mucciarelli, M. Analysis of RC Building Dynamic Response and Soil-Building Resonance Based on Data Recorded during a Damaging Earthquake (Molise, Italy, 2002). Bull. Seism. Soc. Am. 2004, 94, 1943–1953. [Google Scholar] [CrossRef]
- Mucciarelli, M.; Bianca, M.; DiTommaso, R.; Gallipoli, M.R.; Masi, A.; Milkereit, C.; Parolai, S.; Picozzi, M.; Vona, M. Far field damage on RC buildings: The case study of Navelli during the L’Aquila (Italy) seismic sequence, 2009. Bull. Earthq. Eng. 2010, 9, 263–283. [Google Scholar] [CrossRef]
- Laurenzano, G.; Priolo, E.; Gallipoli, M.R.; Mucciarelli, M.; Ponzo, F.C. Effect of Vibrating Buildings on Free-Field Motion and on Adjacent Structures: The Bonefro (Italy) Case History. Bull. Seism. Soc. Am. 2010, 100, 802–818. [Google Scholar] [CrossRef]
- Mucciarelli, M.; Bianca, M.; Ditommaso, R.; Vona, M.; Gallipoli, M.R.; Giocoli, A.; Piscitelli, S.; Rizzo, E.; Picozzi, M. Peculiar earthquake damage on a reinforced concrete building in San Gregorio (L’Aquila, Italy): Site effects or building defects? Bull. Earthq. Eng. 2011, 9, 825–840. [Google Scholar] [CrossRef]
- Piro, A.; De Silva, F.; Parisi, F.; Di Santolo, A.S.; Silvestri, F. Effects of soil-foundation-structure interaction on fundamental frequency and radiation damping ratio of historical masonry building sub-structures. Bull. Earthq. Eng. 2020, 18, 1187–1212. [Google Scholar] [CrossRef]
- Mucciarelli, M.; Gallipoli, M.R.; Ponzo, F.; Dolce, M. Seismic waves generated by oscillating buildings: Analysis of a release test. Soil Dyn. Earthq. Eng. 2003, 23, 255–262. [Google Scholar] [CrossRef]
- Clouteau, D.; Aubry, D. Modifications of the Ground Motion in Dense Urban Areas. J. Comput. Acoust. 2001, 9, 1659–1675. [Google Scholar] [CrossRef]
- Gueguen, P. Site-City Seismic Interaction in Mexico City-Like Environments: An Analytical Study. Bull. Seism. Soc. Am. 2002, 92, 794–811. [Google Scholar] [CrossRef]
- Groby, J.; Tsogka, C.; Wirgin, A. Simulation of seismic response in a city-like environment. Soil Dyn. Earthq. Eng. 2005, 25, 487–504. [Google Scholar] [CrossRef] [Green Version]
- Kham, M.; Semblat, J.F.; Bard, P.-Y.; Dangla, P. Seismic Site-City Interaction: Main Governing Phenomena through Simplified Numerical Models. Bull. Seism. Soc. Am. 2006, 96, 1934–1951. [Google Scholar] [CrossRef]
- Ghergu, M.; Ionescu, I.R. Structure–soil–structure coupling in seismic excitation and “city effect.”. Int. J. Eng. Sci. 2009, 47, 342–354. [Google Scholar] [CrossRef]
- Padrón, L.; Aznárez, J.; Maeso, O. Dynamic structure–soil–structure interaction between nearby piled buildings under seismic excitation by BEM–FEM model. Soil Dyn. Earthq. Eng. 2009, 29, 1084–1096. [Google Scholar] [CrossRef] [Green Version]
- Schwan, L.; Boutin, C.; Padrón, L.; Dietz, M.; Bard, P.-Y.; Taylor, C. Site-city interaction: Theoretical, numerical and experimental crossed-analysis. Geophys. J. Int. 2016, 205, 1006–1031. [Google Scholar] [CrossRef] [Green Version]
- Agea-Medina, N.; Kharazian, A.; Molina, S.; Galiana-Merino, J.; Soler-Llorens, J.L. Fundamental period relationship of RC-buildings in Alicante province (Spain). A first step to soil-structure resonance maps. In Proceedings of the XI International Conference of Structural Dynamics, Athens, Greece, 23–26 November 2020. [Google Scholar]
- Pinzón, L.A.; Pujades, L.G.; Macau, A.; Figueras, S. Increased seismic hazard in Barcelona (Spain) due to soil-building resonance effects. Soil Dyn. Earthq. Eng. 2019, 117, 245–250. [Google Scholar] [CrossRef]
- Tallini, M.; Sardo, L.L.; Spadi, M. Seismic site characterisation of Red Soil and soil-building resonance effects in L’Aquila downtown (Central Italy). Bull. Int. Assoc. Eng. Geol. 2020, 79, 4021–4034. [Google Scholar] [CrossRef]
- Brunn, A.; Weidner, U. Hierarchical Bayesian nets for building extraction using dense digital surface models. ISPRS J. Photogramm. Remote. Sens. 1998, 53, 296–307. [Google Scholar] [CrossRef]
- Wu, C.-D.; Lung, S.-C.C.; Jan, J.-F. Development of a 3-D urbanization index using digital terrain models for surface urban heat island effects. ISPRS J. Photogramm. Remote Sens. 2013, 81, 1–11. [Google Scholar] [CrossRef]
- Warth, G.; Braun, A.; Bödinger, C.; Hochschild, V.; Bachofer, F. DSM-based identification of changes in highly dynamic urban agglomerations. Eur. J. Remote Sens. 2019, 52, 322–334. [Google Scholar] [CrossRef] [Green Version]
- Fratarcangeli, F.; Murchio, G.; Di Rita, M.; Nascetti, A.; Capaldo, P. Digital surface models from ZiYuan-3 triplet: Performance evaluation and accuracy assessment. Int. J. Remote Sens. 2016, 37, 3505–3531. [Google Scholar] [CrossRef]
- Lastilla, L.; Belloni, V.; Ravanelli, R.; Crespi, M. DSM Generation from Single and Cross-Sensor Multi-View Satellite Images Using the New Agisoft Metashape: The Case Studies of Trento and Matera (Italy). Remote Sens. 2021, 13, 593. [Google Scholar] [CrossRef]
- DBGT & CTR | RSDI. Available online: http://rsdi.regione.basilicata.it/dbgt-ctr/ (accessed on 31 March 2021).
- RNC Rilevazione Numeri Civici ed Edifici. Dataset—OpenData Matera. Available online: http://dati.comune.matera.it/dataset/rnc-rilevazione-numeri-civici-ed-edifici (accessed on 31 March 2021).
- Italian National Institute of Statistics, ISTAT. Territorial Bases and Census Variables. 2018. (Original Name in Italian: Basi Territoriali e Variabili Censuarie). Available online: https://www.istat.it/it/archivio/104317 (accessed on 31 March 2021).
- SESAME Project. Guidelines for the Implementation of the H/V Spectral Ratio Technique on Ambient Vibrations. In: Measurements, Processing and Interpretation, (WP12, Deliverable N. D23.12). 2004. Available online: http://sesame-fp5.obs.ujf-renoble.fr/Papers/HV_User_Guidelines.pdf (accessed on 31 March 2021).
- Gallipoli, M.R.; Mucciarelli, M.; Šket-Motnikar, B.; Zupanćić, P.; Gosar, A.; Prevolnik, S.; Herak, M.; Stipčević, J.; Herak, D.; Milutinović, Z.; et al. Empirical estimates of dynamic parameters on a large set of European buildings. Bull. Earthq. Eng. 2009, 8, 593–607. [Google Scholar] [CrossRef]
- Albarello, D.; Cesi, C.; Eulilli, V.; Guerrini, F.; Lunedei, E.; Paolucci, E.; Pileggi, D.; Puzzilli, L.M. The contribution of the ambient vibration prospecting in seismic microzoning: An example from the area damaged by the April 6, 2009 L’Aquila (Italy) earthquake. Boll. Geofis. Teor. Appl. 2011, 52, 513–538. [Google Scholar] [CrossRef]
- Comune di Matera. Piano Strutturale Comunale. Available online: https://www.comune.matera.it/piano-strutturale-comunale (accessed on 31 March 2021).
- Ivona, A.; Rinella, A. Glocal Tourism and Resilient Cities: The Case of Matera “European Capital of Culture 2019.”. Sustainability 2019, 11, 4118. [Google Scholar] [CrossRef] [Green Version]
- Agisoft PhotoScan Software. Agisoft Metashape. Available online: https://www.agisoft.com/ (accessed on 30 January 2020).
- Nascetti, A.; Division of Geoinformatics, KTH Royal Institute of Technology, Stockholm, Sweden; Crespi, M.; Geodesy and Geomatics Division, DICEA, Sapienza University of Rome, Rome, Italy. Personal communication, 2020.
- Pavlis, N.K.; Holmes, S.A.; Kenyon, S.C.; Factor, J.K. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J. Geophys. Res. Space Phys. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Wessel, B.; Huber, M.; Wohlfart, C.; Marschalk, U.; Kosmann, D.; Roth, A. Accuracy assessment of the global TanDEM-X Digital Elevation Model with GPS data. ISPRS J. Photogramm. Remote Sens. 2018, 139, 171–182. [Google Scholar] [CrossRef]
- Bossard, M.; Feranec, J.; Otahel, J.; Steenmans, C. CORINE Land Cover Technical Guide-Addendum 2000; European Environmental Agency: Copenhagen, Denmark, 2000.
- Valensise, G.; Tarabusi, G.; Guidoboni, E.; Ferrari, G. The forgotten vulnerability: A geology- and history-based approach for ranking the seismic risk of earthquake-prone communities of the Italian Apennines. Int. J. Disaster Risk Reduct. 2017, 25, 289–300. [Google Scholar] [CrossRef]
- Guidoboni, E. Disastri e ricostruzioni nella storia d’Italia: L’azzardo sismico in un nodo storico non risolto. In Building Back Better: Idee e Percorsi per la Costruzione di Comunità Resilienti, 1st ed.; Carocci Editore S.p.A.: Rome, Italy, 2017; Volume 1, pp. 31–37. [Google Scholar]
- Decreto Ministeriale n. 329 del 6 Agosto 2020 | mit. Available online: https://www.mit.gov.it/normativa/decreto-ministeriale-n-329-del-6-agosto-2020 (accessed on 31 March 2021).
- SM Working Group. Guidelines for SEISMIC MICROZONATION. Available online: http://www.protezionecivile.gov.it/httpdocs/cms/attach_extra/GuidelinesForSeismicMicrozonation.pdf (accessed on 31 March 2021).
CLARA | Vector Geometry | # | Download |
---|---|---|---|
OD Age of construction | point | 2648 | - |
OD Typology | point | 2648 | - |
OD State of conservation | point | 2648 | - |
RSDI Height max | point | 4522 | - |
RSDI edifici is | polygon | 11,802 | - |
RSDI unità volumetrica (volumetric unit) | polygon | 25,497 | - |
ISTAT Sassi area | polygon | 1 | - |
ISTAT Census variables | polygon | 318 | - |
Calcarenite Sampling Station | point | 8 | * |
Down hole | point | 18 | * |
HVNSR soil | point | 117 (10) | ** (*) 1 |
HVNSR buildings | point | 96 (34) | ** (*) |
MASW | point | 8 | * |
Mechanical Surveys | point | 234 | * |
Seismic Refraction Surveys | point | 7 | * |
Surface features | point | 2 | - |
Geomorphology | polygon | 301 | - |
Geology | polygon | 13 | - |
MOPS | polygon | 52 | - |
Building resonance level | polygon | 4043 | - |
Building frequency | polygon | 4043 | - |
Soil isofrequency map | polygon | 7652 | - |
Soil isoamplitude map | polygon | 7652 | - |
DSM m (Orthometric Heights) | raster | - | - |
DSM blg Height | raster | - | - |
Tile | Mean [m] | Std. Dev. [m] | RMSE [m] | Median [m] | NMAD [m] | LE68 [m] | LE90 [m] | Number of Pixels |
---|---|---|---|---|---|---|---|---|
Overall | −1.1 | 2.4 | 2.7 | −0.8 | 1.1 | 1.2 | 3.0 | 119,865,099 |
Artificial surfaces | −1.3 | 3.7 | 3.9 | −0.6 | 1.5 | 2.0 | 5.9 | 34,110,194 |
Agricultural areas | −0.8 | 1.6 | 1.8 | −0.8 | 0.9 | 0.9 | 1.8 | 68,037,393 |
Semi-natural areas | −1.8 | 1.9 | 2.6 | −1.4 | 1.0 | 1.2 | 2.7 | 17,717,512 |
Buildings | 1.2 | 3.4 | 3.7 | 0.8 | 2.3 | 2.6 | 5.4 | 8,110,798 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tragni, N.; Calamita, G.; Lastilla, L.; Belloni, V.; Ravanelli, R.; Lupo, M.; Salvia, V.; Gallipoli, M.R. Sharing Soil and Building Geophysical Data for Seismic Characterization of Cities Using CLARA WebGIS: A Case Study of Matera (Southern Italy). Appl. Sci. 2021, 11, 4254. https://doi.org/10.3390/app11094254
Tragni N, Calamita G, Lastilla L, Belloni V, Ravanelli R, Lupo M, Salvia V, Gallipoli MR. Sharing Soil and Building Geophysical Data for Seismic Characterization of Cities Using CLARA WebGIS: A Case Study of Matera (Southern Italy). Applied Sciences. 2021; 11(9):4254. https://doi.org/10.3390/app11094254
Chicago/Turabian StyleTragni, Nicola, Giuseppe Calamita, Lorenzo Lastilla, Valeria Belloni, Roberta Ravanelli, Michele Lupo, Vito Salvia, and Maria Rosaria Gallipoli. 2021. "Sharing Soil and Building Geophysical Data for Seismic Characterization of Cities Using CLARA WebGIS: A Case Study of Matera (Southern Italy)" Applied Sciences 11, no. 9: 4254. https://doi.org/10.3390/app11094254
APA StyleTragni, N., Calamita, G., Lastilla, L., Belloni, V., Ravanelli, R., Lupo, M., Salvia, V., & Gallipoli, M. R. (2021). Sharing Soil and Building Geophysical Data for Seismic Characterization of Cities Using CLARA WebGIS: A Case Study of Matera (Southern Italy). Applied Sciences, 11(9), 4254. https://doi.org/10.3390/app11094254