Fuzzy Logic Controller for Automating Electrical Conductivity and pH in Hydroponic Cultivation
Abstract
:1. Introduction
2. Nutrition Solution Regulation System
2.1. System Architecture
2.2. Design of Hydroponic Fuzzy Controller
3. Experimental Environment
3.1. Experimental Control
3.2. Modulation of the Initial Nutrient Solution
4. Experiments and Results
4.1. Nutrient Solution Rise and Fall Test
4.2. Control Results Using the Fuzzy Control Method
4.3. Hydroponic Cultivation Experiment
4.3.1. Controlled Plants
4.3.2. Uncontrolled Plants
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nilton, N.C.; Diene, M.B.; Karla, G.; Leonardo, R.H.; Marinaldo, F.Z. Cooling and concentration of nutrient solution in hydroponic lettuce crop. Hortic. Bras. 2013, 31, 287–292. [Google Scholar]
- Padma, N.C.; Nyoman, K.W.I.; Komang, A.A.A.I.; Agus, H. Hommons: Hydroponic management and monitoring system for an IOT based NFT farm using web technology. In Proceedings of the 2017 5th International Conference on Cyber and IT Service Management (CITSM), Bali, Indonesia, 8–10 August 2017; pp. 1–6. [Google Scholar]
- Robert, G.A.; Schmidt, L.S. Nutrient analysis of selected commercial organic fertilizers for greenhouse lettuce production. In Greenhouse Use of Organic Fertilizers and Composts, Floriculture Research Report; University of Kentucky: Lexington, KY, USA, 2019; pp. 1–4. [Google Scholar]
- Ahmad, N.H.; Robiah, A.; Norliza, M. WSN application in LED plant factory using continuous lighting (CL) method. In Proceedings of the 2015 IEEE Conference on Open Systems (ICOS), Melaka, Malaysia, 24–26 August 2015; pp. 56–61. [Google Scholar]
- Chanya, P.; Pantita, S.; Wannisa, S.; Thanwadee, S. DIY sensor-based automatic control mobile application for hydroponics. In Proceedings of the 2016 Fifth ICT International Student Project Conference (ICT-ISPC), Nakhon Pathom, Thailand, 27–28 May 2016; pp. 57–60. [Google Scholar]
- Dian, P.; Andik, Y. Implementasi fuzzy logic controller untuk mengatur pH nutrisi pada sistem hidroponik nutrient film technique (NFT). J. Nas. Tek. Elektro 2016, 5, 278–289. [Google Scholar]
- Saaid, M.F.; Sanuddin, A.; Ali, M.; Yassin, M.S.A.I.M. Automated pH controller system for hydroponic cultivation. In Proceedings of the 2015 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE), Kedah, Malaysia, 12–14 April 2015; pp. 186–190. [Google Scholar]
- Nakaoka, S.; Yamada, A. A system for measuring the photosynthetic activity of water plants based on carbon dioxide absorption. In Proceedings of the 2012 International Symposium on Micro-NanoMechatronics and Human Science (MHS), Aichi, Japan, 4–7 November 2012; pp. 29–31. [Google Scholar]
- Saparamadu, J.S.; Wijesekera, R.D.; Gunawardhana, H.D.; Weerakkody, W.A.P. A low cost nutrient formulation with a buffer for simplified hydroponics systems. J. Hortic. For. 2010, 2, 99–103. [Google Scholar]
- Ju, Y.; Arifur, L.R.; Hossain, A.; Hyung, S.K.; Man, J.K. Characterizing nutrient uptake kinetics for efficient crop production during solanum lycopersicum var. cerasiforme alef. growth in a closed indoor hydroponic system. PLoS ONE 2017, 12, e0177041. [Google Scholar]
- Neil, M.; Tanya, M. Symptoms of Common Nutrient Deficiencies in Hydroponic Lettuce.e-GRO. 1 December 2021. Available online: https://urbanagnews.com/blog/news/symptoms-of-common-nutrient-deficiencies-in-hydroponic-lettuce-by-neil-mattson-and-tanya-merrill (accessed on 27 December 2021).
- El-Kazzaz, K.A.; El-Kazzaz, A.A. Soilless agriculture a new and advanced method for agriculture development: An introduction. Agric. Res. Technol. Open Access J. 2017, 3, 1–10. [Google Scholar]
- Ibrahim, R.; Solahudin, M.; Widodo, S. Control system for nutrient solution of nutrient film technique using fuzzy logic. Telkomnika Indones. J. Electr. Eng. 2015, 13, 1281–1288. [Google Scholar] [CrossRef]
- Yolanda, D.; Hindersah, H.; Hadiatna, F.; Triawan, M.A. Implementation of real-time fuzzy logic control for NFT-based hydroponic system on internet of things environment. In Proceedings of the 2016 IEEE 6th International Conference on System Engineering and Technology, Bandung, Indonesia, 3–4 October 2016; pp. 153–159. [Google Scholar]
- Velazquez-Gonzalez, R.; Gomez-Lemus, T.; Rodriguez, J. A pH process control embedded on a PLC using fuzzy logic. In Proceedings of the 2017 XIII International Engineering Congress, Santiago de Queretaro, Mexico, 15–19 May 2017; pp. 1–6. [Google Scholar]
- Marinelli, M.; Acosta, N.; Toloza, J.; Kornuta, C. Fuzzy control of a germination chamber. J. Comput. Sci. Technol. 2017, 17, 74–78. [Google Scholar]
- Khudoyberdiev, A.; Ahmad, S.; Ullah, I.; Kim, D. An optimization scheme based on fuzzy logic control for efficient energy consumption in hydroponics environment. Energies 2020, 13, 289. [Google Scholar] [CrossRef] [Green Version]
- Biswas, S.; Deka, B.; Dash, S.; Rout, K. IoT-based fuzzy logic-controlled novel and multilingual mobile application for hydroponic farming. In AI, Edge and IoT-Based Smart Agriculture; Academic Press: Cambridge, MA, USA, 2022; pp. 31–42. [Google Scholar]
- Benyezza, H.; Bouhedda, M.; Rebouh, S. Zoning irrigation smart system based on fuzzy control technology and IoT for water and energy saving. J. Clean. Prod. 2021, 302, 127001. [Google Scholar] [CrossRef]
- Xu, J.; Li, R.; Li, Y.; Zhang, Y.; Sun, H.; Ding, X.; Ma, Y. Research on variable-universe fuzzy control technology of an electro-hydraulic hitch system. Processes 2021, 9, 1920. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, W.; Qureshi, W.S.; Gao, C.; Zhang, C.; Li, W. Autonomous navigation for a wolfberry picking robot using visual cues and fuzzy control. Inf. Process. Agric. 2021, 8, 15–26. [Google Scholar] [CrossRef]
ABCD PUMP Output | EC Value | |||||
---|---|---|---|---|---|---|
NM | NS | Z | PS | PM | ||
pH Value | NM | PUMPA PM PUMPB Z PUMPC PM PUMPD Z | PUMPA PS PUMPB Z PUMPC PM PUMPD Z | PUMPA Z PUMPB Z PUMPC PM PUMPD Z | PUMPA Z PUMPB PS PUMPC PM PUMPD Z | PUMPA Z PUMPB PM PUMPC PM PUMPD Z |
NS | PUMPA PM PUMPB Z PUMPC PS PUMPD Z | PUMPA PS PUMPB Z PUMPC PS PUMPD Z | PUMPA PM PUMPB Z PUMPC PS PUMPD Z | PUMPA Z PUMPB PS PUMPC PS PUMPD Z | PUMPA Z PUMPB PM PUMPC PS PUMPD Z | |
Z | PUMPA PM PUMPB Z PUMPC Z PUMPD Z | PUMPA PS PUMPB Z PUMPC Z PUMPD Z | PUMPA Z PUMPB Z PUMPC Z PUMPD Z | PUMPA Z PUMPB PS PUMPC Z PUMPD Z | PUMPA Z PUMPB PM PUMPC PS PUMPD Z | |
PS | PUMPA PM PUMPB Z PUMPC Z PUMPD PS | PUMPA PS PUMPB Z PUMPC Z PUMPD PS | PUMPA Z PUMPB Z PUMPC Z PUMPD PS | PUMPA Z PUMPB PS PUMPC Z PUMPD PS | PUMPA Z PUMPB PM PUMPC Z PUMPD Z | |
PM | PUMPA PM PUMPB Z PUMPC Z PUMPD PM | PUMPA PS PUMPB Z PUMPC Z PUMPD PM | PUMPA PM PUMPB Z PUMPC PM PUMPD Z | PUMPA Z PUMPB PS PUMPC Z PUMPD PM | PUMPA Z PUMPB PM PUMPC Z PUMPD PM |
Name | Parameter | |
---|---|---|
Room Temperature | 24~25 °C | |
Water Temperature | 24~25 °C | |
Water | EC: 0.4 | pH: 8.13 |
Plant | EC | pH |
---|---|---|
Lettuce | 1.0 | 6.3 |
Strawberry | 1.7 | 6.3 |
Broccoli | 2.1 | 6.3 |
Name of Nutrient Solution | Parameter | |
---|---|---|
High EC Solution | EC: 4.5 | pH: 6.12 |
Water | EC: 0.4 | pH: 8.13 |
Acid Solution | EC: 0.4 | pH: 4.0 |
Alkaline Solution | EC: 0.4 | pH: 9.0 |
Name | Parameter | |
---|---|---|
High EC solution | EC: 4.5 | pH: 6.12 |
Water | EC: 0.4 | pH: 8.13 |
Acid solution | EC: 0.4 | pH: 4.0 |
Alkaline solution | EC: 0.4 | pH: 9.0 |
Separately take 250 mL for mixing. | EC: 1.5 | pH: 6.43 |
EC | Rise | Reduce | ||
---|---|---|---|---|
EC | pH | EC | pH | |
Initial Value | 1.5 | 6.43 | 1.5 | 6.44 |
1 | 1.6 | 6.44 | 1.3 | 6.52 |
2 | 1.7 | 6.43 | 1.2 | 6.60 |
3 | 1.9 | 6.43 | 1.1 | 6.70 |
4 | 1.9 | 6.40 | 1.0 | 6.73 |
5 | 2.0 | 6.40 | 1.0 | 6.78 |
6 | 2.2 | 6.39 | 1.0 | 6.82 |
7 | 2.2 | 6.39 | 0.9 | 6.88 |
8 | 2.3 | 6.38 | 0.9 | 6.90 |
9 | 2.4 | 6.37 | 0.9 | 6.95 |
10 | 2.5 | 6.37 | 0.8 | 6.97 |
pH | Rise | Reduce | ||
---|---|---|---|---|
EC | pH | EC | pH | |
Initial Value | 1.5 | 6.44 | 1.5 | 6.44 |
1 | 1.4 | 6.37 | 1.5 | 6.44 |
2 | 1.3 | 6.31 | 1.5 | 6.45 |
3 | 1.3 | 6.28 | 1.5 | 6.46 |
4 | 1.2 | 6.22 | 1.5 | 6.47 |
5 | 1.2 | 6.20 | 1.5 | 6.48 |
6 | 1.1 | 6.17 | 1.5 | 6.49 |
7 | 1.1 | 6.11 | 1.5 | 6.50 |
8 | 1.1 | 6.09 | 1.5 | 6.51 |
9 | 1.0 | 6.07 | 1.5 | 6.52 |
10 | 1.0 | 6.04 | 1.5 | 6.53 |
Date | Number of Plants | Average Number of Leaves | Average Length of Plants (cm) | EC (m/cm) | pH |
---|---|---|---|---|---|
1 Day | 5 | 2.8 | 1.4 | 1.0 | 6.6 |
3 Day | 5 | 3.8 | 2.2 | 1.0 | 6.3 |
5 Day | 5 | 4.0 | 2.96 | 1.0 | 6.3 |
7 Day | 5 | 4.6 | 5.38 | 1.0 | 6.6 |
9 Day | 5 | 5.4 | 6.32 | 1.0 | 6.4 |
11 Day | 5 | 6.4 | 7.8 | 1.0 | 6.4 |
13 Day | 5 | 7.0 | 8.4 | 1.0 | 6.3 |
15 Day | 5 | 7.6 | 10.4 | 1.0 | 6.4 |
17 Day | 5 | 8.4 | 12.2 | 1.0 | 6.4 |
19 Day | 5 | 9.4 | 13.84 | 1.0 | 6.4 |
Date | Number of Plants | Average Number of Leaves | Average Length of Plants (cm) | EC (m/cm) | pH |
---|---|---|---|---|---|
1 Day | 5 | 3 | 1.48 | 0.9 | 6.50 |
3 Day | 5 | 4 | 2.1 | 0.9 | 6.56 |
5 Day | 5 | 4 | 2.82 | 1.1 | 6.52 |
7 Day | 5 | 4.2 | 4.94 | 1.1 | 6.65 |
9 Day | 5 | 5 | 5.88 | 1.1 | 6.68 |
11 Day | 5 | 6 | 6.8 | 1.2 | 6.60 |
13 Day | 5 | 6.8 | 8.58 | 1.2 | 6.62 |
15 Day | 5 | 7.6 | 10.5 | 1.5 | 6.72 |
17 Day | 5 | 8 | 11.9 | 1.1 | 6.82 |
19 Day | 5 | 9 | 12.94 | 1.2 | 7.54 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.-H.; Jeng, S.-Y.; Lin, C.-J. Fuzzy Logic Controller for Automating Electrical Conductivity and pH in Hydroponic Cultivation. Appl. Sci. 2022, 12, 405. https://doi.org/10.3390/app12010405
Chen C-H, Jeng S-Y, Lin C-J. Fuzzy Logic Controller for Automating Electrical Conductivity and pH in Hydroponic Cultivation. Applied Sciences. 2022; 12(1):405. https://doi.org/10.3390/app12010405
Chicago/Turabian StyleChen, Cheng-Hung, Shiou-Yun Jeng, and Cheng-Jian Lin. 2022. "Fuzzy Logic Controller for Automating Electrical Conductivity and pH in Hydroponic Cultivation" Applied Sciences 12, no. 1: 405. https://doi.org/10.3390/app12010405
APA StyleChen, C.-H., Jeng, S.-Y., & Lin, C.-J. (2022). Fuzzy Logic Controller for Automating Electrical Conductivity and pH in Hydroponic Cultivation. Applied Sciences, 12(1), 405. https://doi.org/10.3390/app12010405