Improving Energy Efficiency of Grain Cleaning Technology
Abstract
:1. Introduction
2. Technological Process of ZAV-40 Grain Cleaning Unit
3. Materials and Methods
4. Results and Discussion
- Two-dimensional cross-section of the response surface characterizing the connected capacity and the load coefficient of electric motors (Figure 2) at x1 = 0:P = 21.5 kW; Kl = 0.5 and Wsp. = 0.73 kW·h/t.
- 2.
- Two-dimensional cross-section of the response surface characterizing the unit capacity and the load coefficient of electric motors (Figure 3) at x2 = 0:Q = 31.7 t/h; Kl = 0.39 and Wsp. = 0.94 kW·h/t.
- 3.
- Two-dimensional cross-section of the response surface characterizing the unit capacity and the connected capacity of electric motors (Figure 4) at x3 = 0:Q = 24.7 t/h; P = 4.9 kW and Wsp. = 0.81 kW·h/t.
5. Conclusions
- The conducted experimental and theoretical studies of the technological processes of post-harvest grain treatment on grain cleaning units showed that the energy consumption of the grain cleaning process is the most informative indicator for determining energy saving operating modes of electromechanical systems of grain storage facilities.
- By analysing a priori information, the following were selected as the most significant factors influencing the power capacity of the grain cleaning process: the processing equipment productivity, the connected capacity, and the load factor of the electric power equipment.
- For the first time, the methodology for the optimization of specific electricity consumption on the ZAV-40 grain cleaning unit on production lines using the MEP was developed, the essence of which lies in the application of the MEP theory to the mathematical model of the specified object of study.
- Two-dimensional cross-sections of the response surface of the target function, which were obtained after processing the mathematical model of the ZAV-40 unit, allowed for determination of the optimal factors and rational levels of their variation. It was determined that the minimum specific electricity consumption for the unit in general occurs if the values of the factors most affecting the specific electricity consumption are as follows: Q = 40 t/h; p = 25 kW; Kl = 0.583; Wsp. = 0.894 kW·h/t.
- The recommended scientifically based electricity consumption standards for various technological schemes of wheat grain cleaning on ZAV-40 production lines are as follows:
- −
- one production line with disc separators: Wsp. = 1.347 kW·h/t;
- −
- one production line without disc separators: Wsp. = 0.902 kW·h/t;
- −
- two production lines with disc separators: Wsp. = 1.342 kW·h/t;
- −
- two production lines without disc separators: Wsp. = 0.901 kW·h/t.
- The suggested optimization method for specific electricity consumption can be used while developing scientifically based standards of electricity consumption for new grain-cleaning units produced by industry.
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
ZAV-10–ZAV-50 | Grain cleaning unit (Zernoochistitelnyiy Agregat Voronezhselmash) with production capacity of 10 to 50 t/h |
KZS-10–KZS-50 | Grain cleaning and drying complex (Kompleks Zernoochistitelno-Sushilnyiy) with a capacity of 10 to 50 t/h |
MEP | Mathematical Experiment Planning |
OCCD | Orthogonal Central Compositional Design |
RCCD | Rotatable Central Compositional Design |
Q | Capacity, t/h |
P | Power, kW |
Wsp. | Specific electricity consumption, kW∙h/t |
Kl | Load factor of the electric motors |
References
- Postnikova, M.V. Energy-Saving Modes of Operation of Electromechanical Grain Processing Systems at Grain Stations. Ph.D. Thesis, Tavria State Agrotechnological University, Melitopol, Ukraine, 2011. [Google Scholar]
- Postnikova, M.; Mikhailov, E.; Nesterchuk, D.; Rechina, O. Energy Saving in the Technological Process of the Grain Grinding. In Modern Development Paths of Agricultural Production, Proceedings of the Trends and Innovations; Nadykto, V., Ed.; Springer: Cham, Switzerland, 2019; pp. 395–403. [Google Scholar]
- Szafraniec, A.; Halko, S.; Miroshnik, O.; Figura, R.; Zharkov, A.; Vershkov, O. Magnetic field parameters mathematical modelling of wind-electric heater. Przegląd Elektrotechniczny 2021, 97, 36–41. [Google Scholar]
- Nazar’jan, G.N.; Postnikova, M.V.; Karpova, A.P. Solving Optimization Problems for Research Objects by Planning a Mathematical Experiment; Ljuks: Melitopol, Ukraine, 2012. [Google Scholar]
- Vovk, O.; Kvitka, S.; Halko, S.; Strebkov, O. Energy-saving control of asynchronous electric motors of driving working machines. In Modern Development Paths of Agricultural Production, Proceedings of the Trends and Innovations; Nadykto, V., Ed.; Springer: Cham, Switzerland, 2019; pp. 415–423. [Google Scholar]
- Linenko, A.; Khalilov, B.; Kamalov, T.; Tuktarov, M.; Syrtlanov, D. Effective technical ways to improve the vibro-centrifugal separator electric drive for grain cleaning. J. Agric. Eng. 2021, 52, 1136. [Google Scholar] [CrossRef]
- Linenko, A.V.; Aipov, R.S.; Yarullin, R.B.; Gabitov, I.I.; Tuktarov, M.F.; Mudarisov, S.G.; Kabashov, V.Y.; Gilvanov, V.F.; Khalilov, B.R. Experimental vibro-centrifugal grain separator with linear asynchronous electric drive. J. Eng. Appl. Sci. 2018, 13, 6551–6557. [Google Scholar]
- Tabor, S.; Lezhenkin, A.; Halko, S.; Miroshnik, A.; Kovalyshyn, S.; Vershkov, A.; Hryhorenko, O. Mathematical simulation of separating work tool technological process. E3S Web Conf. 2015, 132, 01025. [Google Scholar] [CrossRef] [Green Version]
- Aipov, R.; Linenko, A.; Badretdinov, I.; Tuktarov, M.; Akchurin, S. Research of the Work of the Sieve Mill of a Grain-cleaning Machine with a Linear Asynchronous Drive. Math. Biosci. Eng. 2020, 17, 4348–4363. [Google Scholar] [CrossRef]
- Linenko, A.V.; Gabitov, I.I.; Baynazarov, V.G.; Tuktarov, M.F.; Aipov, R.S.; Akchurin, S.V.; Kamalov, T.I.; Vokhmin, V.S. The mechatronic module “linear electric drive—Sieve boot” intelligent control system of grain cleaner. J. Balk. Tribol. Assoc. 2019, 25, 708–717. [Google Scholar]
- Linenko, A.; Tuktarov, M.; Aipov, R.; Baynazarov, V. Analysis of pulsed operating mode of linear induction drive of grain cleaning machine. In Proceedings of the International Conference on Actual Issues of Mechanical Engineering (AIME 2017), Tomsk, Russia, 27–29 July 2017; Advances in Engineering Research Series. Volume 133, pp. 420–424. [Google Scholar]
- Astanakulov, K.D.; Karimov, M.R.; Khudaev, I.; Israilova, D.A.; Muradimova, F.B. The separation of light impurities of safflower seeds in the cyclone of the grain cleaning machine. IOP Conf. Ser. Earth Environ. Sci. 2020, 614, 012141. [Google Scholar] [CrossRef]
- Savinyh, P.; Sychugov, Y.; Kazakov, V.; Ivanovs, S. Development and theoretical studies of grain cleaning machine for fractional technology of flattening forage grain. Eng. Rural. Dev. 2018, 17, 124–130. [Google Scholar]
- Astanakulov, K.D.; Karimov, Y.Z.; Fozilov, G. Design of a grain cleaning machine for small farms. AMA Agric. Mech. Asia Afr. Lat. Am. 2011, 42, 37–40. [Google Scholar]
- Yarullin, R.; Aipov, R.; Gabitov, I.; Linenko, A.; Akchurin, S.; Safin, R.; Mudarisov, S.; Khasanov, E.; Rakhimov, Z.; Rakhimov, Z.; et al. Adjustable Driver of Grain Cleaning Vibro-Machine with Vertical Axis of Eccentric Masses Rotation. J. Eng. Appl. Sci. 2018, 13, 6398–6406. [Google Scholar]
- Kharitonov, M.K.; Gievsky, A.M.; Orobinsky, V.I.; Chernyshov, A.V.; Baskakov, I.V. Studying the design and operational parameters of the sieve module of the grain cleaning machine. IOP Conf. Ser. Earth Environ. Sci. 2020, 488, 012021. [Google Scholar] [CrossRef]
- Mudarisov, S.G.; Badretdinov, I.D. Numerical implementation of a mathematical model of the technological process of the diametric fan in a rotating coordinate system. News Int. Acad. Agric. Educ. 2013, 17, 79–83. [Google Scholar]
- Saitov, V.E.; Farafonov, V.G.; Gataullin, R.G.; Saitov, A.V. Research of a diametrical fan with suction channel. IOP Conf. Ser. Mater. Sci. Eng. 2018, 457, 012009. [Google Scholar] [CrossRef]
- Mudarisov, S.G.; Badretdinov, I.D. Substantiation of the parameters of the diametrical fan based on a mathematical model of the process of its operation. In Proceedings of the International Scientific-Practical Conference in the Framework of the XXIII International Specialized Exhibition “AgroComplex-2013”, Ufa, Russia, 12–15 March 2013; pp. 363–367. [Google Scholar]
- Mykhailov, Y.; Zadosna, N.; Postnikova, M.; Pedchenko, G.; Khmelovskyi, V.; Bondar, M.; Ionichev, A.; Kozdęba, M.; Tomaszewska-Górecka, W. Energy assessment of the pneumatic sieve separator for agricultural crops. Agric. Eng. 2021, 25, 147–155. [Google Scholar] [CrossRef]
- Havrylenko, Y.; Kholodniak, Y.; Halko, S.; Vershkov, O.; Bondarenko, L.; Suprun, O.; Miroshnyk, O.; Shshur, T.; Śrutek, M.; Gackowska, M. Interpolation with specified error of a point series belonging to a monotone curve. Entropy 2021, 23, 493. [Google Scholar] [CrossRef]
- Havrylenko, Y.; Kholodniak, Y.; Halko, S.; Vershkov, O.; Miroshnyk, O.; Suprun, O.; Dereza, O.; Shshur, T.; Śrutek, M. Representation of a monotone curve by a contour with regular change in curvature. Entropy 2021, 23, 923. [Google Scholar] [CrossRef]
- Soldatenko, L.S.; Ostrovkyi, I.A. Improvement of the collector output device of the disk separators. Grain Prod. Mix. Fodd. 2019, 19, 48–50. [Google Scholar] [CrossRef]
- Soldatenko, L.S.; Hornishnyi, O.V. Clarification of the methods used for calculating power of sieve separators. Grain Prod. Mix. Fodd. 2018, 18, 47–50. [Google Scholar] [CrossRef]
- Qawaqzeh, M.Z.; Szafraniec, A.; Halko, S.; Miroshnik, O.; Zharkov, A. Modelling of a household electricity supply system based on a wind power plant. Przegląd Elektrotechniczny 2020, 96, 36–40. [Google Scholar] [CrossRef]
- Giyevskiy, A.M.; Orobinsky, V.I.; Tarasenko, A.P.; Chernyshov, A.V.; Kurilov, D.O. Substantiation of basic scheme of grain cleaning machine for preparation of agricultural crops seeds. IOP Conf. Ser. Mater. Sci. Eng. 2018, 327, 042035. [Google Scholar] [CrossRef]
- Badretdinov, I.; Mudarisov, S.; Tuktarov, M.; Dick, E.; Arslanbekova, S. Mathematical modelling of the grain material separation in the pneumatic system of the grain-cleaning machine. J. Appl. Eng. Sci. 2019, 17, 529–534. [Google Scholar] [CrossRef]
- Lezhenkin, O.M.; Halko, S.V.; Miroshnyk, O.O.; Vershkov, O.O.; Lezhenkin, I.O.; Suprun, O.M.; Shchur, T.G.; Kruszelnicka, W.; Kasner, R. Investigation of the separation of combed heap of winter wheat. J. Phys. Int. Conf. Appl. Sci. 2021, 1781, 012016. [Google Scholar] [CrossRef]
- Badretdinov, I.; Mudarisov, S.; Lukmanov, R.; Permyakov, V.; Tuktarov, M. Mathematical modeling and study of the grain cleaning machine sieve frame operation. INMATEH-Agric. Eng. 2020, 60, 19–28. [Google Scholar] [CrossRef]
- Saitov, V.E.; Kurbanov, R.F.; Suvorov, A.N. Assessing the Adequacy of Mathematical Models of Light Impurity Fractionation in Sedimentary Chambers of Grain Cleaning Machines. Procedia Eng. 2016, 150, 107–110. [Google Scholar] [CrossRef] [Green Version]
- Butovchenko, A.; Doroshenko, A.; Kol’Cov, A.; Serdyuk, V. Comparative analysis of the functioning of sieve modules for grain cleaning machines. E3S Web Conf. 2019, 135, 01081. [Google Scholar] [CrossRef]
- Koshevoy, N.D.; Kostenko, E.M.; Pavlyk, A.V.; Koshevaya, I.I.; Rozhnova, T.G. Research of multiple plans in multi-factor experiments with a minimum number of transitions of levels of factors. Radio Electron. Comput. Sci. Control 2019, 2, 53–59. [Google Scholar] [CrossRef]
- Randjelovic, D.; Dolicanin, C.; Milenkovic, M.; Stiojkovic, J. An application of multiple criteria analysis to assess optimal factor combination in one experiment. In Proceedings of the 5th WSEAS International Conference on Mathematical Biology and Ecology (MABE 09), Ningbo, China, 10–12 January 2009; p. 21. [Google Scholar]
- Gembicki, J. Energy efficiency in the agricultural and food industry illustrated with the example of the feed production plant. In Proceedings of the 1st International Conference on the Sustainable Energy and Environment Development (Seed 2016), Kraków, Poland, 17–19 May 2016; Volume 10, p. 00138. [Google Scholar]
- Jin, H.; Hu, S.; Xie, B.; Yan, Y.; Yang, M.; Zhou, F. Experimental optimization for cleaning parameters and field application of cartridge filter in bulk grain loading. Powder Technol. 2021, 378, 421–429. [Google Scholar] [CrossRef]
- Wang, G.Y.; Wu, W.F.; Qiao, F.X.; Fu, D.P.; Liu, Z.; Han, F. Research on an electric energy-saving grain drying system with internal circulation of the drying medium. J. Food Process Eng. 2020, 43, 13476. [Google Scholar] [CrossRef]
- Mikhailov, E.; Postnikova, M.; Zadosnaia, N.; Afanasyev, O. Methodological Aspects of Determining Parameters of a Scalper-Type Air-Sieved Separator Airflow. In Modern Development Paths of Agricultural Production; Nadykto, V., Ed.; Springer: Cham, Switzerland, 2019; pp. 133–137. [Google Scholar]
- Zhang, S.; Liu, L.; Xie, P.; Tang, J.; Wang, C. Optimization of power rationing order based on fuzzy evaluation model. IOP Conf. Ser. Earth Environ. Sci. 2018, 133, 012015. [Google Scholar] [CrossRef]
- Johansen, J.P.; Almklov, P.G.; Skjolsvold, T.M. From practice to policy—Exploring the travel and transformation of energy savings calculations and its implications for future energy transitions. Energy Effic. 2021, 14, 54. [Google Scholar] [CrossRef]
- Halko, S.; Suprun, O.; Miroshnyk, O. Influence of temperature on energy performance indicators of hybrid solar panels using cylindrical cogeneration photovoltaic modules. In Proceedings of the 2021 IEEE 2nd KhPI Week on Advanced Technology, KhPIWeek2021, Kharkiv, Ukraine, 13–17 September 2021; pp. 132–136. [Google Scholar]
- Voronin, V.; Nepsha, F. Simulation of the electric drive of the shearer to assess the energy efficiency indicators of the power supply system. J. Min. Inst. 2020, 246, 633–639. [Google Scholar] [CrossRef]
- Aitzhanov, N.M.; Ongar, B.; Bissenbaeyev, P.A.; Baitenov, E.S.; Zhanibekuly, A. Assessment of energy efficiency and possibility of use in the networks of industrial enterprises voltage stabilizer with energy saving function. News Natl. Acad. Sci. Repub. Kazakhstan-Ser. Phys.-Math. 2020, 6, 74–80. [Google Scholar] [CrossRef]
- Postnikova, M.V. Development of Scientifically Substantiated Norms of Energy Consumption while Grain Processing at Grain Points. In Problemy Avtomatyzovanoho Elektropryvodu: Teoriia i Praktyka; NTU KHPI: Kharkiv, Ukraine, 2008; pp. 511–512. [Google Scholar]
- Postnikova, M.V. The current state of control of electricity consumption at grain facilities. Pratsi Tavr. Derzh. Agric. Univ. 2013, 13, 148–152. [Google Scholar]
- Bazaluk, O.; Postnikova, M.; Halko, S.; Kvitka, S.; Mikhailov, E.; Kovalov, O.; Suprun, O.; Miroshnyk, O.; Nitsenko, V. Energy Saving in Electromechanical Grain Cleaning Systems. Appl. Sci. 2022, 12, 1418. [Google Scholar] [CrossRef]
- Didur, V.A.; Masjutkin, E.P.; Postnikova, M.V.; Maslovskij, V.A. Scientific substantiation of specific energy consumption during grain cleaning by the method of mathematical experiment planning. Pratsi Inst. Elektr. NAN Ukr. 2008, 19, 94–98. [Google Scholar]
- Postnikova, M.; Mikhailov, E.; Kvitka, S.; Kurashkin, S.; Kovalov, O.; Opalko, V.; Semenov, A.; Kucher, V.; Kowalczyk, Z. The Grain Cleaning Production Lines’ Energysaving Operation Modes of Electromechanical Systems. Agric. Eng. 2022, 26, 51–64. [Google Scholar]
Factor Variability Levels | Factors in Nominal Units | Factors in Physical Units | ||
---|---|---|---|---|
Q, t/h | P, kW | Kl, r.u. | ||
x1 | x2 | x3 | ||
Upper Xi,u | xi,u = +1 | 40.0 | 45.0 | 0.8 |
Lower Xi,l | Xx,l = −1 | 20.0 | 25.0 | 0.5 |
Base Xi,0 | xi,0 = 0 | 30.0 | 35.0 | 0.65 |
Variability intervals ΔXi | Δxi = ±1 | 10.0 | 10.0 | 0.15 |
Star arm size | ||||
+α | +1.215 | 42.85 | 47.15 | 0.832 |
−α | −1.215 | 17.85 | 22.85 | 0.468 |
Technological Schemes | Capacity, t/h | Calculated Wsp., kW·h/t | Recommended Norms, kW·h/t |
---|---|---|---|
One production line with disc separators | 15.0 | 1.274 | 1.347 |
One production line without disc separators | 20.0 | 0.805 | 0.902 |
Two production lines with disc separators | 30.0 | 1.271 | 1.342 |
Two production lines without disc separators | 40.0 | 0.805 | 0.901 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bazaluk, O.; Postnikova, M.; Halko, S.; Mikhailov, E.; Kovalov, O.; Suprun, O.; Miroshnyk, O.; Nitsenko, V. Improving Energy Efficiency of Grain Cleaning Technology. Appl. Sci. 2022, 12, 5190. https://doi.org/10.3390/app12105190
Bazaluk O, Postnikova M, Halko S, Mikhailov E, Kovalov O, Suprun O, Miroshnyk O, Nitsenko V. Improving Energy Efficiency of Grain Cleaning Technology. Applied Sciences. 2022; 12(10):5190. https://doi.org/10.3390/app12105190
Chicago/Turabian StyleBazaluk, Oleg, Marina Postnikova, Serhii Halko, Evgeniy Mikhailov, Oleksandr Kovalov, Olena Suprun, Oleksandr Miroshnyk, and Vitalii Nitsenko. 2022. "Improving Energy Efficiency of Grain Cleaning Technology" Applied Sciences 12, no. 10: 5190. https://doi.org/10.3390/app12105190
APA StyleBazaluk, O., Postnikova, M., Halko, S., Mikhailov, E., Kovalov, O., Suprun, O., Miroshnyk, O., & Nitsenko, V. (2022). Improving Energy Efficiency of Grain Cleaning Technology. Applied Sciences, 12(10), 5190. https://doi.org/10.3390/app12105190