Negation and Speculation in NLP: A Survey, Corpora, Methods, and Applications
Abstract
:1. Introduction
1.1. Negation
1.2. Speculation
2. Corpora and Annotation Process
2.1. Annotation Guidelines
2.2. Corpora
2.2.1. English Corpora
2.2.2. Corpora in Other Languages
3. Methods and Techniques
3.1. Rule-Based Methods
3.2. Supervised Techniques
3.3. Hybrid Approaches
4. Applications
4.1. Review Domain
4.2. Biomedical Domain
4.3. Others
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Belkahla Driss, O.; Mellouli, S.; Trabelsi, Z. From Citizens to Government Policy-Makers: Social Media Data Analysis. Gov. Inform. Q. 2019, 36, 560–570. [Google Scholar] [CrossRef]
- Mukherjee, P.; Badr, Y.; Doppalapudi, S.; Srinivasan, S.M.; Sangwan, R.S.; Sharma, R. Effect of Negation in Sentences on Sentiment Analysis and Polarity Detection. Procedia Comput. Sci. 2021, 185, 370–379. [Google Scholar] [CrossRef]
- Assiri, A.; Emam, A.; Al-Dossari, H. Towards Enhancement of a Lexicon-Based Approach for Saudi Dialect Sentiment Analysis. J. Inform. Sci. 2018, 44, 184–202. [Google Scholar] [CrossRef]
- Alomari, E.; Katib, I.; Albeshri, A.; Yigitcanlar, T.; Mehmood, R. Iktishaf+: A Big Data Tool with Automatic Labeling for Road Traffic Social Sensing and Event Detection Using Distributed Machine Learning. Sensors 2021, 21, 2993. [Google Scholar] [CrossRef] [PubMed]
- Kaddoura, S.; Itani, M.; Roast, C. Analyzing the Effect of Negation in Sentiment Polarity of Facebook Dialectal Arabic Text. Appl. Sci. 2021, 11, 4768. [Google Scholar] [CrossRef]
- Jimenez Zafra, S.M.; Martin Valdivia, M.T.; Martinez Camara, E.; Urena Lopez, L.A. Studying the Scope of Negation for Spanish Sentiment Analysis on Twitter. IEEE Trans. Affect. Comput. 2019, 10, 129–141. [Google Scholar] [CrossRef]
- Konstantinova, N.; De Sousa, S.C.M. Annotating Negation and Speculation: The Case of the Review Domain. In Proceedings of the Second Student Research Workshop Associated with the International Conference on Recent Advances in Natural Language Processing (RANLP), Hissar, Bulgaria, 12–14 September 2011; pp. 139–144. [Google Scholar]
- Reitan, J.; Faret, J.; Gambäck, B.; Bungum, L. Negation Scope Detection for Twitter Sentiment Analysis. In Proceedings of the 6th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, Stroudsburg, PA, USA, 17 September 2015; pp. 99–108. [Google Scholar]
- Marimon, M.; Vivaldi, J.; Bel, N. Annotation of Negation in the IULA Spanish Clinical Record Corpus. In Proceedings of the Workshop Computational Semantics Beyond Events and Roles; Association for Computational Linguistics (ACL): Stroudsburg, PA, USA, 2017; pp. 43–52. [Google Scholar]
- Mehrabi, S.; Krishnan, A.; Sohn, S.; Roch, A.M.; Schmidt, H.; Kesterson, J.; Beesley, C.; Dexter, P.; Max Schmidt, C.; Liu, H.; et al. DEEPEN: A Negation Detection System for Clinical Text Incorporating Dependency Relation into NegEx. J. Biomed. Inform. 2015, 54, 213–219. [Google Scholar] [CrossRef] [Green Version]
- Sergeeva, E.; Zhu, H.; Tahmasebi, A.; Szolovits, P. Neural Token Representations and Negation and Speculation Scope Detection in Biomedical and General Domain Text. In Proceedings of the Tenth International Workshop on Health Text Mining and Information Analysis (LOUHI 2019); Association for Computational Linguistics (ACL): Stroudsburg, PA, USA, 2019; pp. 178–187. [Google Scholar]
- Solarte Pabón, O.; Torrente, M.; Provencio, M.; Rodríguez-Gonzalez, A.; Menasalvas, E. Integrating Speculation Detection and Deep Learning to Extract Lung Cancer Diagnosis from Clinical Notes. Appl. Sci. 2021, 11, 865. [Google Scholar] [CrossRef]
- Dalloux, C.; Claveau, V.; Grabar, N.; Oliveira, L.E.S.; Moro, C.M.C.; Gumiel, Y.B.; Carvalho, D.R. Supervised Learning for the Detection of Negation and of Its Scope in French and Brazilian Portuguese Biomedical Corpora. Nat. Lang. Eng. 2021, 27, 181–201. [Google Scholar] [CrossRef]
- Vincze, V.; Szarvas, G.; Farkas, R.; Móra, G.; Csirik, J. The BioScope Corpus: Biomedical Texts Annotated for Uncertainty, Negation and Their Scopes. BMC Bioinform. 2008, 9 (Suppl. S11), S9. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Fancellu, F.; Webber, B. NegPar: A Parallel Corpus Annotated for Negation. In Proceedings of the 11th International Conference on Language Resources and Evaluation (LREC 2018); European Language Resources Association (ELRA): Miyazaki, Japan, 2018; pp. 3464–3472. [Google Scholar]
- Jiménez-Zafra, S.M.; Morante, R.; Martin, M.; Ureña-López, L.A. A Review of Spanish Corpora Annotated with Negation. In Proceedings of the 27th International Conference on Computational Linguistics, Santa Fe, NM, USA, 20–26 August 2018; pp. 915–924. [Google Scholar]
- Bel-Enguix, G.; Gómez-Adorno, H.; Pimentel, A.; Ojeda-Trueba, S.-L.; Aguilar-Vizuet, B. Negation Detection on Mexican Spanish Tweets: The T-MexNeg Corpus. Appl. Sci. 2021, 11, 3880. [Google Scholar] [CrossRef]
- Lima, S.; Perez, N.; Cuadros, M.; Rigau, G. NUBES: A Corpus of Negation and Uncertainty in Spanish Clinical Texts. In Proceedings of the LREC 2020—12th International Conference on Language Resources and Evaluation; European Language Resources Association (ELRA): Marseille, France, 2020; pp. 5772–5781. [Google Scholar]
- Al-Khawaldeh, F.T. Speculation and Negation Annotation for Arabic Biomedical Texts: BioArabic Corpus. World Comput. Sci. Inform. Technol. J. (WCSIT) 2016, 6, 8–11. [Google Scholar]
- Dalianis, H.; Velupillai, S. How Certain Are Clinical Assessments? Annotating Swedish Clinical Text for (Un) Certainties, Speculations and Negations. In Proceedings of the 7th International Conference on Language Resources and Evaluation, LREC 2010; European Language Resources Association (ELRA): Valletta, Malta, 2010; pp. 3071–3075. [Google Scholar]
- Kim, J.-D.; Ohta, T.; Tsujii, J. Corpus Annotation for Mining Biomedical Events from Literature. BMC Bioinform. 2008, 9, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greenberg, J.H. Universals of Human Language; Stanford University Press: Stanford, UK, 1978; p. 4. [Google Scholar] [CrossRef]
- Oxford Learner’s Dictionaries. Available online: https://www.oxfordlearnersdictionaries.com/ (accessed on 2 October 2021).
- Dalloux, C.; Claveau, V.; Grabar, N. Speculation and Negation Detection in French Biomedical Corpora. In Proceedings of the Recent Advances in Natural Language Processing, Varna, Bulgaria, 2–4 September 2019; pp. 223–232. [Google Scholar]
- Jiménez-Zafra, S.M.; Morante, R.; Blanco, E.; Martín-Valdivia, M.T.; Alfonso Ureña-López, L. Detecting Negation Cues and Scopes in Spanish. In Proceedings of the LREC 2020—12th International Conference on Language Resources and Evaluation; European Language Resources Association (ELRA): Marseille, France, 2020; pp. 6902–6911. [Google Scholar]
- Jiménez-Zafra, S.M.; Taulé, M.; Martín-Valdivia, M.T.; Ureña-López, L.A.; Martí, M.A. SFU ReviewSP-NEG: A Spanish Corpus Annotated with Negation for Sentiment Analysis. A Typology of Negation Patterns. Lang. Resour. Eval. 2018, 52, 533–569. [Google Scholar] [CrossRef]
- Banjade, R.; Rus, V. DT-Neg: Tutorial Dialogues Annotated for Negation Scope and Focus in Context. In Proceedings of the Proceedings of the 10th International Conference on Language Resources and Evaluation, LREC 2016; European Language Resources Association (ELRA): Portorož, Slovenia, 2016; pp. 3768–3771. [Google Scholar]
- Altuna, B.; Minard, A.-L.; Speranza, M. The Scope and Focus of Negation: A Complete Annotation Framework for Italian. In Proceedings of the Workshop Computational Semantics Beyond Events and Roles; Association for Computational Linguistics (ACL): Valencia, Spain, 2017; pp. 34–42. [Google Scholar]
- Vincze, V. Uncertainty Detection in Hungarian Texts. In Proceedings of COLING 2014: Technical Papers, Proceedings of the COLING 2014-25th International Conference on Computational Linguistics, Dublin, Ireland, 23–29 August 2014; University and Association for Computational Linguistics: Dublin, Ireland, 2014; pp. 844–1853. [Google Scholar]
- Ren, Y.; Fei, H.; Peng, Q. Detecting the Scope of Negation and Speculation in Biomedical Texts by Using Recursive Neural Network. In Proceedings of the 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Madrid, Spain, 3–6 December 2018; pp. 739–742. [Google Scholar]
- Dadvar, M.; Hauff, C.; De Jong, F. Scope of Negation Detection in Sentiment Analysis. In Proceedings of the Dutch-Belgian Information Retrieval Workshop (DIR 2011), Amsterdam, The Netherlands, 4 March 2011; pp. 16–20. [Google Scholar]
- Cruz, N.P.; Taboada, M.; Mitkov, R. A Machine-Learning Approach to Negation and Speculation Detection for Sentiment Analysis. J. Assoc. Inform. Sci. Technol. 2016, 67, 2118–2136. [Google Scholar] [CrossRef] [Green Version]
- Baker, K.; Bloodgood, M.; Dorr, B.J.; Callison-Burch, C.; Filardo, N.W.; Piatko, C.; Levin, L.; Miller, S. Modality and Negation in SIMT Use of Modality and Negation in Semantically-Informed Syntactic MT. Comput. Linguist. 2012, 38, 411–438. [Google Scholar] [CrossRef]
- Savova, G.K.; Masanz, J.J.; Ogren, P.V.; Zheng, J.; Sohn, S.; Kipper-Schuler, K.C.; Chute, C.G. Mayo Clinical Text Analysis and Knowledge Extraction System (CTAKES): Architecture, Component Evaluation and Applications. J. Am. Med. Inform. Assoc. 2010, 17, 507–513. [Google Scholar] [CrossRef] [Green Version]
- Taulé, M.; Nofre, M.; González, M.; Martí, M.A. Focus of Negation: Its Identification in Spanish. Nat. Lang. Eng. 2021, 27, 131–152. [Google Scholar] [CrossRef]
- Mahany, A.; Fouad, M.M.; Aloraini, A.; Khaled, H.; Nawaz, R.; Aljohani, N.R.; Ghoniemy, S. Supervised Learning for Negation Scope Detection in Arabic Texts. In Proceedings of the Tenth International Conference on Intelligent Computing and Information Systems (ICICIS), Cairo, Egypt, 5 December 2021; pp. 177–182. [Google Scholar]
- Peng, Y.; Wang, X.; Lu, L.; Bagheri, M.; Summers, R.; Lu, Z. NegBio: A High-Performance Tool for Negation and Uncertainty Detection in Radiology Reports. AMIA Joint Summits on Translational Science proceedings. AMIA Jt. Summits Transl. Sci. 2017, 2017, 188–196. [Google Scholar] [CrossRef]
- Vincze, V. Weasels, Hedges and Peacocks: Discourse-Level Uncertainty in Wikipedia Articles. In Proceedings of the Sixth International Joint Conference on Natural Language Processing; Asian Federation of Natural Language Processing: Nagoya, Japan, 2013; pp. 383–391. [Google Scholar]
- Lazib, L.; Qin, B.; Zhao, Y.; Zhang, W.; Liu, T. A Syntactic Path-Based Hybrid Neural Network for Negation Scope Detection. Front. Comput. Sci. 2020, 14, 84–94. [Google Scholar] [CrossRef]
- Konstantinova, N.; De Sousa, S.C.M.; Cruz, N.P.; Maña, M.J.; Taboada, M.; Mitkov, R. A Review Corpus Annotated for Negation, Speculation and Their Scope. In Proceedings of the 8th International Conference on Language Resources and Evaluation, LREC 2012; European Language Resources Association (ELRA): Istanbul, Turkey, 2012; pp. 3190–3195. [Google Scholar]
- Morante, R.; Daelemans, W. ConanDoyle-Neg: Annotation of Negation Cues and Their Scope in Conan Doyle Stories. In Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC’12); European Language Resources Association (ELRA): Istanbul, Turkey, May, 2012; pp. 1563–1568. [Google Scholar]
- Jiménez-Zafra, S.M.; Díaz, N.P.C.; Morante, R.; Martín-Valdivia, M.T. NEGes 2019 Task: Negation in Spanish. In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2019), CEUR Workshop, Bilbao, Spain, 24 September 2019; pp. 329–341. [Google Scholar]
- Zou, B.; Zhu, Q.; Zhou, G. Negation and Speculation Identification in Chinese Language. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing; Association for Computational Linguistics (ACL): Stroudsburg, PA, USA, 2015; pp. 656–665. [Google Scholar]
- Councill, I.G.; McDonald, R.; Velikovich, L. What’s Great and What’s Not: Learning to Classify the Scope of Negation for Improved Sentiment Analysis. In Proceedings of the ACL Workshop on Negation and Speculation in Natural Language Processing, Uppsala, Sweden, 10 July 2010; pp. 51–59. [Google Scholar]
- Kolhatkar, V.; Wu, H.; Cavasso, L.; Francis, E.; Shukla, K.; Taboada, M. The SFU Opinion and Comments Corpus: A Corpus for the Analysis of Online News Comments. Corpus Pragmat. 2020, 4, 155–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, T.; Zhang, S.; Xu, N.; Wen, D.; Zhang, X.; Lei, J. Detecting Negation and Scope in Chinese Clinical Notes Using Character and Word Embedding. Comput. Methods Prog. Biomed. 2017, 140, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Measur. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Fleiss, J.L. Measuring Nominal Scale Agreement among Many Raters. Psychol. Bull. 1971, 76, 378–382. [Google Scholar] [CrossRef]
- Pyysalo, S.; Ginter, F.; Heimonen, J.; Björne, J.; Boberg, J.; Järvinen, J.; Salakoski, T. BioInfer: A Corpus for Information Extraction in the Biomedical Domain. BMC Bioinform. 2007, 8, 50. [Google Scholar] [CrossRef]
- Farkas, R.; Vincze, V.; Móra, G.; Csirik, J.; Szarvas, G. The CoNLL-2010 Shared Task: Learning to Detect Hedges and Their Scope in Natural Language Text. In Proceedings of the CoNLL 2010—14th Conference on Computational Natural Language Learning: Shared Task, Uppsala, Sweden, 15–16 July 2010; ACL Anthology: New York, NY, USA, 2010; pp. 1–12. [Google Scholar]
- Blanco, E.; Moldovan, D. Semantic Representation of Negation Using Focus Detection. In Proceedings of the ACL-HLT 2011—49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies; Association for Computational Linguistics (ACL): Portland, OR, USA, 2011; pp. 581–589. [Google Scholar]
- Ohta, T.; Tateisi, Y.; Kim, J.D. The GENIA Corpus: An Annotated Research Abstract Corpus in Molecular Biology Domain. In Proceedings of the Second International Conference on Human Language Technology Research, San Diego, CA, USA, 24–27 March 2002; pp. 82–86. [Google Scholar]
- Kim, J.-D.; Ohta, T.; Tateisi, Y.; Tsujii, J. GENIA Corpus-A Semantically Annotated Corpus for Bio-Textmining. Bioinformatics 2003, 19, i180–i182. [Google Scholar] [CrossRef] [Green Version]
- Morante, R.; Schrauwen, S.; Daelemans, W. Corpus-Based Approaches to Processing the Scope of Negation Cues: An Evaluation of the State of the Art. In Proceedings of the 9th International Conference on Computational Semantics, IWCS 2011; Association for Computational Linguistics (ACL): Stroudsburg, PA, USA, 2011; pp. 350–354. [Google Scholar]
- Morante, R.; Schrauwen, S.; Daelemans, W. Annotation of Negation Cues and Their Scope Guidelines v1.0; University of Antwerp: Antwerp, Belgium, 2011. [Google Scholar]
- Palmer, M.; Gildea, D.; Kingsbury, P. The Proposition Bank: An Annotated Corpus of Semantic Roles. Comput. Linguist. 2005, 31, 71–106. [Google Scholar] [CrossRef]
- Taboada, M.; Anthony, C.; Voll, K. Methods for Creating Semantic Orientation Dictionaries. In Proceedings of the 5th International Conference on Language Resources and Evaluation, LREC 2006; European Language Resources Association (ELRA): Genoa, Italy, 2006; pp. 427–432. [Google Scholar]
- Morante, R.; Blanco, E. ∗SEM 2012 Shared Task: Resolving the Scope and Focus of Negation. In Proceedings of the SEM 2012—1st Joint Conference on Lexical and Computational Semantics; Association for Computational Linguistics (ACL): Montréal, ON, Canada, 2012; pp. 265–274. [Google Scholar]
- Matsuyoshi, S.; Otsuki, R.; Fukumoto, F. Annotating the Focus of Negation in Japanese Text. In Proceedings of the 9th International Conference on Language Resources and Evaluation, LREC 2014; European Language Resources Association (ELRA): Reykjavik, Iceland, 2014; pp. 1743–1750. [Google Scholar]
- Afzal, Z.; Pons, E.; Kang, N.; Sturkenboom, M.C.J.M.; Schuemie, M.J.; Kors, J.A. ContextD: An Algorithm to Identify Contextual Properties of Medical Terms in a Dutch Clinical Corpus. BMC Bioinform. 2014, 15, 373. [Google Scholar] [CrossRef] [Green Version]
- Cotik, V.; Roller, R.; Xu, F.; Uszkoreit, H.; Budde, K.; Schmidt, D. Negation Detection in Clinical Reports Written in German. In Proceedings of the 5th Workshop on Building and Evaluating Resources for Biomedical Text Mining (BioTxtM 2016); The COLING 2016 Organizing Committee: Osaka, Japan, 2016; pp. 115–124. [Google Scholar]
- Cruz, N.; Morante, R.; Maña López, M.J.; Mata Vázquez, J.; Parra Calderón, C.L. Annotating Negation in Spanish Clinical Texts. In Proceedings of the Workshop Computational Semantics Beyond Events and Roles; Association for Computational Linguistics (ACL): Stroudsburg, PA, USA, 2017; pp. 53–58. [Google Scholar]
- Dalianis, H.; Hassel, M.; Velupillai, S. The Stockholm EPR Corpus: Characteristics and Some Initial Findings. In Proceedings of the 14th International Symposium for Health Information Management Research (ISHIMR 2009), Kalmar, Sweden, 14–16 October 2009; pp. 243–249. [Google Scholar]
- Szarvas, G.; Vincze, V.; Farkas, R.; Móra, G.; Gurevych, I. Cross-Genre and Cross-Domain Detection of Semantic Uncertainty. Comput. Linguist. 2012, 38, 335–367. [Google Scholar] [CrossRef]
- Roller, R.; Uszkoreit, H.; Xu, F.; Seiffe, L.; Mikhailov, M.; Staeck, O.; Budde, K.; Halleck, F.; Schmidt, D. A Fine-Grained Corpus Annotation Schema of German Nephrology Records. In Proceedings of the Clinical Natural Language Processing Workshop; Clinical {NLP}: Osaka, Japan, 2016; pp. 69–77. [Google Scholar]
- Mutalik, P.G.; Deshpande, A.; Nadkarni, P.M. Use of General-Purpose Negation Detection to Augment Concept Indexing of Medical Documents. J. Am. Med. Inform. Assoc. 2001, 8, 598–609. [Google Scholar] [CrossRef]
- Styler, W.F.; Bethard, S.; Finan, S.; Palmer, M.; Pradhan, S.; de Groen, P.C.; Erickson, B.; Miller, T.; Lin, C.; Savova, G.; et al. Temporal Annotation in the Clinical Domain. Trans. Assoc. Comput. Linguist. 2014, 2, 143–154. [Google Scholar] [CrossRef] [PubMed]
- Minard, A.; Marchetti, A.; Speranza, M. Event Factuality in Italian: Annotation of News Stories from the Ita-TimeBank. In Proceedings of CLiC-it 2014, First Italian Conference on Computational Linguistic, Pisa, Italy, 9–11 December 2014; pp. 260–264. [Google Scholar]
- Minard, A.-L.; Speranza, M.; Caselli, T. The EVALITA 2016 Event Factuality Annotation Task (FactA). In EVALITA. Evaluation of NLP and Speech Tools for Italian; Accademia University Press: Torino, Italy, 2016; pp. 32–39. [Google Scholar]
- Grabar, N.; Claveau, V.; Dalloux, C. CAS: French Corpus with Clinical Cases. In Proceedings of the Ninth International Workshop on Health Text Mining and Information Analysis; Association for Computational Linguistics (ACL): Stroudsburg, PA, USA, 2018; pp. 122–128. [Google Scholar]
- Chapman, W.W.; Bridewell, W.; Hanbury, P.; Cooper, G.F.; Buchanan, B.G. A Simple Algorithm for Identifying Negated Findings and Diseases in Discharge Summaries. J. Biomed. Inform. 2001, 34, 301–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morante, R.; Daelemans, W. A Metalearning Approach to Processing the Scope of Negation. In Proceedings of the Thirteenth Conference on Computational Natural Language Learning (CoNLL ’09); Association for Computational Linguistics (ACL): Morristown, NJ, USA, 2009; pp. 21–29. [Google Scholar]
- Morante, R.; Daelemans, W. Learning the Scope of Hedge Cues in Biomedical Texts. In Proceedings of the Workshop on Current Trends in Biomedical Natural Language Processing, Boulder, CO, USA, 5 June 2009; pp. 28–36. [Google Scholar]
- Khandelwal, A.; Sawant, S. NegBERT: A Transfer Learning Approach for Negation Detection and Scope Resolution. In Proceedings of the LREC 2020—12th International Conference on Language Resources and Evaluation, Marseille, France, 11 November 2019; pp. 5739–5748. [Google Scholar]
- Özgür, A.; Radev, D.R. Detecting Speculations and Their Scopes in Scientific Text. In Proceedings of the Conference on Empirical Methods in Natural Language Processing Volume 3—EMNLP ’09; Association for Computational Linguistics: Morristown, NJ, USA, 2009; pp. 1398–1407. [Google Scholar]
- Packard, W.; Bender, E.M.; Read, J.; Oepen, S.; Dridan, R. Simple Negation Scope Resolution through Deep Parsing: A Semantic Solution to a Semantic Problem. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers); Association for Computational Linguistics (ACL): Stroudsburg, PA, USA, 2014; pp. 69–78. [Google Scholar]
- Aronow, D.B.; Fangfang, F.; Croft, W.B. Ad Hoc Classification of Radiology Reports. J. Am. Med. Inform. Assoc. 1999, 6, 393–411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harkema, H.; Dowling, J.N.; Thornblade, T.; Chapman, W.W. ConText: An Algorithm for Determining Negation, Experiencer, and Temporal Status from Clinical Reports. J. Biomed. Inform. 2009, 42, 839–851. [Google Scholar] [CrossRef] [Green Version]
- Elazhary, H. NegMiner: An Automated Tool for Mining Negations from Electronic Narrative Medical Documents. Int. J. Intell. Syst. Appl. 2017, 9, 14–22. [Google Scholar] [CrossRef] [Green Version]
- Sohn, S.; Wu, S.; Chute, C.G. Dependency Parser-Based Negation Detection in Clinical Narratives. In Proceedings of the AMIA Joint Summits on Translational Science; American Medical Informatics Association: Bethesda, MD, USA, 2012; pp. 1–8. [Google Scholar]
- Uzuner, Ö.; South, B.R.; Shen, S.; DuVall, S.L. 2010 I2b2/VA Challenge on Concepts, Assertions, and Relations in Clinical Text. J. Am. Med. Inform. Assoc. JAMIA 2011, 18, 552–556. [Google Scholar] [CrossRef] [Green Version]
- De Marneffe, M.C.; MacCartney, B.; Manning, C.D. Generating Typed Dependency Parses from Phrase Structure Parses. In Proceedings of the 5th International Conference on Language Resources and Evaluation, LREC 2006; European Language Resources Association (ELRA): Genoa, Italy, 2006; pp. 449–454. [Google Scholar]
- Medlock, B.; Briscoe, T. Weakly Supervised Learning for Hedge Classification in Scientific Literature. In Proceedings of the ACL 2007—45th Annual Meeting of the Association for Computational Linguistics; Association for Computational Linguistics (ACL): Prague, Czech Republic, 2007; pp. 992–999. [Google Scholar]
- Szarvas, G. Hedge Classification in Biomedical Texts with a Weakly Supervised Selection of Keywords. In Proceedings of the 46th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies (ACL-08: HLT), Columbus, OH, USA, 20 June 2008; pp. 281–289. [Google Scholar]
- Read, J.; Velldal, E.; Øvrelid, L.; Oepen, S. UiO1: Constituent-Based Discriminative Ranking for Negation Resolution. In Proceedings of the SEM 2012—1st Joint Conference on Lexical and Computational Semantics, Montreal, QC, Canada, 7–8 June 2012; ACL Anthology: New York, NY, USA, 2012; pp. 310–318. [Google Scholar]
- Zou, B.; Zhou, G.; Zhu, Q. Tree Kernel-Based Negation and Speculation Scope Detection with Structured Syntactic Parse Features. In Proceedings of the EMNLP 2013—2013 Conference on Empirical Methods in Natural Language Processing, Seattle, WA, USA, 18–21 October 2013; pp. 968–976. [Google Scholar]
- Qian, Z.; Li, P.; Zhu, Q.; Zhou, G.; Luo, Z.; Luo, W. Speculation and Negation Scope Detection via Convolutional Neural Networks. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing; Association for Computational Linguistics (ACL): Stroudsburg, PA, USA, 2016; pp. 815–825. [Google Scholar]
- Lazib, L.; Zhao, Y.; Qin, B.; Liu, T. Negation Scope Detection with Recurrent Neural Networks Models in Review Texts. In Proceedings of the International Conference of Young Computer Scientists, Engineers and Educators, Harbin, China, 20–22 July 2016; pp. 494–508. [Google Scholar]
- Fancellu, F.; Lopez, A.; Webber, B. Neural Networks for Negation Scope Detection. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers); Association for Computational Linguistics (ACL): Stroudsburg, PA, USA, 2016; pp. 495–504. [Google Scholar]
- Adel, H.; Schütze, H. Exploring Different Dimensions of Attention for Uncertainty Detection. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers; Association for Computational Linguistics (ACL): Stroudsburg, PA, USA, 2017; pp. 22–34. [Google Scholar]
- Enger, M.; Velldal, E.; Øvrelid, L. An Open-Source Tool for Negation Detection: A Maximum-Margin Approach. In Proceedings of the Workshop Computational Semantics Beyond Events and Roles; Association for Computational Linguistics (ACL): Stroudsburg, PA, USA, 2017; pp. 64–69. [Google Scholar]
- Li, H.; Lu, W. Learning with Structured Representations for Negation Scope Extraction. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers); Association for Computational Linguistics (ACL): Stroudsburg, PA, USA, 2018; pp. 533–539. [Google Scholar]
- Fabregat, H.; Martinez-Romo, J.; Araujo, L. Deep Learning Approach for Negation Cues Detection in Spanish. In Proceedings of NEGES 2018: Workshop on Negation in Spanish, Seville, Spain, 18 September 2018; pp. 43–48. [Google Scholar]
- Fancellu, F.; Lopez, A.; Webber, B. Neural Networks for Cross-Lingual Negation Scope Detection. arXiv 2018, arXiv:1810.02156. [Google Scholar]
- Al-Khawaldeh, F.T. Hierarchical Attention Generative Adversarial Networks for Biomedical Texts Uncertainty Detection. Int. J. Adv. Stud. Comput. Sci. Eng. 2019, 8, 1–12. [Google Scholar]
- Fei, H.; Ren, Y.; Ji, D. Negation and Speculation Scope Detection Using Recursive Neural Conditional Random Fields. Neurocomputing 2020, 374, 22–29. [Google Scholar] [CrossRef]
- McKenna, N.; Steedman, M. Learning Negation Scope from Syntactic Structure. In Proceedings of the Ninth Joint Conference on Lexical and Computational Semantics, Barcelona, Spain, 12–13 December 2020; pp. 137–142. [Google Scholar]
- Lafferty, J.; McCallum, A.; Pereira, F. Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data. In Proceedings of the Eighteenth International Conference on Machine Learning, San Francisco, CA, USA, 28 June–1 July 2001; pp. 282–289. [Google Scholar]
- Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of NAACL-HLT 2019 NAACL HLT 2019-North American Chapter of the Association for Computational Linguistics: Human Language Technologies; Association for Computational Linguistics (ACL): Minneapolis, MN, USA, 2019; pp. 4171–4186. [Google Scholar]
- Pennington, J.; Socher, R.; Manning, C. Glove: Global Vectors for Word Representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; ACL Anthology: New York, NY, USA, 2014; pp. 1532–1543. [Google Scholar] [CrossRef]
- Peters, M.; Neumann, M.; Iyyer, M.; Gardner, M.; Clark, C.; Lee, K.; Zettlemoyer, L. Deep Contextualized Word Representations. In Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers); Association for Computational Linguistics: Stroudsburg, PA, USA, 2018; pp. 2227–2237. [Google Scholar]
- Apostolova, E.; Tomuro, N.; Demner-Fushman, D. Automatic Extraction of Lexico-Syntactic Patterns for Detection of Negation and Speculation Scopes. In Proceedings of the ACL-HLT 2011—49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, Portland, OR, USA, 19–24 June 2011; pp. 283–287. [Google Scholar]
- Anis, S.; Saad, S.; Aref, M. A Survey on Sentiment Analysis in Tourism. Int. J. Intell. Comput. Inform. Sci. 2020, 163, 1–15. [Google Scholar] [CrossRef]
- Chowdhury, M.F.M.; Lavelli, A. Exploiting the Scope of Negations and Heterogeneous Features for Relation Extraction: A Case Study for Drug-Drug Interaction Extraction. In Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies; Association for Computational Linguistics (ACL): Atlanta, GA, USA, 2013; pp. 765–771. [Google Scholar]
- Mady, L.; Afify, Y.; Badr, N. Nested Biomedical Named Entity Recognition. Int. J. Intell. Comput. Inform. Sci. 2022, 22, 98–107. [Google Scholar] [CrossRef]
- Hossain, M.M.; Anastasopoulos, A.; Blanco, E.; Palmer, A. It’s Not a Non-Issue: Negation as a Source of Error in Machine Translation. In Proceedings of the Findings of the Association for Computational Linguistics: EMNLP 2020; Association for Computational Linguistics (ACL): Stroudsburg, PA, USA, 2020; pp. 3869–3885. [Google Scholar]
- Wiegand, M.; Balahur, A.; Roth, B.; Klakow, D.; Montoyo, A. A Survey on the Role of Negation in Sentiment Analysis. In Proceedings of the Workshop on Negation and Speculation in Natural Language Processing; University of Antwerp: Antwerp, Belgium, 2010; pp. 60–68. [Google Scholar]
- Pang, B.; Lee, L.; Vaithyanathan, S. Thumbs up? Sentiment Classification Using Machine Learning Techniques. In Proceedings of the ACL—02 Conference on Empirical Methods in Natural Language Processing-EMNLP ’02; Association for Computational Linguistics (ACL): Morristown, NJ, USA, 2002; pp. 79–86. [Google Scholar]
- Polanyi, L.; Zaenen, A. Contextual Valence Shifters. In Computing Attitude and Affect in Text: Theory and Applications; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1–10. [Google Scholar]
- Jia, L.; Yu, C.; Meng, W. The Effect of Negation on Sentiment Analysis and Retrieval Effectiveness. In Proceedings of the 18th ACM Conference on Information and Knowledge Management—CIKM ’09; ACM Press: New York, NY, USA, 2009; pp. 1827–1830. [Google Scholar]
- Misra, A.; Bhuiyan, M.; Mahmud, J.; Tripathy, S. Using Structured Representation and Data: A Hybrid Model for Negation and Sentiment in Customer Service Conversations. In Proceedings of the Tenth Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis; Association for Computational Linguistics (ACL): Stroudsburg, PA, USA, 2019; pp. 46–56. [Google Scholar]
- Habash, N.Y. Introduction to Arabic Natural Language Processing. In Synthesis Lectures on Human Language Technologies (Book 10), 1st ed.; Hirst, G., Ed.; Morgan and Claypool Publishers: San Rafael, CA, USA, 2010; Volume 3, ISBN 9781598297959. [Google Scholar]
- Abdul-Mageed, M.; Diab, M.T. Subjectivity and Sentiment Annotation of Modern Standard Arabic Newswire. In Proceedings of the ACL HLT 2011-LAW 2011: 5th Linguistic Annotation Workshop, Portland, OR, USA, 23–24 June 2011; pp. 110–118. [Google Scholar]
- El-Dine, A.; El-zahraa, F. Sentiment Analyzer for Arabic Comments System. Int. J. Adv. Comput. Sci. Appl. 2013, 4, 99–103. [Google Scholar] [CrossRef] [Green Version]
- Ben Hamouda, S.; Akaichi, J. Social Networks’ Text Mining for Sentiment Classification: The Case of Facebook’ Statuses Updates in the “Arabic Spring” Era. Int. J. Appl. Innov. Eng. Manag. 2013, 2, 470–478. [Google Scholar]
- El-Beltagy, S.R. NileULex: A Phrase and Word Level Sentiment Lexicon for Egyptian and Modern Standard Arabic. In Proceedings of the 10th International Conference on Language Resources and Evaluation, LREC 2016, Portorož, Slovenia, 23–28 May 2016; pp. 2900–2905. [Google Scholar]
- Duwairi, R.M.; Alshboul, M.A. Negation-Aware Framework for Sentiment Analysis in Arabic Reviews. In Proceedings of the 2015 3rd International Conference on Future Internet of Things and Cloud, Rome, Italy, 24 August 2015; pp. 731–735. [Google Scholar]
- El-Naggar, N.; El-Sonbaty, Y.; El-Nasr, M.A. Sentiment Analysis of Modern Standard Arabic and Egyptian Dialectal Arabic Tweets. In Proceedings of the IEEE Computing Conference 2017, London, UK, 18–20 July 2017; pp. 880–887. [Google Scholar]
- Ljajic, A.; Marovac, U. Improving Sentiment Analysis for Twitter Data by Handling Negation Rules in the Serbian Language. Comput. Sci. Inform. Syst. 2019, 16, 289–311. [Google Scholar] [CrossRef] [Green Version]
- Costumero, R.; Lopez, F.; Gonzalo-Martín, C.; Millan, M.; Menasalvas, E. An Approach to Detect Negation on Medical Documents in Spanish. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany, 2014; pp. 366–375. ISBN 9783319098906. [Google Scholar]
- Skeppstedt, M. Negation Detection in Swedish Clinical Text: An Adaption of NegEx to Swedish. J. Biomed. Semant. 2011, 2, S3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deléger, L.; Grouin, C. Detecting Negation of Medical Problems in French Clinical Notes. In Proceedings of the 2nd ACM SIGHIT Symposium on International Health Informatics-IHI’12, Miami, FL, USA, 28–30 January 2012; pp. 697–701. [Google Scholar]
- Ogren, P.V.; Savova, G.K.; Chute, C.G. Constructing Evaluation Corpora for Automated Clinical Named Entity Recognition. In Proceedings of the 6th International Conference on Language Resources and Evaluation, LREC 2008; European Language Resources Association (ELRA): Marrakech, Morocco, 2008; pp. 3143–3150. [Google Scholar]
- Demner-Fushman, D.; Kohli, M.D.; Rosenman, M.B.; Shooshan, S.E.; Rodriguez, L.; Antani, S.; Thoma, G.R.; McDonald, C.J. Preparing a Collection of Radiology Examinations for Distribution and Retrieval. J. Am. Med. Inform. Assoc. 2016, 23, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Gkotsis, G.; Velupillai, S.; Oellrich, A.; Dean, H.; Liakata, M.; Dutta, R. Don’t Let Notes Be Misunderstood: A Negation Detection Method for Assessing Risk of Suicide in Mental Health Records. In Proceedings of the Third Workshop on Computational Lingusitics and Clinical Psychology; Association for Computational Linguistics (ACL): Stroudsburg, PA, USA, 2016; pp. 95–105. [Google Scholar]
- Zerva, C.; Ananiadou, S. Paths for Uncertainty: Exploring the Intricacies of Uncertainty Identification for News. In Proceedings of the Workshop on Computational Semantics beyond Events and Roles; Association for Computational Linguistics (ACL): Stroudsburg, PA, USA, 2018; pp. 6–20. [Google Scholar]
Ref. | Year | Corpus | Domain | Size | Neg. | Spec. | Scope | Event | Focus | Avail. |
---|---|---|---|---|---|---|---|---|---|---|
[49] | 2007 | BioInfer | Biomedical | 1100 | √ | √ | √ | |||
[21] | 2008 | GENIA | Biomedical | 9372 | √ | √ | √ | √ | ||
[14] | 2008 | BioScope | Biomedical | 20,924 | √ | √ | √ | √ | ||
[50] | 2010 | CoNLL-2010 | Biological Wikipedia | 40,289 | √ | √ | √ | |||
[44] | 2010 | Product Review | Review | 2111 | √ | √ | ||||
[51] | 2011 | PropBank FOC | Journal stories | 3779 | √ | √ | √ | |||
[40] | 2012 | SFU Review | Review | 17,263 | √ | √ | √ | √ | ||
[41] | 2012 | ConanDoyle-neg | Short stories | 4423 | √ | √ | √ | √ | ||
[8] | 2015 | Twitter Negation | Tweets | 4000 | √ | √ | ||||
[27] | 2016 | DT-Neg | Dialogues | 27,785 responses | √ | √ | √ | √ | ||
[45] | 2018 | SFU SOCC | Opinion | 1043 comments | √ | √ | √ | √ |
Ref. | Year | Corpus | Lang. | Domain | Size | Neg | Spec | Scope | Event | Focus | Avail |
---|---|---|---|---|---|---|---|---|---|---|---|
[20] | 2010 | Stockholm EPR | Swedish | Clinical | 6740 | √ | √ | ||||
[29] | 2014 | hUnCertainty | Hungarian | Misc. | 15,203 | √ | |||||
[59] | 2014 | Review and Newspaper | Japanese | Review, Newspaper | 2147 | √ | √ | √ | |||
[60] | 2014 | EMC | Dutch | Clinical | 12,888 medical terms | √ | √ | ||||
[43] | 2015 | CNeSp | Chinese | literature, reviews, financial articles | 16,841 | √ | √ | √ | √ | ||
[46] | 2016 | EMR | Chinese | Biomedical | 36,828 | √ | √ | ||||
[61] | 2016 | GNSC | German | Biomedical | 2234 | √ | √ | √ | √ | ||
[19] | 2016 | BioArabic | Arabic | Biomedical | 10,165 | √ | √ | √ | |||
[9] | 2017 | IULA | Spanish | Biomedical | 3194 | √ | √ | √ | |||
[62] | 2017 | UHU-HUVR | Spanish | Clinical | 8412 | √ | √ | √ | |||
[26] | 2017 | SFU ReviewSP NEG | Spanish | Review | 9455 | √ | √ | √ | √ | ||
[28] | 2017 | News (Fact-Ita Bank) and Tweets | Italian | News stories, Tweets | 1591 | √ | √ | √ | √ | ||
[15] | 2018 | NegPar | English-Chinese | Short stories | 5520 E5005 C | √ | √ | √ | √ | ||
[24] | 2019 | ESSAI | French | Medical | 6547 | √ | √ | √ | |||
[24] | 2019 | CAS | French | Medical | 3811 | √ | √ | √ | |||
[13] | 2020 | REBEC | Brazilian Portuguese | Clinical | 3228 | √ | √ | √ | |||
[13] | 2020 | Clinical narratives | Brazilian Portuguese | Clinical | 9808 | √ | √ | √ | |||
[18] | 2020 | NUBES | Spanish | Biomedical | 29,682 | √ | √ | √ | √ | √ | |
[35] | 2020 | NewsComm | Spanish | Comments | 4980 | √ | √ | √ | √ | √ | |
[17] | 2021 | T-MexNeg | Mexican Spanish | Tweets | 13,704 | √ | √ | √ | √ | ||
[36] | 2021 | ArNeg | Arabic | Wikipedia Biography Religion | 6000 | √ | √ |
Ref. | Year | Language | Negation | Speculation | ||
---|---|---|---|---|---|---|
Features | Methods | Features | Methods | |||
[83] | 2007 | English | BoW | SVM | ||
[84] | 2007 | English | Bigrams, Trigrams | Weakly Supervised Learning | ||
[72] | 2009 | English | PoS, Lemma, Syntactic | SVM, CRF, TiMBL | ||
[73] | 2009 | English | PoS, Lemma, Syntactic | SVM-CRF-TiMBL | ||
[75] | 2009 | English | BoW, PoS, Syntactic | SVM | ||
[44] | 2010 | English | PoS | CRF | ||
[85] | 2012 | English | Syntactic | SVM | ||
[86] | 2013 | English | Syntactic | SVM Tree Kernel | Syntactic | SVM Tree Kernel |
[76] | 2014 | English | Handcrafted Rules | MRS Crawler | ||
[87] | 2016 | English | Syntactic, Cue | CNN | Syntactic, Cue | CNN |
[88] | 2016 | English | WE | BiLSTM | ||
[89] | 2016 | English | WE, PoS | BiLSTM | ||
[90] | 2017 | English | WE | CNN with attention | ||
[91] | 2017 | English | Lexical, Syntactic | SVM+CRF | ||
[46] | 2017 | Chinese | Embedding, BoW, BoC | CRF | ||
[92] | 2018 | English, Chinese | Latent Structural, Cue | Semi-CRF | ||
[93] | 2018 | Spanish | WE, PoS | LSTM | ||
[94] | 2018 | English, Chinese | PoS | BiLSTM | ||
[74] | 2019 | English | Cue | NegBERT | ||
[11] | 2019 | English, Chinese | BERT, PoS | BiLSTM | BERT, PoS | BiLSTM |
[24] | 2019 | French | WE, PoS | BiLSTM-CRF | WE, PoS | BiLSTM-CRF |
[95] | 2019 | Arabic | Syntactic, PoS | GAN with Attention | ||
[96] | 2020 | English, Chinese | Syntactic | RNN-CRF | Syntactic | RNN-CRF |
[39] | 2020 | English | Syntactic | BiLSTM & CNN | ||
[97] | 2020 | English | Syntactic | STRNN | ||
[13] | 2020 | French, Brazilian, Portuguese | WE, PoS | BiLSTM-CRF | ||
[36] | 2021 | Arabic | WE, Cue | BiLSTM | ||
[17] | 2021 | Mexican Spanish | PoS, Cue | CRF |
Ref. | Algorithm/Method | Phenomenon | Language | Corpus | F1-Score | PCS |
---|---|---|---|---|---|---|
[44] | CRF | Negation | English | Review | 80 | 39 |
[88] | BiLSTM | Negation | English | SFU Review | 89 | |
[74] | NegBERT | Negation | English | SFU Review | 90 | |
[93] | LSTM | Negation | Spanish | SFU ReviewSP | 77 | |
[17] | CRF | Cross-domain Negation | Mexican Spanish Spanish | T-MexNeg SFU ReviewSP | 75 68 |
Ref. | Algorithm/Method | Phenomenon | Language | Corpus | F1-Score | PCS |
---|---|---|---|---|---|---|
[66] | NegFinder | Negation | English | Surgical notes and discharge summaries | 96 | |
[71] | NegEx | Negation | English | Discharge summaries | 90 | |
[78] | ConText | Negation | English | Clinical reports | 93 | |
[79] | NegMiner | Negation | English | Narrative Medical Documents | 95 | |
[10] | DEEPEN | Negation | English | Clinical notes | 81 | |
[37] | NegBio | Negation Speculation | English | OpenI [124] ChestX-ray [37] | 87 * 94 * | |
[83] | SVM | Speculation | English | Papers from FlyBase | 76 PEP 1 | |
[84] | SVM | Speculation | English | Papers from BMC | 85 PEP | |
[90] | CNN with attention | Speculation | English | CoNLL 2010 | 85 | |
[60] | contextD | Negation | Dutch | Clinical reports | 87–93 | |
[46] | CRF | Negation | Chinese | EMR | 95 | |
[95] | GAN with attention | Negation Speculation | Arabic | BioArabic | 79 79 | |
[61] | NegEx | Negation Speculation | German | GNSC | 94 42 | |
[24] | BiLSTM-CRF | Negation Speculation | French | ESSAI-CAS | 90 86 | |
[13] | BiLSTM-CRF | Cross-lingual Negation | French Brazilian Portuguese | ESSAI-CASREBEC | 53 73 |
Ref. | Algorithm/Method | Negation | Speculation | ||
---|---|---|---|---|---|
F1-Score | PCS | F1-Score | PCS | ||
[72] | SVM-CRF-TiMBL | 80 | 60 | ||
[73] | SVM-CRF-TiMBL | 59 | 31 | ||
[75] | SVM | 71 | |||
[44] | CRF | 75 | 53 | ||
[86] | SVM Tree Kernel | 84 | 53 | 94 | 71 |
[87] | CNN | 89 | 74 | 91 | 74 |
[92] | Semi-CRF | 90 | 78 | ||
[74] | NegBERT | 93 | |||
[11] | BiLSTM | 90 | 86 | ||
[96] | RNN-CRF | 93 | 92 | 91 | 88 |
[39] | BiLSTM & CNN | 90 | 75 | ||
[71] | NegEx | 82 | |||
[37] | NegBio | 95 | |||
[102] | ScopeFinder | 75 | 76 |
Ref. | Algorithm/Method | Phenomenon | Language | Corpus | F1-Score | PCS |
---|---|---|---|---|---|---|
[76] | MRS Crawler | Negation | English | Conan Doyle | 75 | |
[85] | SVM | Negation | English | SEM 2012* | 78 | |
[89] | BiLSTM | Negation | English | SEM 2012* | 89 | |
[91] | SVM+CRF | Negation | English | SEM 2012* | 71 | |
[97] | STRNN | Negation | English | SEM 2012* | 89 | |
[74] | NegBERT | Negation | English | SEM 2012* | 92 | |
[92] | Semi-CRF | Negation | English Chinese | SEM 2012* ChNeSp | 88 90 | 82 72 |
[96] | RNN-CRF | Negation Speculation | Chinese | CNeSp | 93 91 | 92 88 |
[11] | BiLSTM | Negation | English-Chinese | NegPar | 79 | |
[94] | BiLSTM | Cross-Lingual Negation | English-Chinese | NegPar | 72 | 24 |
[36] | BiLSTM | Negation | Arabic | ArNe | 89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahany, A.; Khaled, H.; Elmitwally, N.S.; Aljohani, N.; Ghoniemy, S. Negation and Speculation in NLP: A Survey, Corpora, Methods, and Applications. Appl. Sci. 2022, 12, 5209. https://doi.org/10.3390/app12105209
Mahany A, Khaled H, Elmitwally NS, Aljohani N, Ghoniemy S. Negation and Speculation in NLP: A Survey, Corpora, Methods, and Applications. Applied Sciences. 2022; 12(10):5209. https://doi.org/10.3390/app12105209
Chicago/Turabian StyleMahany, Ahmed, Heba Khaled, Nouh Sabri Elmitwally, Naif Aljohani, and Said Ghoniemy. 2022. "Negation and Speculation in NLP: A Survey, Corpora, Methods, and Applications" Applied Sciences 12, no. 10: 5209. https://doi.org/10.3390/app12105209
APA StyleMahany, A., Khaled, H., Elmitwally, N. S., Aljohani, N., & Ghoniemy, S. (2022). Negation and Speculation in NLP: A Survey, Corpora, Methods, and Applications. Applied Sciences, 12(10), 5209. https://doi.org/10.3390/app12105209