Fourier and Chirp-Z Transforms in the Estimation Values Process of Horizontal and Vertical Synchronization Frequencies of Graphic Displays
Abstract
:1. Introduction
2. Information Reproducing by Using a Real Analog-to-Digital Converter (ADC)
- Computer with 8 GB of DDR3-1333 RAM, Intel Pentium Core2Quad Q8300 processor running at 2.5 GHz. For such a hardware platform, in a 64-bit Windows environment, the maximum samples string length for FFT transform calculations was 228 (256 MS).
- Computer equipped with 64 GB of DDR4-2666 RAM memory, Intel Pentium i9-10900X processor with a clock frequency of 3.7 GHz. For such a hardware platform, the maximum samples string length for FFT transform calculations was 231 (2 GS).
3. Time-Frequency Characteristics of Video Signals
4. Determination of Rasterization Parameter Values
4.1. FFT Transform
4.2. Chirp-Z Transform (Chirp Transform)
4.2.1. Synthetic Signals Obtained by Decoding of the BMP File Subjected to the Differentiation Operation
- Graphic display and correction of rastering parameters;
- Low-pass, high-pass, median and edge detection;
- Signal analysis in time domain.
4.2.2. Synthetic Signals Obtained by Decoding of the BMP File Subjected to the Differentiation Operation, Noisy by AWGN Noise
4.2.3. Signals Obtained by Sampling the Revealing Signal from the VGA Interface Received by the TEMPEST Test System DSI-1550 and Sampled by the ADC Card
5. Conclusions
- Algorithms using full knowledge of the source information;
- Algorithms using limited knowledge of the source information;
- Algorithms without access to knowledge about source information.
- Mean Absolute Error (MAE);
- Mean Square Error (MSE) or its Root Mean Square Error (RMSE);
- Peak Signal to Noise Ratio (PSNR).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boitan, A.; Bartusica, R.; Halunga, S.; Popescu, M.; Ionuta, I. Compromising Electromagnetic Emanations of Wired USB Keyboards. In Proceedings of the Third International Conference on Future Access Enablers for Ubiquitous and Intelligent Infrastructures (FABULOUS), Bucharest, Romania, 12–14 October 2017; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Zhang, N.; Yinghua, L.; Qiang, C.; Yiying, W. Investigation of Unintentional Video Emanations from a VGA Connector in the Desktop Computers. IEEE Trans. Electromagn. Compat. 2017, 59, 1826–1834. [Google Scholar] [CrossRef]
- Yuan, K.; Grassi, F.; Spadacini, G.; Pignari, S.A. Crosstalk-Sensitive Loops and Reconstruction Algorithms to Eavesdrop Digital Signals Transmitted Along Differential Interconnects. IEEE Trans. Electromagn. Compat. 2017, 59, 256–265. [Google Scholar] [CrossRef]
- Kubiak, I. Laser printer as a source of sensitive emissions. Turk. J. Electr. Eng. Comput. Sci. 2018, 26, 1354–1366. [Google Scholar]
- Kubiak, I.; Loughry, J. LED Arrays of Laser Printers as Valuable Sources of Electromagnetic Waves for Acquisition of Graphic Data. Electronics 2019, 8, 1078. [Google Scholar] [CrossRef] [Green Version]
- Birukawa, R.; Hayashi, Y.; Mizuki, T.; Sone, H. A study on an Effective Evaluation Method for EM Information Leakage without Reconstructing Screen. In Proceedings of the International Symposium and Exhibition on Electromagnetic Compatibility (EMC Europe 2019), Barcelona, Spain, 2–6 September 2019. [Google Scholar]
- VESA and Industry Standards and Guidelines for Computer Display Monitor Timing (DMT); Version 1.0, Revision 13; 8 February 2013, 39899 Balentine Drive, Suite 125 Phone: 510 651 5122, Newark, CA 94560. Available online: https://vesa.org/vesa-standards/ (accessed on 23 April 2022).
- De Meulemeester, P.; Scheers, B.; Vandenbosch, G.A.E. Eavesdropping a (ultra-)high-definition video display from an 80 meter distance under realistic circumstances. In Proceedings of the 2020 IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI), Reno, NV, USA, 27–31 July 2021. [Google Scholar]
- Levina, A.; Mostovoi, R.; Sleptsova, D.; Tcvetkov, L. Physical model of sensitive data leakage from PC-based cryptographic systems. J. Cryptogr. Eng. 2019, 9, 393–400. [Google Scholar] [CrossRef]
- Trip, B.; Butnariu, V.; Vizitiu, M.; Boitan, A.; Halunga, S. Analysis of Compromising Video Disturbances through Power Line. Sensors 2022, 22, 267. [Google Scholar] [CrossRef]
- Bartusica, R.; Boitan, A.; Fratu, O.; Mihai, M. Processing gain considerations on compromising emissions. In Proceedings of the Conference: Advanced Topics in Optoelectronics, Microelectronics and Nanotechnologies 2020, Constanta, Romania, 20–23 August 2020. [Google Scholar] [CrossRef]
- Nowosielski, L.; Dudzinski, B.; Przesmycki, R.; Bugaj, M. Specifying Power Filter Insertion Loss Values in Terms of Electromagnetic Safety of IT Equipment. Electronics 2021, 10, 2041. [Google Scholar] [CrossRef]
- Przybysz, A.; Grzesiak, K.; Kubiak, I. Electromagnetic Safety of Remote Communication Devices—Videoconference. Symmetry 2021, 13, 323. [Google Scholar] [CrossRef]
- Choi, D.H.; Lee, E.; Yook, J.G. Reconstruction of Video Information Through Leakaged Electromagnetic Waves from Two VDUs Using a Narrow Band-Pass Filter. IEEE Access 2022, 10, 40307–40315. [Google Scholar] [CrossRef]
- De Meulemeester, P.; Scheers, B.; Vandenbosch, G.A.E. A quantitative approach to eavesdrop video display systems exploiting multiple electromagnetic leakage channels. IEEE Trans. Electromagn. Compat. 2020, 62, 663–672. [Google Scholar] [CrossRef]
- Rubab, N.; Manzoor, N.; un Nisa, T.; Hussain, I.; Amin, M. Repair of video frames received by eavesdropping from VGA cable transmission. Processing of the 2018 15th International Bhurban Conference on Applied Sciences & Technology (IBCAST), Islamabad, Pakistan, 9–13 January 2018. [Google Scholar]
- Maxwell, M.; Funlade, S.; Lauder, D. Unintentional Compromising Electromagnetic Emanations from IT Equipment: A Concept Map of Domain Knowledge. Procedia Comput. Sci. 2022, 200, 1432–1441. [Google Scholar]
- Xueyun, H.; Xiaosong, L.; Yingping, Z.; Pengfei, Z.; Haohua, C.; Xiaonan, Z. Microstrip Bandstop Filter for Preventing Conduction Electromagnetic Information Leakage of High-Power Transmission Line. Int. J. Antennas Propag. 2022, 2022, 4915492. [Google Scholar] [CrossRef]
- Popescu, M.; Bartusica, R. Aspects regarding the customized analysis of emission security risks for certain types of compromising signals. In Proceedings of the 2021 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCo), Bucharest, Romania, 24–28 May 2021. [Google Scholar] [CrossRef]
- Nowosielski, L. Impact of IT equipment location in buildings on electromagnetic safety. Int. J. Electron. Telecommun. 2020, 66, 481–486. [Google Scholar] [CrossRef]
- Tajima, K.; Ishikawa, R.; Mori, T.; Suzuki, Y.; Takaya, K. A study on risk evaluation of countermeasure 284 technique for preventing electromagnetic information leakage from ITE. In Proceedings of the International Symposium on 285 Electromagnetic Compatibility (EMC Europe 2017), Angers, France, 4–8 September 2017. [Google Scholar]
- Gyamfi, E.; Jurcut, A. Intrusion Detection in Internet of Things Systems: A Review on Design Approaches Leveraging Multi-Access Edge Computing, Machine Learning, and Datasets. Sensors 2022, 22, 3744. [Google Scholar] [CrossRef]
- Ali, A.; Mateen, A.; Hanan, A.; Amin, F. Advanced Security Framework for Internet of Things (IoT). Technologies 2022, 10, 60. [Google Scholar] [CrossRef]
- Aydın, H. TEMPEST Attacks and Cybersecurity. Int. J. Eng. Technol. 2019, 5, 100–104. [Google Scholar]
- Sekiguchi, H. Information leakage of input operation on touch screen monitors caused by electromagnetic noise. In Proceedings of the IEEE International Symposium on Electromagnetic Compatibility, Fort Lauderdale, FL, USA, 25–30 July 2010. [Google Scholar] [CrossRef]
- Zieliński, T.P. Cyfrowe Przetwarzanie Sygnałów, od Teorii do Zastosowań; Wydawnictwa Komunikacji Łączności (WKŁ): Warszawa, Poland, 2005. [Google Scholar]
- Qin, M.; Li, D.; Tang, X.; Zeng, C.; Li, W.; Xu, L. A Fast High-Resolution Imaging Algorithm for Helicopter-Borne Rotating Array SAR Based on 2-D Chirp-Z Transform. Remote Sens. 2019, 11, 1669. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Chen, J.; Zeng, C.C.; Wang, P.B.; Liu, W. A Wide-Swath Spaceborne TOPS SAR Image Formation Algorithm Based on Chirp Scaling and Chirp-Z Transform. Sensors 2016, 16, 2095. [Google Scholar] [CrossRef] [Green Version]
- Granados-Lieberman, D.; Romero-Troncoso, R.J.; Cabal-Yepez, E.; Osornio-Rios, R.A.; Franco-Gasca, L.A. A Real-Time Smart Sensor for High-Resolution Frequency Estimation in Power Systems. Sensors 2009, 9, 7412–7429. [Google Scholar] [CrossRef] [Green Version]
- Kubiak, I. The Influence of the Structure of Useful Signal on the Efficacy of Sensitive Emission of Laser Printers. Measurement 2018, 119, 63–74. [Google Scholar] [CrossRef]
- Kubiak, I. Influence of the method of colors on levels of electromagnetic emissions from video standards. IEEE Trans. Electromagn. Compat. 2018, 61, 1129–1137. [Google Scholar] [CrossRef]
- Guri, M.; Elovici, Y. Exfiltration of information from air-gapped machines using monitor’s LED indicator. In Proceedings of the 2014 IEEE Joint Intelligence and Security Informatics Conference, Washington, DC, USA, 24–26 September 2014; pp. 264–267. [Google Scholar]
- Hee-Kyung, L.; Yong-Hwa, K.; Young-Hoon, K.; Seong-Cheol, K. Emission Security Limits for Compromising Emanations Using Electromagnetic Emanation Security Channel Analysis. IEICE Trans. Commun. 2013, 96, 2639–2649. [Google Scholar]
- Prvulovic, M.; Zajic, A.; Callan, R.L.; Wang, C.J. A Method for Finding Frequency-Modulated and Amplitude-Modulated Electromagnetic Emanations in Computer Systems. IEEE Trans. Electromagn. Compat. 2017, 59, 34–42. [Google Scholar] [CrossRef]
- Ho Seong, L.; Jong-Gwan, Y.; Kyuhong, S. Analysis of information leakage from display devices with LCD. In Proceedings of the URSI Asia-Pacific Radio Science Conference 2016, Seoul, Korea, 21–25 August 2016. [Google Scholar]
- Jun, S.; Yongacoglu, A.; Sun, D.; Dong, W. Computer LCD recognition based on the compromising emanations in cyclic frequency domain. In Proceedings of the IEEE International Symposium on Electromagnetic Compatibility, Ottawa, ON, Canada, 25–29 July 2016; pp. 164–169. [Google Scholar]
- Song, T.L.; Jong-Gwan, J. Study of jamming countermeasure for electromagnetically leaked digital video signals. In Proceedings of the IEEE International Symposium on Electromagnetic Compatibility, Gothenburg, Sweden, 1–4 September 2014. [Google Scholar] [CrossRef]
- Rabiner, L.; Schafer, R.; Rader, C. The Chirp-Z transform algorithm. IEEE Trans. Audio Electroacoust. 1969, 17, 86–92. [Google Scholar] [CrossRef]
- Aiello, M.; Cataliotti, A.; Nuccio, S. A Chirp-Z transform-based synchronizer for power system measurements. IEEE Trans. Instrum. Meas. 2005, 54, 1025–1032. [Google Scholar] [CrossRef]
- Draidi, J.A. Two-dimensional Chirp-Z transform and its application to zoom Wigner bispectrum. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS 96), Atlanta, GA, USA, 15 May 1996. [Google Scholar]
- SDIP-27/2-Tempest Requirements and Evaluation Procedures (published as AC/322-D(2016)0022), NATO Confidential. 20 March 2016; accepted.
Operating Mode of Display | Total Number of Image Lines | Total Number of Pixels in Line | Pixel Frequency [MHz] | Horizontal Sync Frequency [kHz] |
---|---|---|---|---|
640 × 480/60 Hz | 525 | 800 | 25.175 | 31.469 |
800 × 600/60 Hz | 628 | 1056 | 40.000 | 37.789 |
1024 × 768/60 Hz | 806 | 1344 | 65.000 | 48.363 |
1280 × 1024/60 Hz | 1066 | 1688 | 108.000 | 63.981 |
1366 × 768/60 Hz | 798 | 1792 | 85.500 | 47.712 |
1440 × 900/60 Hz | 934 | 1904 | 106.500 | 55.935 |
1600 × 900/60 Hz | 1000 | 1800 | 108.000 | 60.000 |
1600 × 1200/60 Hz | 1250 | 2160 | 162.000 | 75.000 |
1920 × 1080/60 Hz | 1125 | 2200 | 148.500 | 67.500 |
2048 × 1152/60 Hz | 1200 | 2250 | 162.000 | 72.000 |
4096 × 2160/60 Hz | 2222 | 4176 | 556.744 | 133.320 |
Length of the Sample String | Pentium i9-10900X | Pentium C2Q Q8300 | ||
---|---|---|---|---|
Calculation Time for FFT [s] | Calculation Time for CZT [s] | Calculation Time for FFT [s] | Calculation Time for CZT [s] | |
222 | 0.06 | 2.74 | 0.19 | 15.26 |
223 | 0.12 | 5.82 | 0.43 | 34.07 |
224 | 0.22 | 12.61 | 0.94 | 74.54 |
225 | 0.43 | 26.51 | 1.96 | 298.82 |
226 | 0.88 | 58.81 | 4.48 | out of memory |
227 | 1.51 | 119.05 | 82.91 | out of memory |
228 | 2.05 | 272.42 | 412.46 | out of memory |
229 | 7.75 | out of memory | out of memory | out of memory |
230 | 15.78 | out of memory | out of memory | out of memory |
231 | 115.44 | out of memory | out of memory | out of memory |
232 | out of memory | out of memory | out of memory | out of memory |
Operating Mode of Display | Pixel Frequency [MHz] | Sampling Rate [MHz] | Vertical Synchronization Frequency [kHz] | Estimated Number of Pixels on the Line |
---|---|---|---|---|
640 × 480/60 Hz | 25.175 | 31.25 | 31.500 | 992.0634921 |
800 × 600/60 Hz | 40.000 | 62.50 | 37.789 | 1653.920453 |
1024 × 768/60 Hz | 65.000 | 125.00 | 48.363 | 2584.620474 |
1280 × 1024/60 Hz | 108.000 | 125.00 | 63.981 | 1953.705006 |
1366 × 768/60 Hz | 85.500 | 125.00 | 47.712 | 2619.885983 |
1440 × 900/60 Hz | 106.500 | 125.00 | 55.935 | 2234.736748 |
1600 × 900/60 Hz | 108.000 | 125.00 | 60.000 | 2083.333333 |
1600 × 1200/60 Hz | 162.000 | 250.00 | 75.000 | 3333.333333 |
1920 × 1080/60 Hz | 148.500 | 250.00 | 67.500 | 3703.703704 |
2048 × 1152/60 Hz | 162.000 | 250.00 | 72.000 | 3472.222222 |
4096 × 2160/60 Hz | 556.744 | 1000.00 | 133.320 | 7500.750075 |
Operating Mode of Display | Sampling Rate [MHz] | Real Number of Pixels in the Line | [Hz] | [Hz] | [Hz] | [Hz] |
---|---|---|---|---|---|---|
640 × 480/60 Hz | 31.25 | 993.0408 | 31,468.9991 | 31,469.3160 | 31,468.6822 | 0.3169 |
1366 × 768/60 Hz | 125.00 | 2619.8860 | 23,855.9998 | 23,856.0909 | 23,855.9088 | 0.0911 |
1600 × 900/60 Hz | 125.00 | 2083.3333 | 60,000.0010 | 60,000.2890 | 59,999.7130 | 0.2880 |
1920 × 1080/60 Hz | 250.00 | 3703.7037 | 67,500.0001 | 67,500.1823 | 67,499.8178 | 0.1823 |
Operating Mode of Display | Sampling Rate [MHz] | Requirement Number of Samples | |
---|---|---|---|
640 × 480/60 Hz | 31.25 | 0.3169 | 98,612,011 |
1366 × 768/60 Hz | 125.00 | 0.0911 | 686,377,646 |
1600 × 900/60 Hz | 125.00 | 0.2880 | 434,025,681 |
1920 × 1080/60 Hz | 250.00 | 0.1823 | 1,371,738,407 |
Image | FFT Transform Length (N) | Chirp-Z Transform Length (N) | Real Line Length | Designated Line Length | Estimation Inaccuracy |
---|---|---|---|---|---|
Strips 8 × 8 | 224 | 222 | 2200 | 2200.000000 | 0.000000 |
Window of MS Word editor | 224 | 222 | 2200.005559 | 0.005559 | |
225 | 222 | 2200.000629 | 0.000629 | ||
225 | 223 | 2200.000629 | 0.000629 |
Image | SNR [dB] | Real Line Length |
Designated Average Length of Line | Standard Deviation of the Estimate | Estimation Inaccuracy |
---|---|---|---|---|---|
Strips 8 × 8 | +15 | 2200 | 2200.000037 | 0.000107 | 0.000037 |
+5 | 2199.999979 | 0.000434 | 0.000021 | ||
0 | 2200.000304 | 0.000593 | 0.000304 | ||
−5 | 2200.000525 | 0.000915 | 0.000525 | ||
−15 | 2199.999045 | 0.004018 | 0.000955 | ||
Window of MS Word editor | +15 | 2200.005539 | 0.000074 | 0.005539 | |
+5 | 2200.005534 | 0.000248 | 0.005534 | ||
0 | 2200.005702 | 0.000383 | 0.005702 | ||
−5 | 2200.005146 | 0.001097 | 0.005146 | ||
−15 | 2200.005560 | 0.002281 | 0.005560 |
Image | Receiving Bandwidth B [MHz] | Antenna Amplifier | Sampling Rate [MS/s] | Real Line Length | Designated Line Length | Estimation Inaccuracy |
---|---|---|---|---|---|---|
Strips 8 × 8 | 10 | ON | 62.5 | 925.920923 | 925.920893 | 0.000030 |
125.0 | 1851.841761 | 1851.841520 | 0.000241 | |||
250.0 | 3703.682958 | 3703.682158 | 0.000800 | |||
500.0 | 7407.363841 | 7407.367141 | 0.003300 | |||
OFF | 62.5 | 925.920829 | 925.921599 | 0.000770 | ||
125.0 | 1851.841441 | 1851.246290 | 0.595151 | |||
250.0 | 3703.682739 | 3703.688339 | 0.005600 | |||
500.0 | 7407.364521 | 7406.767794 | 0.596727 | |||
Window of MS Word editor | ON | 62.5 | 925.920800 | 927.568891 | 1.648091 | |
125.0 | 1851.841670 | 1855.146201 | 3.304531 | |||
250.0 | 3703.682660 | 3710.223990 | 6.541330 | |||
500.0 | 7407.363340 | 7420.748217 | 13.384877 | |||
OFF | 62.5 | 925.920780 | 925.627822 | 0.292958 | ||
125.0 | 1851.841480 | 1851.259880 | 0.581600 | |||
250.0 | 3703.682520 | 3702.480226 | 1.202294 | |||
500.0 | 7407.363950 | 7405.279559 | 2.084391 |
Image | Receiving Bandwidth B [MHz] | Antenna Amplifier | Sampling Rate [MS/s] | Real Line Length | Designated Line Length | Estimation Inaccuracy |
---|---|---|---|---|---|---|
Strips 8 × 8 | 20 | ON | 62.5 | 925.920869 | 925.920849 | 0.000020 |
125.0 | 1851.841516 | 1851.841256 | 0.000260 | |||
250.0 | 3703.682568 | 3703.680568 | 0.002000 | |||
500.0 | 7407.363005 | 7407.357605 | 0.005400 | |||
OFF | 62.5 | 925.920820 | 925.627866 | 0.292954 | ||
125.0 | 1851.841510 | 1851.251144 | 0.590366 | |||
250.0 | 3703.682600 | 3702.500522 | 1.182078 | |||
500.0 | 7407.362820 | 7405.102352 | 2.260468 | |||
Window of MS Word editor | ON | 62.5 | 925.920750 | 927.568714 | 1.647964 | |
125.0 | 1851.841350 | 1855.139643 | 3.298293 | |||
250.0 | 3703.682400 | 3710.213356 | 6.530956 | |||
500.0 | 7407.363260 | 7420.401191 | 13.037931 | |||
OFF | 62.5 | 925.920800 | 925.627734 | 0.293066 | ||
125.0 | 1851.841550 | 1851.261910 | 0.579640 | |||
250.0 | 3703.682640 | 3702.481991 | 1.200649 | |||
500.0 | 7407.364140 | 7404.390081 | 2.974059 |
Image | Receiving Bandwidth B [MHz] | Sampling Rate [MS/s] | Real Line Length | Designated Line Length | Estimation Inaccuracy |
---|---|---|---|---|---|
Strips 8 × 8 | 10 | 62.5 | 925.623070 | 925.623145 | 0.000075 |
125.0 | 1851.246050 | 1851.245143 | 0.000907 | ||
250.0 | 3702.491410 | 3702.490815 | 0.000595 | ||
500.0 | 7404.981840 | 7405.057876 | 0.076036 | ||
20 | 62.5 | 925.623100 | 925.623101 | 0.000001 | |
125.0 | 1851.246230 | 1851.245408 | 0.000822 | ||
250.0 | 3702.492190 | 3702.492227 | 0.000037 | ||
500.0 | 7404.983240 | 7405.000339 | 0.017099 | ||
Window of MS Word editor | 10 | 62.5 | 925.623270 | 925.623454 | 0.000184 |
125.0 | 1851.246890 | 1851.246908 | 0.000018 | ||
250.0 | 3702.493120 | 3702.482520 | 0.010600 | ||
500.0 | 7404.985540 | 7404.916330 | 0.069210 | ||
20 | 62.5 | 925.623420 | 925.623366 | 0.000054 | |
125.0 | 1851.246740 | 1851.246290 | 0.000450 | ||
250.0 | 3702.493160 | 3702.493463 | 0.000303 | ||
500.0 | 7404.982540 | 7404.976336 | 0.006204 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kubiak, I.; Przybysz, A. Fourier and Chirp-Z Transforms in the Estimation Values Process of Horizontal and Vertical Synchronization Frequencies of Graphic Displays. Appl. Sci. 2022, 12, 5281. https://doi.org/10.3390/app12105281
Kubiak I, Przybysz A. Fourier and Chirp-Z Transforms in the Estimation Values Process of Horizontal and Vertical Synchronization Frequencies of Graphic Displays. Applied Sciences. 2022; 12(10):5281. https://doi.org/10.3390/app12105281
Chicago/Turabian StyleKubiak, Ireneusz, and Artur Przybysz. 2022. "Fourier and Chirp-Z Transforms in the Estimation Values Process of Horizontal and Vertical Synchronization Frequencies of Graphic Displays" Applied Sciences 12, no. 10: 5281. https://doi.org/10.3390/app12105281
APA StyleKubiak, I., & Przybysz, A. (2022). Fourier and Chirp-Z Transforms in the Estimation Values Process of Horizontal and Vertical Synchronization Frequencies of Graphic Displays. Applied Sciences, 12(10), 5281. https://doi.org/10.3390/app12105281