A Method to Produce vsiRNAs in Plants with Cross-Kingdom Gene Silencing Capacity
Abstract
:1. Introduction
2. Materials and Methods
2.1. VIGS Vectors
2.2. Nicotiana Benthamiana Culture and VIGS Inoculation
2.3. cDNA Synthesis from sRNAs and Amplification of Krt18 vsiRNA by PCR
2.4. RNA Extraction and sRNA Enrichment
2.5. sRNA Sequencing
2.6. Extraction of Peritoneal Macrophages from BALB/c Mice
2.7. Transfection of sRNAs into Macrophages of BALB/c Mice
2.8. Determination of the Relative Expression of Krt18 in Macrophages
3. Results
3.1. vsiRNA Production
3.2. vsiRNA Sequencing Analysis
3.3. Induction of Gene Silencing in Macrophages of Mus musculus
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guo, H.; Ingolia, N.T.; Weissman, J.S.; Bartel, D.P. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 2010, 466, 835–840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshikawa, M.; Han, Y.W.; Fujii, H.; Aizawa, S.; Nishino, T.; Ishikawa, M. Cooperative recruitment of RDR6 by SGS3 and SDE5 during small interfering RNA amplification in Arabidopsis. Proc. Natl. Acad. Sci. USA 2021, 118, e2102885118. [Google Scholar] [CrossRef] [PubMed]
- Ho, T.; Wang, H.; Pallett, D.; Dalmay, T. Evidence for targeting common siRNA hotspots and GC preference by plant Dicer-like proteins. FEBS Lett. 2007, 581, 3267–3272. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.Y.; Liu, Z.Q.; Bai, Y.L. Advances in the RNA-directed DNA methylation in plants. Chin. J. Biotechnol. 2006, 22, 891. [Google Scholar]
- Ruiz-Ferrer, V.; Voinnet, O. Roles of plant small RNAs in biotic stress responses. Annu. Rev. Plant Biol. 2009, 60, 485–510. [Google Scholar] [CrossRef] [Green Version]
- Fire, A.; Xu, S.; Montgomery, M.K.; Kostas, S.A.; Driver, S.E.; Mello, C.C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998, 391, 806–811. [Google Scholar] [CrossRef]
- Napoli, C.; Lemieux, C.; Jorgensen, R. Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans. Plant Cell 1990, 2, 279–289. [Google Scholar] [CrossRef] [Green Version]
- Romano, N.; Macino, G. Quelling: Transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Mol. Microbiol. 1992, 6, 3343–3353. [Google Scholar] [CrossRef]
- Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef] [Green Version]
- Baulcombe, D. RNA silencing in plants. Nature 2004, 431, 356–363. [Google Scholar] [CrossRef]
- Zhang, L.; Hou, D.; Chen, X.; Li, D.; Zhu, L.; Zhang, Y.; Li, J.; Bian, Z.; Liang, X.; Cai, X.; et al. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: Evidence of cross-kingdom regulation by microRNA. Cell Res. 2012, 22, 107–126. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, X.; Liu, J.; Dongxia, H.; Chen, Q.; Liu, J.; Kong, H.; Zhang, Q.; Qianyi, Z.; Hou, D.; et al. Honeysuckle-encoded atypical microRNA2911 directly targets influenza A viruses. Cell Res. 2015, 25, 39–49. [Google Scholar] [CrossRef]
- Zhou, L.K.; Zhou, Z.; Jiang, X.M.; Zheng, Y.; Chen, X.; Fu, Z.; Xiao, G.; Zhang, C.Y.; Zhang, L.K.; Yi, Y. Absorbed plant MIR2911 in honeysuckle decoction inhibits SARS-CoV-2 replication and accelerates the negative conversion of infected patients. Cell Discov. 2020, 6, 54. [Google Scholar] [CrossRef]
- Kumar, D.; Kumar, S.; Ayachit, G.; Bhairappanavar, S.B.; Ansari, A.; Sharma, P. Cross-Kingdom Regulation of Putative miRNAs Derived from Happy Tree in Cancer Pathway: A Systems Biology Approach. Int. J. Mol. Sci. 2017, 18, 1191. [Google Scholar] [CrossRef] [Green Version]
- Stefano, P.; Letizia, Z.; Maurice, K.; Carla, M.; Antonella, M.; Marina, P. MicroRNA from Moringa oleifera: Identification by High Throughput Sequencing and Their Potential Contribution to Plant Medicinal Value. PLoS ONE 2016, 11, e0149495. [Google Scholar] [CrossRef]
- Chin, A.R.; Fong, M.Y.; Somlo, G.; Wu, J.; Swiderski, P.; Wu, X. Cross-kingdom inhibition of breast cancer growth by plant miR159. Cell Res. 2016, 26, 217–228. [Google Scholar] [CrossRef] [Green Version]
- Cavalieri, D.; Rizzetto, L.; Tocci, N.; Rivero, D.; Asquini, E.; Si-Ammour, A. Plant microRNAs as novel immunomodulatory agents. Sci. Rep. 2016, 6, 25761. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Negrete, E.A.; Carrillo-Tripp, J.; Rivera-Bustamante, R.F. RNA silencing against geminivirus: Complementary action of posttranscriptional gene silencing and transcriptional gene silencing in host recovery. J. Virol. 2008, 83, 1332–1340. [Google Scholar] [CrossRef] [Green Version]
- Chellappan, P.; Vanitharani, R.; Fauquet, C.M. Short interfering RNA accumulation correlates with host recovery in DNA virus-infected hosts, and gene silencing targets specific viral sequences. J. Virol. 2004, 78, 7465–7477. [Google Scholar] [CrossRef] [Green Version]
- Yan, H.; Bombarely, A.; Xu, B.; Frazier, T.P.; Wang, C.; Chen, P.; Chen, J.; Hasing, T.; Cui, C.; Zhang, X.; et al. siRNAs regulate DNA methylation and interfere with gene and lncRNA expression in the heterozygous polyploidy switchgrass. Biotechnol. Biofuels 2018, 11, 208. [Google Scholar] [CrossRef]
- Robertson, D. VIGS vectors for gene silencing: Many targets, many tools. Annu. Rev. Plant Biol. 2004, 55, 495–519. [Google Scholar] [CrossRef]
- Villanueva-Alonzo, H.J.; Us-Camas, R.Y.; López-Ochoa, L.A.; Robertson, D.; Guerra-Peraza, O.; Minero-García, Y.; Moreno-Valenzuela, O.A. A new virus-induced gene silencing vector based on Euphorbia mosaic virus-Yucatan peninsula for NPR1 silencing in Nicotiana benthamiana and Capsicum annuum var. Anaheim. Biotechnol. Lett. 2013, 35, 811–823. [Google Scholar] [CrossRef]
- Goodin, M.M.; Zaitlin, D.; Naidu, R.A.; Lommel, S.A. Nicotiana benthamiana: Its history and future as a model for plant-pathogen interactions. Mol. Plant-Microbe Interact. 2008, 21, 1015–1026. [Google Scholar] [CrossRef] [Green Version]
- Kjemtrup, S.; Sampson, K.S.; Peele, C.; Nguyen, L.V.; Conkling, M.A.; Thompson, W.F.; Robertson, D. Gene silencing from plant DNA carried by a geminivirus. Plant J. 1998, 14, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Li, F.; Sun, Y.; Zhang, X.; Yuan, J.; Yang, H.; Xiang, J. Virus-derived small RNAs in the penaeid shrimp Fenneropenaeus chinensis during acute infection of the DNA virus WSSV. Sci. Rep. 2016, 28, 28678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fulnecek, J. Isolation and detection of small RNA molecules. Plant Soil Environ. 2007, 53, 451–455. [Google Scholar] [CrossRef] [Green Version]
- Peele, C.; Jordan, C.V.; Muangsan, N.; Turnage, M.; Egelkrout, E.; Eagle, P.; Hanley-Bowdoin, L.; Robertson, D. Silencing of a meristematic gene using geminivirus-derived vectors. Plant J. 2001, 27, 357–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalmay, T.; Hamilton, A.; Rudd, S.; Angell, S.; Baulcombe, D.C. An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell 2000, 101, 543–553. [Google Scholar] [CrossRef] [Green Version]
- Axtell, M.J. Classification and comparison of small RNAs from plants. Annu. Rev. Plant Biol. 2013, 64, 137–159. [Google Scholar] [CrossRef] [Green Version]
- Deleris, A.; Gallego-Bartolome, J.; Bao, J.; Kasschau, K.D.; Carrington, J.C.; Voinnet, O. Hierarchical action and inhibition of plant Dicer-like proteins in antiviral defense. Science 2006, 313, 68–71. [Google Scholar] [CrossRef]
- Chellappan, P.; Vanitharani, R.; Ogbe, F.; Fauquet, C.M. Effect of temperature on geminivirus-induced RNA silencing in plants. Plant Physiol. 2005, 138, 1828–1841. [Google Scholar] [CrossRef] [Green Version]
- Parashar, D.; Paingankar, M.S.; Kumar, S.; Gokhale, M.D.; Sudeep, A.B.; Shinde, S.B.; Arankalle, V.A. Administration of E2 and NS1 siRNAs inhibit chikungunya virus replication in vitro and protects mice infected with the virus. PLoS Negl. Trop. Dis. 2013, 7, e2405. [Google Scholar] [CrossRef]
- Zeng, J.; Gupta, V.K.; Jiang, Y.; Yang, B.; Gong, L.; Zhu, H. Cross-kingdom small RNAs among animals, plants and microbes. Cells 2019, 8, 371. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villanueva-Alonzo, H.d.J.; Haro-Álvarez, A.P.; Alvarado-Segura, A.A.; Valle-Gough, R.E.; Collí-Mull, J.G.; Cal-Torres, A.; Arana-Argáez, V.E.; Torres-Romero, J.C.; Moreno-Valenzuela, O.A.; Nic-Can, G.; et al. A Method to Produce vsiRNAs in Plants with Cross-Kingdom Gene Silencing Capacity. Appl. Sci. 2022, 12, 5329. https://doi.org/10.3390/app12115329
Villanueva-Alonzo HdJ, Haro-Álvarez AP, Alvarado-Segura AA, Valle-Gough RE, Collí-Mull JG, Cal-Torres A, Arana-Argáez VE, Torres-Romero JC, Moreno-Valenzuela OA, Nic-Can G, et al. A Method to Produce vsiRNAs in Plants with Cross-Kingdom Gene Silencing Capacity. Applied Sciences. 2022; 12(11):5329. https://doi.org/10.3390/app12115329
Chicago/Turabian StyleVillanueva-Alonzo, Hernán de Jesús, Ana Paulina Haro-Álvarez, Arturo A. Alvarado-Segura, Raúl Enrique Valle-Gough, Juan Gualberto Collí-Mull, Alberto Cal-Torres, Víctor Ermilo Arana-Argáez, Julio César Torres-Romero, Oscar Alberto Moreno-Valenzuela, Geovanny Nic-Can, and et al. 2022. "A Method to Produce vsiRNAs in Plants with Cross-Kingdom Gene Silencing Capacity" Applied Sciences 12, no. 11: 5329. https://doi.org/10.3390/app12115329
APA StyleVillanueva-Alonzo, H. d. J., Haro-Álvarez, A. P., Alvarado-Segura, A. A., Valle-Gough, R. E., Collí-Mull, J. G., Cal-Torres, A., Arana-Argáez, V. E., Torres-Romero, J. C., Moreno-Valenzuela, O. A., Nic-Can, G., Ayil-Gutiérrez, B. A., & Acosta-Viana, K. Y. (2022). A Method to Produce vsiRNAs in Plants with Cross-Kingdom Gene Silencing Capacity. Applied Sciences, 12(11), 5329. https://doi.org/10.3390/app12115329