Ship’s Digital Twin—A Review of Modelling Challenges and Applications
Abstract
:1. Introduction
2. SDT Concept Development and Methods Used
2.1. The Purpose of the Model
2.2. Data Acquisition and Processing
2.3. Modelling and Modelling Methods
2.4. Validation of the Model
3. Connectivity Issues and Communication between the Ship and SDT
4. Applications
4.1. Maintenance and Condition Monitoring
4.2. Decision-Making Support
4.3. Cost Reduction
4.4. Remote Control and Monitoring
4.5. Various Applications
5. The Review Analysis of SDTs
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fonseca, Í.A.; Gaspar, H.M. Challenges When Creating a Cohesive Digital Twin Ship: A Data Modelling Perspective. Ship Technol. Res. 2021, 68, 70–83. [Google Scholar] [CrossRef]
- Šoda, J.; Majić, M.; Vujović, I.; Sorić, B. An Overview on a Future Trends and Smart Technologies in Maritime. In Proceedings of the 8th International Maritime Science Conference, Budva, Montenegro, 11–12 April 2019. [Google Scholar]
- Lee, J.; Bagheri, B.; Kao, H.-A. A Cyber-Physical Systems Architecture for Industry 4.0-Based Manufacturing Systems. Manuf. Lett. 2015, 3, 18–23. [Google Scholar] [CrossRef]
- Wan, J.; Canedo, A.; Al Faruque, M.A. Functional Model-Based Design Methodology for Automotive Cyber-Physical Systems. IEEE Syst. J. 2017, 11, 2028–2039. [Google Scholar] [CrossRef]
- Alam, K.M.; Sopena, A.; El Saddik, A. Design and Development of a Cloud Based Cyber-Physical Architecture for the Internet-of-Things. In Proceedings of the 2015 IEEE International Symposium on Multimedia (ISM), Miami, FL, USA, 14–16 December 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 459–464. [Google Scholar]
- Alam, K.M.; El Saddik, A. C2PS: A Digital Twin Architecture Reference Model for the Cloud-Based Cyber-Physical Systems. IEEE Access 2017, 5, 2050–2062. [Google Scholar] [CrossRef]
- Saracco, R. Digital Twins: Bridging Physical Space and Cyberspace. Computer 2019, 52, 58–64. [Google Scholar] [CrossRef]
- Coraddu, A.; Oneto, L.; Baldi, F.; Cipollini, F.; Atlar, M.; Savio, S. Data-Driven Ship Digital Twin for Estimating the Speed Loss Caused by the Marine Fouling. Ocean Eng. 2019, 186, 106063. [Google Scholar] [CrossRef]
- Danielsen-Haces, A. Digital Twin Development. Master’s Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2018. [Google Scholar]
- Liu, M.; Zhou, Q.; Wang, X.; Yu, C.; Kang, M. Voyage Performance Evaluation Based on a Digital Twin Model. IOP Conf. Ser. Mater. Sci. Eng. 2020, 929, 012027. [Google Scholar] [CrossRef]
- Anyfantis, K.N. An Abstract Approach toward the Structural Digital Twin of Ship Hulls: A Numerical Study Applied to a Box Girder Geometry. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 2021, 235, 718–736. [Google Scholar] [CrossRef]
- VanDerHorn, E.; Mahadevan, S. Digital Twin: Generalization, Characterization and Implementation. Decis. Support Syst. 2021, 145, 113524. [Google Scholar] [CrossRef]
- Bekker, A. Exploring the Blue Skies Potential of Digital Twin Technology for a Polar Supply and Research Vessel. In Proceedings of the 13th International Marine Design Conference, Helsinki, Finland, 10–14 June 2018. [Google Scholar]
- Major, P.; Li, G.; Zhang, H.; Hildre, H.P. Real-Time Digital Twin Of Research Vessel For Remote Monitoring. In Proceedings of the International Conference on Modelling and Simulation (ECMS 2021), Virtual, 31 May–2 June 2021; pp. 159–164. [Google Scholar]
- Bondarenko, O.; Fukuda, T. Development of a Diesel Engine’s Digital Twin for Predicting Propulsion System Dynamics. Energy 2020, 196, 117126. [Google Scholar] [CrossRef]
- Hulkkonen, T.; Manderbacka, T.; Sugimoto, K. Digital Twin for Monitoring Remaining Fatigue Life of Critical Hull Structures. In Proceedings of the 18th Conference on Computer Applications and Information Technology in the Maritime Industries (COMPIT2019), Tullamore, Ireland, 25–27 March 2019. [Google Scholar]
- Perabo, F.; Park, D.; Zadeh, M.K.; Smogeli, O.; Jamt, L. Digital Twin Modelling of Ship Power and Propulsion Systems: Application of the Open Simulation Platform (OSP). In Proceedings of the 2020 IEEE 29th International Symposium on Industrial Electronics (ISIE), Delft, The Netherlands, 17–19 June 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1265–1270. [Google Scholar]
- Radan, D. Integrated Control of Marine Electrical Power Systems. Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2008. [Google Scholar]
- Bondarenko, O.; Kitagawa, Y. Real-time propulsion plant simulation and hardware in the loop (HIL) implementation of microprocessor engine governor. In Proceedings of the 13th International Conference on Engine Room Simulators (ICERS2013), Odessa, Ukraine, 20–21 September 2017. [Google Scholar]
- Johansen, S.S.; Nejad, A.R. On Digital Twin Condition Monitoring Approach for Drivetrains in Marine Applications. In Proceedings of the Volume 10: Ocean Renewable Energy, Glasgow, UK, 9–14 June 2019; American Society of Mechanical Engineers: New York, NY, USA, 2019; p. V010T09A013. [Google Scholar]
- Manngård, M.; Lund, W.; Björkqvist, J. Using Digital Twin Technology to Ensure Data Quality in Transport Systems. In Proceedings of the 8th Transport Research Arena (TRA2020): Rethinking Transport towards Clean and Inclusive Mobility, Helsinki, Finland, 27–30 April 2020. [Google Scholar]
- Galeev, R.E.; Soloviev, A.V.; Fedosenko, Y.S. Modeling and Visualization of the Forecast Trajectory for the Decision Support System for Controlling the Movement of a River Displacement Vessel. J. Phys. Conf. Ser. 2021, 2131, 032033. [Google Scholar] [CrossRef]
- Arrichiello, V.; Gualeni, P. Systems Engineering and Digital Twin: A Vision for the Future of Cruise Ships Design, Production and Operations. Int. J. Interact. Des. Manuf. 2020, 14, 115–122. [Google Scholar] [CrossRef]
- Fonseca, I.A.; Gaspar, H.M. Fundamentals Of Digital Twins Applied To A Plastic Toy Boat And A Ship Scale Model. In Proceedings of the ECMS Conference on Modelling and Simulation (ECMS 2020), Wildau, Germany, 9–12 June 2020; pp. 207–213. [Google Scholar]
- Dufour, C.; Soghomonian, Z.; Li, W. Hardware-in-the-Loop Testing of Modern On-Board Power Systems Using Digital Twins. In Proceedings of the 2018 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Amalfi, Italy, 20–22 June 2018; pp. 118–123. [Google Scholar]
- Grinek, A.; Boychuk, I.; Fishenko, A.M.; Savosteenko, N.; Gerasimenko, O.N. Investigation of the Operation of a Ship’s Synchronous Generator Based on a Numerical Model. J. Phys. Conf. Ser. 2021, 2061, 012004. [Google Scholar] [CrossRef]
- Wunderlich, A.; Booth, K.; Santi, E. Hybrid Analytical and Data-Driven Modeling Techniques for Digital Twin Applications. In Proceedings of the 2021 IEEE Electric Ship Technologies Symposium (ESTS), Arlington, VA, USA, 3–6 August 2021; pp. 1–7. [Google Scholar]
- Boschert, S.; Rosen, R. Digital Twin—The Simulation Aspect. In Mechatronic Futures; Hehenberger, P., Bradley, D., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 59–74. ISBN 978-3-319-32154-7. [Google Scholar]
- Wen-hao, W.; Guo-bing, C.; Zi-chun, Y. The Application and Challenge of Digital Twin Technology in Ship Equipment. J. Phys. Conf. Ser. 2021, 1939, 012068. [Google Scholar] [CrossRef]
- Singh, M.; Fuenmayor, E.; Hinchy, E.P.; Qiao, Y.; Murray, N.; Devine, D. Digital Twin: Origin to Future. Appl. Syst. Innov. 2021, 4, 36. [Google Scholar] [CrossRef]
- Kosacka-Olejnik, M.; Kostrzewski, M.; Marczewska, M.; Mrówczyńska, B.; Pawlewski, P. How Digital Twin Concept Supports Internal Transport Systems?—Literature Review. Energies 2021, 14, 4919. [Google Scholar] [CrossRef]
- Errandonea, I.; Beltrán, S.; Arrizabalaga, S. Digital Twin for Maintenance: A Literature Review. Comput. Ind. 2020, 123, 103316. [Google Scholar] [CrossRef]
- Semeraro, C.; Lezoche, M.; Panetto, H.; Dassisti, M. Digital Twin Paradigm: A Systematic Literature Review. Comput. Ind. 2021, 130, 103469. [Google Scholar] [CrossRef]
- Erikstad, S.O. Design Patterns for Digital Twin Solutions in Marine Systems Design and Operations. In Proceedings of the Conference on Computer Applications and Information Technology in the Maritime Industries (COMPIT), Pavone, Italy, 14–16 May 2018. [Google Scholar]
- Glaessgen, E.; Stargel, D. The Digital Twin Paradigm for Future NASA and U.S. Air Force Vehicles. In Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, HI, USA, 23–26 April 2012. [Google Scholar]
- Defense Acquisition Glossary. Available online: https://www.dau.edu/glossary/Pages/Glossary.aspx (accessed on 25 May 2022).
- Hause, M. The Digital Twin Throughout the SE Lifecycle. In SNAME Maritime Convention; OnePetro: Richardson, TX, USA, 2019; Volume 29, pp. 203–217. [Google Scholar] [CrossRef]
- Pang, T.Y.; Pelaez Restrepo, J.D.; Cheng, C.-T.; Yasin, A.; Lim, H.; Miletic, M. Developing a Digital Twin and Digital Thread Framework for an ‘Industry 4.0’ Shipyard. Appl. Sci. 2021, 11, 1097. [Google Scholar] [CrossRef]
- Functional Mock-Up Interface. Available online: https://fmi-standard.org/ (accessed on 25 May 2022).
- Diaz, A.; Saltares, R.; Rodriguez, C.; Nunez, R.F.; Ortiz-Rivera, E.I.; Gonzalez-Llorente, J. Induction Motor Equivalent Circuit for Dynamic Simulation. In Proceedings of the 2009 IEEE International Electric Machines and Drives Conference, Miami, FL, USA, 3–6 May 2009; pp. 858–863. [Google Scholar]
- Katalinić, M. Data based modelling of the mean wave period in the adriatic sea. Trans. Marit. Sci. 2017, 11, 308. [Google Scholar]
- Schroeder, G.N.; Steinmetz, C.; Rodrigues, R.N.; Rettberg, A.; Pereira, C.E. Digital Twin Connectivity Topologies. IFAC-Pap. 2021, 54, 737–742. [Google Scholar] [CrossRef]
- Lu, Y.; Xu, X. A digital twin reference model for smart manufacturing. In Proceedings of the 48th International Conference on Computers and Industrial Engineering CIE 2018, Auckland, New Zealand, 2–5 December 2018. [Google Scholar]
- Lim, K.Y.H.; Zheng, P.; Chen, C.-H. A State-of-the-Art Survey of Digital Twin: Techniques, Engineering Product Lifecycle Management and Business Innovation Perspectives. J. Intell. Manuf. 2020, 31, 1313–1337. [Google Scholar] [CrossRef]
- Liu, M.; Fang, S.; Dong, H.; Xu, C. Review of Digital Twin about Concepts, Technologies, and Industrial Applications. J. Manuf. Syst. 2021, 58, 346–361. [Google Scholar] [CrossRef]
- Qi, Q.; Tao, F.; Hu, T.; Anwer, N.; Liu, A.; Wei, Y.; Wang, L.; Nee, A.Y.C. Enabling Technologies and Tools for Digital Twin. J. Manuf. Syst. 2021, 58, 3–21. [Google Scholar] [CrossRef]
- Hofmann, W.; Branding, F. Implementation of an IoT- and Cloud-Based Digital Twin for Real-Time Decision Support in Port Operations. IFAC-Papers 2019, 52, 2104–2109. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, B.; Wang, G.; Zhang, C. A Comparative Study on Digital Twin Models. In Proceedings of the AIP Conference Proceedings 2073, Wuhan, China, 19–20 January 2019. [Google Scholar]
- Minerva, R.; Lee, G.M.; Crespi, N. Digital Twin in the IoT Context: A Survey on Technical Features, Scenarios, and Architectural Models. Proc. IEEE 2020, 108, 1785–1824. [Google Scholar] [CrossRef]
- Tofte, B.L.; Vennemann, O.; Mitchell, F.; Millington, N.; McGuire, L. How Digital Technology and Standardisation Can Improve Offshore Operations. In Proceedings of the Offshore Technology Conference (OTC), Houston, TX, USA, 6–9 May 2019. [Google Scholar]
- Ibrion, M.; Paltrinieri, N.; Nejad, A.R. Learning from Failures in Cruise Ship Industry: The Blackout of Viking Sky in Hustadvika, Norway. Eng. Fail. Anal. 2021, 125, 105355. [Google Scholar] [CrossRef]
Paper (Author, Year) | Model | Steps | Methods | Application |
---|---|---|---|---|
Radan, D., 2008, [18] | Ship electric power system | I, III, II, IV | Mathematical modelling | Various |
Dufour, C. et al., 2018, [25] | Ship electric power system | I, II, III | MBD, HIL | Maintenance and condition monitoring |
Danielsen-Haces, A., 2018, [9] | Electric propulsion system | I, II, III, IV | ANN | Maintenance and condition monitoring |
Bekker, A., 2018, [13] | Behaviouristic model of a ship | I, II, III | DDM, Statistics | Maintenance and condition monitoring |
Coraddu, A. et al., 2019, [8] | Propulsion system and ship hydrodynamics | I, II, III, IV | ANN, DDM | Maintenance and condition monitoring |
Arrichiello, V. et al., 2019, [23] | Hull structure and machinery | I, III, II | MBSE | Decision-making support |
Hulkkonen, T. et al., 2019, [16] | Ship structure (balcony opening) | I, II, III | FEM | Maintenance and condition monitoring |
Johansen, S. et al., 2019, [20] | Ship drivetrain | I, II, III, IV | FEM | Maintenance and condition monitoring |
Bondarenko, O. et al., 2020, [15] | Diesel engine | I, III, II, IV | Mathematical modelling, HIL, CMV | Various |
Fonseca, I. et al., 2020, [24] | Ship hull and propulsion system behavioural model | I, II, III | BEM | Remote control and monitoring |
Manngård, M. et al., 2020, [21] | Heat exchanger of a diesel engine | I, III, II, IV | Mathematical modelling, Statistics, FEM | Various |
Liu, M. et al., 2020, [10] | Ship speed and fuel consumption | I, II, III, IV | GBM, ANN | Various |
Perabo, F. et al., 2020, [17] | Ship power and propulsion system | I, III, II, IV | Mathematical modelling | Cost reduction |
Anyfantis, K. N., 2021, [11] | Ship hull structure | I, II, III, IV | FEM, ANN | Maintenance and condition monitoring |
Major, P. et al., 2021, [14] | Ship and ship crane | I, II, III, IV | DDM, HIL | Remote control and monitoring |
Galeev, R. E. et al., 2021, [22] | Ship trajectory | I, II, III | Mathematical modelling | Decision-making support |
Grinek, A. V., et al., 2021, [26] | Ship synchronous generator | I, II, III | FEM | Maintenance and condition monitoring |
Wunderlich, A. et al., 2021, [27] | Boost converter as a part of ship power system | II, III | GBM | Various |
VanDerHorn, E. et al., 2021, [12] | Ship hull structure | I, II, III | FEM, DDM | Decision-making support |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Assani, N.; Matić, P.; Katalinić, M. Ship’s Digital Twin—A Review of Modelling Challenges and Applications. Appl. Sci. 2022, 12, 6039. https://doi.org/10.3390/app12126039
Assani N, Matić P, Katalinić M. Ship’s Digital Twin—A Review of Modelling Challenges and Applications. Applied Sciences. 2022; 12(12):6039. https://doi.org/10.3390/app12126039
Chicago/Turabian StyleAssani, Nur, Petar Matić, and Marko Katalinić. 2022. "Ship’s Digital Twin—A Review of Modelling Challenges and Applications" Applied Sciences 12, no. 12: 6039. https://doi.org/10.3390/app12126039
APA StyleAssani, N., Matić, P., & Katalinić, M. (2022). Ship’s Digital Twin—A Review of Modelling Challenges and Applications. Applied Sciences, 12(12), 6039. https://doi.org/10.3390/app12126039