CFD Analysis and Validation of a Foreign Material Winnowing Machine for Pepper Harvester
Abstract
:1. Introduction
- The first objective is to measure the terminal velocities of chili pepper species and conduct an aerodynamic analysis. The terminal velocities of chili pepper fruit, chili pepper stem, and chili pepper leaf move distance by wind are each derived through aerodynamic analysis.
- The second objective is to validate the winnowing machine through a CFD analysis and test device. The wind speed of CFD flow analysis is verified as a flow test of separation equipment. In this result, the optimal rotation speed and discharge out guides for foreign material separation are decided, which will be applied to the chili pepper harvester.
2. Materials and Methods
2.1. Aerodynamic Properties of Mechanically Harvested Chili Pepper
2.2. Terminal Velocity Measurement
2.3. Aerodynamic Analysis of Winnowing
2.4. Flow Analysis of Winnowing Machine
2.5. CFD Modeling and Simulation Setup
2.6. Fabrication and Evaluation of Winnowing Machine
3. Results and Discussion
3.1. Result of Aerodynamic Analysis
3.2. Flow Analysis Results
3.3. Results of Comparing Winnower Speed Measurement and Flow Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Food and Agriculture Organization-World Health Organization. Production Share of Chilies and Peppers, Dry by Region. Available online: https://www.fao.org/faostat/en/#data/QCL/visualize (accessed on 12 January 2022).
- Statistics Korea. Production of Chili Pepper. Available online: http://kostat.go.kr/portal/eng/pressReleases/1/index.board?bmode=read&aSeq=415243 (accessed on 12 January 2022).
- Statistics Korea. Current State of Farm Mechanization. Available online: http://www.index.go.kr/potal/main/EachDtlPageDetail.do?idx_cd=1288 (accessed on 7 February 2022).
- Funk, P.A.; Walker, S.J. Evaluation of five green chili cultivars utilizing five different harvest mechanisms. Appl. Eng. Agric. 2010, 26, 955–964. [Google Scholar] [CrossRef]
- Chen, Y.C.; Kong, L.J.; Wang, H.X. Research of mechanism and experiment of 4LZ-3.0 self-propelled pepper harvester. Appl. Mech. Mater. 2013, 419, 217–222. [Google Scholar] [CrossRef]
- Nishanth, M.S.; Jayan, P.R.; Pankaj, M.; Ratnakiran, D.W. Design, development and evaluation of pepper harvester. J. AgriSearch 2020, 7, 82–85. [Google Scholar] [CrossRef]
- Walker, S.J.; Funk, P.A. Mechanical harvest trials of New Mexican-type green chile (Capsicum annuum L.). Hort. Sci. 2010, 45, 145–146. [Google Scholar]
- Calsoyas, I.; Walker, S.; Funk, P. Comparison of Six Green Chile (Capsicum annuum L.) Cultivars on Harvest Efficiency with Etgar®Picker. In Proceedings of the Annual Meeting of the American Society for Horticultural Science, Philadelphia, PA, USA, 3–7 January 2016; Volume 51, pp. 267–268. [Google Scholar]
- Nam, J.S.; Kang, Y.S.; Kim, S.B.; Kim, D.C. Factorial experiment for drum-type secondary separating part of self-propelled pepper harvester. J. Biosyst. Eng. 2017, 42, 242–250. [Google Scholar] [CrossRef]
- Shin, S.-Y.; Kim, M.-H.; Cho, Y.; Kim, D.-C. Performance testing and evaluation of drum-type stem separation device for pepper harvester. Appl. Sci. 2021, 11, 9225. [Google Scholar] [CrossRef]
- Marshall, D.E. Mechanized pepper harvesting and trash removal. In Proceedings of the First International Conference on Fruit, Nut and Vegetable Harvesting Mechanization, Bet Dagan, Israel, 5–12 October 1983; American Society of Agricultural and Biological Engineers: St. Joesph, MI, USA, 1984; Volume 5, pp. 276–279. [Google Scholar]
- Esch, T.A.; Marshall, D.E. Trash removal from mechanically harvested peppers. Trans. ASAE 1987, 30, 893–898. [Google Scholar] [CrossRef]
- Funk, P.A.; Marshall, D.E. Pepper Harvest Technology. In Peppers: Botany, Production and Uses; Russo, V.M., Ed.; CABI: Wallingford, UK, 2012; pp. 227–240. [Google Scholar] [CrossRef]
- Kim, T.-H.; Kim, D.-C.; Cho, Y. Performance comparison and evaluation of two small chili pepper harvester prototypes that attach to walking cultivators. Appl. Sci. 2020, 10, 2570. [Google Scholar] [CrossRef] [Green Version]
- Lenker, D.H.; Nascimento, D.F. Mechanical harvesting and cleaning of chili peppers. Trans. ASAE 1982, 25, 42–46. [Google Scholar] [CrossRef]
- Wolf, I.; Alper, Y. Mechanization of Paprika Harvest. In Proceedings of the First International Conference on Fruit, Nut and Vegetable Harvesting Mechanization, Bet Dagan, Israel, 5–12 October 1983; American Society of Agricultural and Biological Engineers: St. Joesph, MI, USA, 1984; Volume 5, pp. 265–275. [Google Scholar]
- Eaton, F.E.; Wilson, C. Refinement and Testing of Mechanical Cleaners for Red Chile. New Mexico State University Chile Task Force Report 22; New Mexico State University Library: Las Cruces, NM, USA, 2005. [Google Scholar]
- Kong, L.; Chen, Y.; Ma, L.; Duan, Y. Research and design of line pepper’ cleaning and separating device, based on star wheel and airflow. J. Chin. Agri. Mech. 2013, 34, 102–105. [Google Scholar]
- Jo, Y.J.; Kang, Y.S.; Nam, J.S.; Choe, J.S.; Inoue, E.; Okayasu, T.; Kim, D.C. Performance analysis for a card cleaner type separating system of pepper harvester. J. Fac. Agric. Kyushu-Univ. 2018, 63, 103–111. [Google Scholar] [CrossRef]
- Byum, J.H.; Nam, J.S.; Choe, J.S.; Inoue, E.; Okayasu, T.; Kim, D.C. Analysis of the separating performance of a card cleaner for pepper harvester using EDEM software. J. Fac. Agric. Kyushu-Univ. 2018, 63, 347–354. [Google Scholar] [CrossRef]
- Bilanski, W.K.; Collins, S.H.; Chu, P. Aerodynamic properties of seed grains. Agric. Eng. 1962, 43, 216–219. [Google Scholar]
- Lee, C.H.; Cho, Y.J.; Kim, M.S. Aerodynamic Study on Pneumatic Separation of Grains(I) -An Experimental Study on The Vertical Wind Tunnel-. J. Biosyst. Eng. 1989, 14, 272–281. [Google Scholar]
- Lee, C.H.; Cho, Y.J.; Kim, M.S. Aerodynamic Study on Pneumatic Separation of Grains(II) -The Measurement of the Terminal Velocities of Grains-. J. Biosyst. Eng. 1990, 15, 1–13. [Google Scholar]
- Chung, C.J.; Nam, S.I.; Joo, B.C. Pneumatic Separation on Separating Unit of a Combine Harvester. J. Biosyst. Eng. 1988, 13, 32–43. [Google Scholar]
- Kim, M.H.; Park, S.J.; Noh, S.H. Study on the Physical, Mechanical and Aerodynamic Properties of Peanut Pods. J. Biosyst. Eng. 1995, 20, 141–150. [Google Scholar]
- Choi, Y. Development of Machine Harvester for Pepper. Ph.D. Thesis, Chonnam National University, Gwangju, Korea, 2006. [Google Scholar]
- Hong, J.T.; Cho, K.H.; Cho, N.H.; Park, H.M.; Hong, S.K.; Choi, Y.; Shin, S.Y.; Cho, C.K. Study on Integrated Mechanization System for Harvest and Postharvest Operation of Once-over-harvest Pepper. In Proceedings of the Korean Society for Agricultural Machinery Conference, Suwon-si, Korea, 17–18 November 2006. [Google Scholar]
- Noh, H.K.; Han, D.W.; Lee, E.S.; Kang, T.H. Effect of air blast velocity for separating efficiency of sesame thresher. In Proceedings of the Korean Society for Agricultural Machinery, Yesan-gun, Korea, 2–3 May 2013. [Google Scholar]
- Lee, J.S.; Kim, B.J.; Kang, Y.S.; Kim, D.C. Analysis of flow for peanut harvest fan system using CFD. In Proceedings of the Korean Society for Agricultural Machinery, Jeju-si, Korea, 1–2 November 2013. [Google Scholar]
- Kim, B.J.; Kang, Y.S.; Kim, H.G.; Inoue, E.; Okayasu, T.; Kim, D.C. Analysis of the separating performance of peanut harvester sorting system. J. Fac. Agric. Kyushu-Univ. 2015, 60, 209–214. [Google Scholar] [CrossRef]
- Yuan, J.; Li, H.; Qi, X.; Hu, T.; Bai, M.; Wang, Y. Optimization of airflow cylinder sieve for threshed rice separation using CFD-DEM. Eng. Appl. Comp. Fluid. Mech. 2020, 14, 871–881. [Google Scholar] [CrossRef]
- Shin, S.Y.; Kim, D.C.; Kang, Y.S.; Cho, Y. Factorial experiment for air blower of the pepper harvester. J. Biosyst. Eng. 2020, 45, 239–248. [Google Scholar] [CrossRef]
- Zhao, J.; Sugirbay, A.; Liu, F.; Chen, Y.; Hu, G.; Zhang, E.; Chen, J. Parameter optimization of winnowing equipment for machine-harvested Lycium barbarum L. Span. J. Agric. Res. 2019, 17, e0203. [Google Scholar] [CrossRef]
- Franco, A.; Valera, D.L.; Pena, A.; Pérez, A.M. Aerodynamic analysis and CFD simulation of several cellulose evaporative cooling pads used in Mediterranean greenhouses. Comput. Electron. Agric. 2011, 76, 218–230. [Google Scholar] [CrossRef]
- Dousthaghi, M.H.; Minaei, S.; Khoshtaghaza, M.H. Computational fluid dynamics and analytical modeling for predicting effects of airflow temperature and relative humidity on the terminal velocity of agricultural granular materials. J. Food Process Eng. 2022, 45, e13941. [Google Scholar] [CrossRef]
- Di Perta, E.S.; Agizza, M.A.; Sorrentino, G.; Boccia, L.; Pindozzi, S. Study of aerodynamic performances of different wind tunnel configurations and air inlet velocities, using computational fluid dynamics (CFD). Comput. Electron. Agric. 2016, 125, 137–148. [Google Scholar] [CrossRef]
- Garrett, R.E.; Brooker, D.B. Aerodynamic drag of farm grains. Appl. Eng. Agric. 1965, 26, 45–52. [Google Scholar] [CrossRef]
- Song, H.; Litchfield, J.B. Predicting method of terminal velocity for grains. Appl. Eng. Agric. 1991, 34, 225–231. [Google Scholar] [CrossRef]
- Chakraverty, A.; Singh, R. Postharvest Technology and Food Process Engineering; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Meriam, J.L.; Kraige, L.G. Engineering Mechanics—Dynamics, 9th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2020. [Google Scholar]
- ANSYS Inc. FLUENT Manual—ANSYS 2020 Version R1, Theory Guide; ANSYS Inc.: Canonsburg, PA, USA, 2020. [Google Scholar]
- Lee, M.-H.; Kang, Y.-S.; Kim, D.-C.; Choi, Y. A Study on the Performance Improvement of Foreign Materials Separating System for a Pepper Harvester. J. Agric. Life Sci. 2020, 54, 111–120. [Google Scholar] [CrossRef]
- ANSYS Inc. FLUENT Training Material—ANSYS 2020 Version R1, Lecture Transient Flow Modeling, Introduction to ANSYS Fluent; ANSYS Inc.: Canonsburg, PA, USA, 2020. [Google Scholar]
- Oliver, M.A.; Webster, R. Kriging: A method of interpolation for geographical information systems. Int. J. Geogr. Inf. Syst. 1990, 4, 313–332. [Google Scholar] [CrossRef]
Item | Specification |
---|---|
Model number | TESTO 440 |
Company/Nation | TESTO/GERMANY |
Measuring range | 0–30 m/s |
Resolution | 0.1 m/s |
Accuracy | 0.04% |
Pepper Part | Variety | Vt 1 (m/s) | |
---|---|---|---|
AVE 2 | SD 3 | ||
Fruit | Jeokyoung | 13.7 | 1.1 |
AR legend | 13.5 | 0.4 | |
Branch | Jeokyoung | 11.2 | 0.5 |
AR legend | 11.5 | 1.6 | |
Leaf | Jeokyoung | 4.3 | 0.5 |
AR legend | 4.2 | 0.2 |
Parameter | Pepper Fruit | Branch | Unit |
---|---|---|---|
Length () | 0.11 | 0.2 | m |
Diameter () | 0.017 | 0.004 | m |
Weight () | 0.012 | 0.004 | kg |
Terminal velocity () | 13.5 | 11.5 | m/s |
Air density () | 1.27 | 1.27 | kg/m3 |
Acceleration of gravity () | 9.81 | 9.81 | m/s2 |
Velocity () | 10, 12.5, 15, 17.5 | 10, 12.5, 15, 17.5 | m/s |
Winnowing machine angle | 34 | 34 | ° |
x-axis start direction () | 0 | 0 | m |
y-axis start direction () | 0.4 | 0.4 | m |
Analysis time interval () | 0.1 | 0.1 | s |
Design Specifications | Value |
---|---|
Model Size: length, width, high (mm) | 631 × 510 × 602 |
Out guide type | 0, 3, 5 |
Impeller | Centrifugal type (2ea) |
Impeller: diameter × width × wing number (mm, ea) | 330 × 137 × 12 |
Parameter | Value |
---|---|
CFD method | Moving reference frame |
Fluid | Air |
Inlet, outlet | Static pressure |
Turbulence model | Standard k-epsilon/Realizable/Standard Wall Functions |
Wall | No Slip condition |
Mesh Nodes/Elements | 1,259,970/5,004,653 |
Mesh minimum orthogonal quality | 0.13 |
Mesh maximum quality | 0.87817363 |
Time step | 0.5 s |
Iterations | Hybrid, 500 |
Shape of Winnowing Machine | Distance (mm) | Rotating Speed (RPM) | Measured Value | Analysis Value | ||||
---|---|---|---|---|---|---|---|---|
L1 | C1 | R1 | L1 | C1 | R1 | |||
(m/s) | (m/s) | (m/s) | (m/s) | (m/s) | (m/s) | |||
Existing winnowing machine (0-guide) | 0 | 1600 | 3.3 | 19.8 | 3.6 | 4.1 | 19.9 | 4.4 |
1800 | 3.7 | 21.6 | 4.2 | 4.9 | 22.6 | 5.0 | ||
2000 | 4.9 | 22.7 | 4.7 | 5.8 | 24.1 | 5.8 | ||
150 | 1600 | 12.6 | 17.0 | 13.4 | 13.8 | 17.6 | 14.3 | |
1800 | 15.3 | 20.6 | 14.8 | 16.9 | 21.4 | 16.2 | ||
2000 | 16.3 | 20.5 | 16.6 | 17.5 | 23.2 | 18.4 | ||
300 | 1600 | 10.6 | 15.2 | 11.4 | 11.1 | 15.5 | 12.2 | |
1800 | 13.4 | 18.4 | 13.7 | 13.8 | 19.1 | 14.6 | ||
2000 | 14.6 | 18.5 | 15.4 | 15.0 | 19.6 | 15.8 | ||
Winnowing machine with three wind guides (3-guide) | 0 | 1600 | 14.9 | 16.1 | 15.6 | 15.6 | 17.7 | 16.2 |
1800 | 21.9 | 19.5 | 23.9 | 22.3 | 20.6 | 24.0 | ||
2000 | 23.4 | 22.1 | 25.8 | 24.4 | 22.9 | 26.8 | ||
150 | 1600 | 17.3 | 13.6 | 17.8 | 17.5 | 13.9 | 18.3 | |
1800 | 17.3 | 17.2 | 17.6 | 18.9 | 17.8 | 19.2 | ||
2000 | 19.5 | 17.2 | 18.0 | 21.1 | 19.3 | 20.0 | ||
300 | 1600 | 11.2 | 12.1 | 10.6 | 12.1 | 12.6 | 12.4 | |
1800 | 12.1 | 13.8 | 11.0 | 13.3 | 14.3 | 13.1 | ||
2000 | 13.3 | 15.6 | 12.1 | 15.4 | 15.8 | 13.9 | ||
Winnowing machine with five wind guides (5-guide) | 0 | 1600 | 15.0 | 15.3 | 14.4 | 14.2 | 15.5 | 14.8 |
1800 | 17.0 | 18.9 | 13.9 | 17.5 | 19.4 | 15.9 | ||
2000 | 17.7 | 17.9 | 16.4 | 19.0 | 18.6 | 18.2 | ||
150 | 1600 | 13.6 | 14.2 | 13.9 | 13.8 | 16.1 | 14.4 | |
1800 | 14.4 | 15.4 | 14.7 | 15.0 | 16.2 | 16.8 | ||
2000 | 18.9 | 16.1 | 16.1 | 19.5 | 18.0 | 18.3 | ||
300 | 1600 | 12.5 | 12.2 | 10.9 | 13.2 | 12.6 | 12.3 | |
1800 | 12.4 | 14.3 | 13.1 | 14.8 | 15.6 | 15.1 | ||
2000 | 15.1 | 16.1 | 16.7 | 16.1 | 17.0 | 17.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, S.-Y.; Kim, M.-H.; Cho, Y.; Kim, D.-C. CFD Analysis and Validation of a Foreign Material Winnowing Machine for Pepper Harvester. Appl. Sci. 2022, 12, 6134. https://doi.org/10.3390/app12126134
Shin S-Y, Kim M-H, Cho Y, Kim D-C. CFD Analysis and Validation of a Foreign Material Winnowing Machine for Pepper Harvester. Applied Sciences. 2022; 12(12):6134. https://doi.org/10.3390/app12126134
Chicago/Turabian StyleShin, Seo-Yong, Myoung-Ho Kim, Yongjin Cho, and Dae-Cheol Kim. 2022. "CFD Analysis and Validation of a Foreign Material Winnowing Machine for Pepper Harvester" Applied Sciences 12, no. 12: 6134. https://doi.org/10.3390/app12126134
APA StyleShin, S. -Y., Kim, M. -H., Cho, Y., & Kim, D. -C. (2022). CFD Analysis and Validation of a Foreign Material Winnowing Machine for Pepper Harvester. Applied Sciences, 12(12), 6134. https://doi.org/10.3390/app12126134