Performance Evaluation of Planetary Boundary Layer Schemes in Simulating Structures of Wintertime Lower Troposphere in Seoul Using One-Hour Interval Radiosonde Observation
Abstract
:1. Introduction
2. Synoptic Weather Analysis
3. Data and Methods
3.1. Radiosonde and Ground Observation Data
3.2. Model and Simulation Design
4. Results
4.1. Observed Structures of Lower Troposphere
4.2. Simulations
5. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lothon, M.; Campistron, B.; Jacoby-Koaly, S.; Bénech, B.; Lohou, F.; Girard-Ardhuin, F. Comparison of radar reflectivity and vertical velocity observed with a scannable C-band radar and two UHF profilers in the lower troposphere. J. Atmos. Oceanic Technol. 2002, 19, 899–910. [Google Scholar] [CrossRef]
- Zhang, C.; Woodworth, P.; Gu, G. The seasonal cycle in the lower troposphere over West Africa from sounding observations. Q. J. R. Meteorol. Soc. 2006, 132, 2559–2582. [Google Scholar] [CrossRef]
- Martucci, G.; Matthey, R.; Mitev, V.; Richner, H. Comparison between backscatter lidar and radiosonde measurements of the diurnal and nocturnal stratification in the lower troposphere. J. Atmos. Ocean. Technol. 2007, 24, 1231–1244. [Google Scholar] [CrossRef] [Green Version]
- Song, H.-J.; Kim, S.; Lee, H.; Kim, K.-H. Climatology of tropospheric relative humidity over the Korean Peninsula from radiosonde and ECMWF reanalysis. Atmosphere 2020, 11, 704. [Google Scholar] [CrossRef]
- Mason, P.J. Large-eddy simulation of the convective atmospheric boundary layer. J. Atmos. Sci. 1989, 46, 1492–1516. [Google Scholar] [CrossRef] [Green Version]
- Park, S.-B.; Baik, J.-J. Large-eddy simulations of convective boundary layers over flat and urbanlike surfaces. J. Atmos. Sci. 2014, 71, 1880–1892. [Google Scholar] [CrossRef]
- Zhou, B.; Chow, F.K. Nested large-eddy simulations of the intermittently turbulent stable atmospheric boundary layer over real terrain. J. Atmos. Sci. 2014, 71, 1021–1039. [Google Scholar] [CrossRef]
- Park, S.-B.; Baik, J.-J. Characteristics of decaying convective boundary layers revealed by large-eddy simulations. Atmosphere 2020, 11, 434. [Google Scholar] [CrossRef] [Green Version]
- Cooper, D.; Eichinger, W. Structure of the atmosphere in an urban planetary boundary layer from lidar and radiosonde observations. J. Geophys. Res. 1994, 992, 22937–22948. [Google Scholar] [CrossRef]
- Bianco, L.; Djalalova, I.V.; King, C.W.; Wilczak, J.M. Diurnal evolution and annual variability of boundary-layer height and its correlation to other meteorological variables in California’s Central Valley. Bound.-Layer Meteorol. 2011, 140, 491–511. [Google Scholar] [CrossRef] [Green Version]
- Ao, Y.; Li, J.; Li, Z.; Lyu, S.; Jiang, C.; Wang, M. Relation between the atmospheric boundary layer and impact factors under severe surface thermal conditions. Adv. Meteorol. 2017, 2017, 8352461. [Google Scholar] [CrossRef]
- Deardorff, J.W. Parameterization of the planetary boundary layer for use in general circulation models. Mon. Weather Rev. 1972, 100, 93–106. [Google Scholar] [CrossRef] [Green Version]
- Suarez, M.J.; Arakawa, A.; Randall, D.A. The parameterization of the planetary boundary layer in the UCLA general circulation model: Formulation and results. Mon. Weather Rev. 1983, 111, 2224–2243. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.Y.; Pan, H.L. Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Weather Rev. 1996, 124, 2322–2339. [Google Scholar] [CrossRef] [Green Version]
- Gilliam, R.C.; Pleim, J.E. Performance assessment of new land surface and planetary boundary layer physics in the WRF-ARW. J. Appl. Meteorol. Climatol. 2010, 49, 760–774. [Google Scholar] [CrossRef]
- Hariprasad, K.B.R.R.; Srinivas, C.V.; Singh, A.B.; Rao, S.V.B.; Baskaran, R.; Venkatraman, B. Numerical simulation and intercomparison of boundary layer structure with different PBL schemes in WRF using experimental observations at a tropical site. Atmos. Res. 2014, 145–146, 27–44. [Google Scholar] [CrossRef]
- Tyagi, B.; Magliulo, V.; Finardi, S.; Gasbarra, D.; Carlucci, P.; Toscano, P.; Zaldei, A.; Riccio, A.; Calori, G.; D’Allura, A.; et al. Performance analysis of planetary boundary layer parameterization schemes in WRF modeling set up over Southern Italy. Atmosphere 2018, 9, 272. [Google Scholar] [CrossRef] [Green Version]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Duda, M.G.; Huang, X.-Y.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3; Mesoscale and Microscale Meteorology Division in National Center for Atmospheric Research: Boulder, CO, USA, 2008. [Google Scholar]
- Hong, S.-Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef] [Green Version]
- Janjić, Z.I. The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Weather Rev. 1994, 122, 927–945. [Google Scholar] [CrossRef] [Green Version]
- Nakanishi, M.; Niino, H. An improved Mellor–Yamada level 3 model: Its numerical stability and application to a regional prediction of advecting fog. Bound.-Layer Meteorol. 2006, 119, 397–407. [Google Scholar] [CrossRef]
- Pleim, J.E. A Combined Local and Nonlocal Closure Model for the Atmospheric Boundary Layer. Part I: Model Description and Testing. J. Appl. Meteor. Climatol. 2007, 46, 1383–1395. [Google Scholar] [CrossRef]
- Dudhia, J. Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. 1997, 102, 16663–16682. [Google Scholar] [CrossRef] [Green Version]
- Kain, J.S. The Kain–Fritsch convective parameterization: An update. J. Appl. Meteorol. 2004, 43, 170–181. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.-Y.; Lim, J.-O.J. The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteorol. Soc. 2006, 42, 129–151. [Google Scholar]
- Chen, F.; Kusaka, H.; Bornstain, R.; Ching, J.; Grimmond, C.S.B.; Grossman-Clarke, S.; Loridan, T.; Manning, K.; Martilli, A.; Miao, S.; et al. The integrated WRF/urban modeling system: Development, evaluation, and applications to urban environmental problems. Int. J. Climatol. 2011, 31, 273–288. [Google Scholar] [CrossRef]
- Kim, D.-J.; Kang, G.; Kim, D.-Y.; Kim, J.-J. Characteristics of LDAPS-predicted surface wind speed and temperature at automated weather stations with different surrounding land cover and topography in Korea. Atmosphere 2020, 11, 1224. [Google Scholar] [CrossRef]
- Zhang, L.; Xin, J.; Yin, Y.; Chang, W.; Xue, M.; Jia, D.; Ma, Y. Understanding the major impact of planetary boundary layer schemes on simulation of vertical wind structure. Atmosphere 2021, 12, 777. [Google Scholar] [CrossRef]
- Jiang, L.; Bessagnet, B.; Meleux, F.; Tognet, F.; Couvidat, F. Impact of physics parameterizations on high-resolution air quality simulations over the Paris region. Atmosphere 2020, 11, 618. [Google Scholar] [CrossRef]
- Lee, S.-H.; Kwak, K.-H. Assessing 3-D spatial extent of near-road air pollution around a signalized intersection using drone monitoring and WRF-CFD modeling. Int. J. Environ. Res. Public Health 2020, 17, 6915. [Google Scholar] [CrossRef]
- Yoon, J.W.; Lim, S.; Park, S.K. Combinational optimization of the WRF physical parameterization schemes to improve numerical sea breeze prediction using micro-genetic algorithm. Appl. Sci. 2021, 11, 11221. [Google Scholar] [CrossRef]
MBE | RMSE | |||||||
---|---|---|---|---|---|---|---|---|
YSU | MYJ | MYNN | ACM2 | YSU | MYJ | MYNN | ACM2 | |
2-m air temperature (°C) | −0.93 | −0.20 | −0.53 | −0.96 | 1.88 | 1.48 | 1.64 | 1.84 |
10-m wind speed (m s−1) | −1.38 | −0.69 | −1.62 | −1.55 | 1.80 | 1.30 | 1.98 | 1.85 |
925 hPa air temperature (°C) | 0.20 | 0.24 | 0.47 | 0.28 | 0.80 | 0.76 | 1.19 | 0.78 |
925 hPa wind speed (m s−1) | −0.65 | −0.74 | −0.62 | −0.27 | 2.34 | 2.45 | 2.64 | 1.90 |
850 hPa air temperature (°C) | 0.22 | 0.25 | 0.86 | 0.62 | 1.41 | 1.35 | 1.82 | 1.24 |
850 hPa wind speed (m s−1) | −0.58 | −0.49 | −1.53 | −0.18 | 2.79 | 2.92 | 3.31 | 2.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, B.-S.; Kwak, K.-H.; Hahm, J.-H.; Park, S.-B. Performance Evaluation of Planetary Boundary Layer Schemes in Simulating Structures of Wintertime Lower Troposphere in Seoul Using One-Hour Interval Radiosonde Observation. Appl. Sci. 2022, 12, 6356. https://doi.org/10.3390/app12136356
Han B-S, Kwak K-H, Hahm J-H, Park S-B. Performance Evaluation of Planetary Boundary Layer Schemes in Simulating Structures of Wintertime Lower Troposphere in Seoul Using One-Hour Interval Radiosonde Observation. Applied Sciences. 2022; 12(13):6356. https://doi.org/10.3390/app12136356
Chicago/Turabian StyleHan, Beom-Soon, Kyung-Hwan Kwak, Jae-Hee Hahm, and Seung-Bu Park. 2022. "Performance Evaluation of Planetary Boundary Layer Schemes in Simulating Structures of Wintertime Lower Troposphere in Seoul Using One-Hour Interval Radiosonde Observation" Applied Sciences 12, no. 13: 6356. https://doi.org/10.3390/app12136356
APA StyleHan, B. -S., Kwak, K. -H., Hahm, J. -H., & Park, S. -B. (2022). Performance Evaluation of Planetary Boundary Layer Schemes in Simulating Structures of Wintertime Lower Troposphere in Seoul Using One-Hour Interval Radiosonde Observation. Applied Sciences, 12(13), 6356. https://doi.org/10.3390/app12136356