Diagnostic Evaluation of Rheumatoid Arthritis (RA) in Finger Joints Based on the Third-Order Simplified Spherical Harmonics (SP3) Light Propagation Model
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Frequency-Domain Third-Order Spherical Harmonics (FD-SP3) Light Propagation Model
2.2. Image Reconstruction Algorithm
2.3. Clinical Data
2.4. Feature Extraction
2.5. Cross-Validation Algorithm
3. Results
3.1. Reconstructed Absorption and Scattering Coefficients with SP3 Model
3.2. Classification Results of SP3 DOT Images
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CI | Confidence interval |
CT | Computed tomography |
CVFEM | Control volume finite element method |
DE | Diffusion equation |
DOT | Diffuse optical tomography |
ERT | Equation of radiative transfer |
FD | Frequency domain |
GMRES | Generalized minimum residual solver |
LOOCV | Leave-one-out cross validation |
MRI | Magnetic resonance imaging |
PDE | Partial differential equation |
PIP | Proximal interphalangeal |
RA | Rheumatoid arthritis |
rSQP | Reduced space sequential quadratic programming |
SP3 | Simplified spherical harmonics with order N = 3 |
SVM | Support vector machine |
TD | Time domain |
US | Ultrasound |
Appendix A
Name | Description |
---|---|
UV | Unstructured entire volume data |
SV | Structured entire volume data |
SS | Summation of all sagittal slices |
SC | Summation of all coronal slices |
ST | Summation of all transverse slices |
VS | Variance of all sagittal slices |
VC | Variance of all coronal slices |
VT | Variance of all transverse slices |
JS | Average of all sagittal slices in the joint region |
JC | Average of all coronal slices in the joint region |
JT | Average of all transverse slices in the joint region |
# | Description |
---|---|
1 | Maximum |
2 | Minimum |
3 | Mean |
4 | Variance |
5 | Ratio of maximum to minimum |
# | Description |
---|---|
6 | Absolute error between original image and GMM |
7 | 1st eigen value of ∑ of largest positive Gaussian |
8 | 2nd eigen value of ∑ of largest positive Gaussian |
9 | 3rd eigen value of ∑ of largest positive Gaussian (3D) |
10 | 1st eigen value of ∑ of largest negative Gaussian |
11 | 2nd eigen value of ∑ of largest negative Gaussian |
12 | 3rd eigen value of ∑ of largest negative Gaussian (3D) |
# | Description |
---|---|
13 | Absolute error between original image and image captured by the first 5 frequencies of the FFT |
14~26 | Absolute value of 2D FTT coefficients |
14~76 | Absolute value of 3D FTT coefficients |
References
- Banal, F.; Dougados, M.; Combescure, C.; Gossec, L. Sensitivity and specificity of the American College of Rheumatology 1987 criteria for the diagnosis of rheumatoid arthritis according to disease duration: A systematic literature review and meta-analysis. Ann. Rheum. Dis. 2009, 68, 1184–1191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Dell, J.R.; Smolen, J.S.; Aletaha, D.; Robinson, D.R.; St. Clair, E.W. Rheumatoid arthritis. In A Clinician’s Pearls and Myths in Rheumatology; Stone, J.H., Ed.; Springer: London, UK, 2010; pp. 1–13. [Google Scholar]
- Cieza, A.; Causey, K.; Kamenov, K.; Hanson, S.W.; Chatterji, S.; Vos, T. Global estimates of the need for rehabilitation based on the Global Burden of Disease study 2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 2006–2017. [Google Scholar] [CrossRef]
- Hunter, T.M.; Boytsov, N.N.; Zhang, X.; Schroeder, K.; Michaud, K.; Araujo, A.B. Prevalence of rheumatoid arthritis in the United States adult population in healthcare claims databases, 2004–2014. Rheumatol. Int. 2017, 37, 1551–1557. [Google Scholar] [CrossRef] [PubMed]
- Pincus, T. The underestimated long term medical and economic consequences of rheumatoid arthritis. Drugs 1995, 50 (Suppl. S1), 1–14. [Google Scholar] [CrossRef]
- Majithia, V.; Geraci, S.A. Rheumatoid arthritis: Diagnosis and management. Am. J. Med. 2007, 120, 936–939. [Google Scholar] [CrossRef]
- Sharp, J.T.; Strand, V.; Leung, H.; Hurley, F.; Loew-Friedrich, I. Treatment with leflunomide slows radiographic progression of rheumatoid arthritis: Results from three randomized controlled trials of leflunomide in patients with active rheumatoid arthritis. Leflunomide Rheumatoid Arthritis Investigators Group. Arthritis Rheum. 2000, 43, 495–505. [Google Scholar] [CrossRef]
- Fishman, P.; Bar-Yehuda, S. Rheumatoid arthritis: History, molecular mechanisms and therapeutic applications. In A3 Adenosine Receptors from Cell Biology to Pharmacology and Therapeutics; Borea, P.A., Ed.; Springer: Dordrecht, The Netherlands, 2010; pp. 291–298. [Google Scholar]
- El-Gabalawy, H.D.; Lipsky, P.E. Why do we not have a cure for rheumatoid arthritis? Arthritis Res. 2002, 4 (Suppl. S3), 297–301. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.H.; Deluca, S.A. The radiology of rheumatoid arthritis. Am. Fam. Physician 1995, 52, 1372–1380. [Google Scholar]
- Gibson, N.; Kissin, E.Y. The pros and cons of ultrasonography for rheumatologic conditions. J. Musculoskelet. Med. 2011, 28, 289. [Google Scholar]
- Tan, A.L.; Wakefield, R.J.; Conaghan, P.G.; Emery, P.; McGonagle, D. Imaging of the musculoskeletal system: Magnetic resonance imaging, ultrasonography and computed tomography. Best Pract. Res. Clin. Rheumatol. 2003, 17, 513–528. [Google Scholar] [CrossRef]
- Solau-Gervais, E.; Legrand, J.L.; Cortet, B.; Duquesnoy, B.; Flipo, R.M. Magnetic resonance imaging of the hand for the diagnosis of rheumatoid arthritis in the absence of anti-cyclic citrullinated peptide antibodies: A prospective study. J. Rheumatol. 2006, 33, 1760–1765. [Google Scholar]
- Tamai, M.; Kawakami, A.; Uetani, M.; Takao, S.; Rashid, H.; Tanaka, F.; Fujikawa, K.; Aramaki, T.; Nakamura, H.; Iwanaga, N.; et al. Early prediction of rheumatoid arthritis by serological variables and magnetic resonance imaging of the wrists and finger joints: Results from prospective clinical examination. Ann. Rheum. Dis. 2006, 65, 134–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasan, A.A.; Reimann, F.; Veeger, N.J.; Bergstra, S.A.; Zhang, D.; Bourgonje, A.R.; Hendriks, L.; Beertsen, T.; Riofrio, L.Z.; Wink, F.; et al. Optical imaging compared to clinical examination in 484 rheumatoid arthritis patients: The Leeuwarden Handscan Registry. Rheumatol. Int. 2022, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Kawashiri, S.Y.; Nishino, A.; Shimizu, T.; Takatani, A.; Umeda, M.; Koga, T.; Iwamoto, N.; Ichinose, K.; Tamai, M.; Nakamura, H.; et al. Fluorescence optical imaging in patients with active rheumatoid arthritis: A comparison with ultrasound and an association with biomarkers. Scand. J. Rheumatol. 2021, 50, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Triantafyllias, K.; Heller, C.; de Blasi, M.; Galle, P.R.; Schwarting, A. Diagnostic value of optical spectral transmission in rheumatoid arthritis: Associations with clinical characteristics and comparison with joint ultrasonography. J. Rheumatol. 2020, 47, 1314–1322. [Google Scholar] [CrossRef]
- Feng, Y.; Lighter, D.; Zhang, L.; Wang, Y.; Dehghani, H. Application of deep neural networks to improve diagnostic accuracy of rheumatoid arthritis using diffuse optical tomography. Quantum Electron. 2020, 50, 21. [Google Scholar] [CrossRef]
- Lighter, D.; Filer, A.; Dehghani, H. Detecting inflammation in rheumatoid arthritis using Fourier transform analysis of dorsal optical transmission images from a pilot study. J. Biomed. Opt. 2019, 24, 066008. [Google Scholar] [CrossRef] [Green Version]
- Lighter, D.; Hughes, J.; Styles, I.; Filer, A.; Dehghani, H. Multispectral, non-contact diffuse optical tomography of healthy human finger joints. Biomed. Opt. Express 2018, 9, 1445–1460. [Google Scholar] [CrossRef]
- Glimm, A.M.; Sprenger, L.I.; Haugen, I.K.; Mansmann, U.; Hermann, S.; Häupl, T.; Hoff, P.; Burmester, G.R.; Backhaus, M.; Le, L.; et al. Fluorescence optical imaging for treatment monitoring in patients with early and active rheumatoid arthritis in a 1-year follow-up period. Arthritis Res. Ther. 2019, 21, 209. [Google Scholar] [CrossRef] [Green Version]
- Bhatnagar, S.; Khera, E.; Liao, J.; Eniola, V.; Hu, Y.; Smith, D.E.; Thurber, G.M. Oral and subcutaneous administration of a near-infrared fluorescent molecular imaging agent detects inflammation in a mouse model of rheumatoid arthritis. Sci. Rep. 2019, 9, 4661. [Google Scholar] [CrossRef]
- Scheel, A.K.; Krause, A.; Rheinbaben, I.M.V.; Metzger, G.; Rost, H.; Tresp, V.; Mayer, P.; Reuss-Borst, M.; Muller, G.A. Assessment of proximal finger joint inflammation in patients with rheumatoid arthritis, using a novel laser-based imaging technique. Arthritis Rheum. 2002, 46, 1177–1184. [Google Scholar] [CrossRef]
- Schwaighofer, A.; Tresp, V.; Mayer, P.; Krause, A.; Beuthan, J.; Rost, H.; Metzger, G.; Muller, G.; Scheel, A. Classification of rheumatoid joint inflammation based on laser imaging. IEEE Trans. Biomed. Eng. 2003, 50, 375–382. [Google Scholar] [CrossRef]
- Klose, C.D.; Klose, A.D.; Netz, U.; Beuthan, J.; Hielscher, A.H. Multiparameter classifications of optical tomographic images. J. Biomed. Opt. 2008, 13, 050503. [Google Scholar] [CrossRef]
- Klose, C.D.; Klose, A.D.; Netz, U.J.; Scheel, A.K.; Beuthan, J.; Hielscher, A.H. Computer-aided interpretation approach for optical tomographic images. J. Biomed. Opt. 2010, 15, 066020. [Google Scholar] [CrossRef]
- Yuan, Z.; Zhang, Q.; Sobel, E.; Jiang, H. Three-dimensional diffuse optical tomography of osteoarthritis: Initial results in the finger joints. J. Biomed. Opt. 2007, 12, 034001. [Google Scholar] [CrossRef]
- Yuan, Z.; Zhang, Q.; Sobel, E.; Jiang, H. High-resolution x-ray guided three-dimensional diffuse optical tomography of joint tissues in hand osteoarthritis: Morphological and functional assessments. Med. Phys. 2010, 37, 4343–4354. [Google Scholar] [CrossRef] [Green Version]
- Xiao, J.; Yao, L.; Sun, Y.; Sobel, E.S.; He, J.; Jiang, H. Quantitative two-dimensional photoacoustic tomography of osteoarthritis in the finger joints. Opt. Express 2010, 18, 14359–14365. [Google Scholar] [CrossRef]
- Biswal, S.; Resnick, D.L.; Hoffman, J.M.; Gambhir, S.S. Molecular imaging: Integration of molecular imaging into the musculoskeletal imaging practice. Radiology 2007, 244, 651–671. [Google Scholar] [CrossRef]
- Netz, U.J.; Beuthan, J.; Hielscher, A.H. Multipixel system for gigahertz frequency-domain optical imaging of finger joints. Rev. Sci. Instrum. 2008, 79, 034301. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.K.; Netz, U.; Beuthan, J.; Hielscher, A.H. Optimal source-modulation frequencies for transport-theory-based optical tomography of small-tissue volumes. Opt. Express 2008, 16, 18082–18101. [Google Scholar] [CrossRef]
- Kim, H.K.; Hielscher, A.H. A PDE-constrained SQP algorithm for optical tomography based on the frequency-domain equation of radiative transfer. Inverse Probl. 2009, 25, 015010. [Google Scholar] [CrossRef] [Green Version]
- Hielscher, A.H.; Kim, H.K.; Montejo, L.; Blaschke, S.; Netz, U.; Zwaka, P.; Müller, G.; Beuthan, J. Frequency domain optical tomographic imaging of finger joints. IEEE Trans. Med. Imaging 2011, 30, 1725–1736. [Google Scholar] [CrossRef]
- Montejo, L.D.; Jia, J.; Kim, H.K.; Netz, U.J.; Blaschke, S.; Muller, G.A.; Hielscher, A.H. Computer-aided diagnosis of rheumatoid arthritis with optical tomography. Part 1: Feature extraction. J. Biomed. Opt. 2013, 18, 076001. [Google Scholar] [CrossRef] [Green Version]
- Montejo, L.D.; Jia, J.; Kim, H.K.; Netz, U.J.; Blaschke, S.; Muller, G.A.; Hielscher, A.H. Computer-aided diagnosis of rheumatoid arthritis with optical tomography. Part 2: Image classification. J. Biomed. Opt. 2013, 18, 076002. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.K.; Montejo, L.; Jia, J.; Hielscher, A.H. Frequency-domain optical tomographic image reconstruction algorithm with the simplified spherical harmonics (SP3) light propagation model. Int. J. Therm. Sci. 2017, 116, 265–277. [Google Scholar] [CrossRef]
- Klose, A.D.; Larsen, E.W. Light transport in biological tissue based on the simplified spherical harmonics equations. J. Comput. Phys. 2006, 220, 441–470. [Google Scholar] [CrossRef]
- Domínguez, J.B.; Bérubé-Lauzière, Y. Diffuse light propagation in biological media by a time-domain parabolic simplified spherical harmonics approximation with ray-divergence effects. Appl. Opt. 2010, 49, 1414–1429. [Google Scholar] [CrossRef]
- Saad, Y.; Schultz, M.H. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 1986, 7, 856–869. [Google Scholar] [CrossRef] [Green Version]
- Aletaha, D.; Neogi, T.; Silman, A.J.; Funovits, J.; Felson, D.T.; Bingham, C.O., III; Birnbaum, N.S.; Burmester, G.R.; Bykerk, V.P.; Cohen, M.D.; et al. 2010 Rheumatoid arthritis classification criteria: An American College of Rheumatology/European League against rheumatism collaborative initiative. Arthritis Rheum 2010, 62, 2569–2581. [Google Scholar] [CrossRef]
- Theodoridis, S.; Koutroumbas, K. Pattern Recognition; Elsevier Academic Press: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Wilson, E.B. Probable inference, the law of succession, and statistical inference. J. Am. Stat. Assoc. 1927, 22, 209–212. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
background | 0.3 |
background | 200.0 |
anisotropy factor | 0.95 |
refractive index of medium | 1.44 |
modulation frequency | 600 MHz |
GMRES forward tolerance | |
inverse tolerance | 0.01 |
minimum decay rate | |
discrete ordinates | (168) |
absorption coefficient range | |
scattering coefficient range |
Model | TP | FN | TN | FP | Se [% (95% CI)] | Sp [% (95% CI)] | Youden Index | Number of Features |
---|---|---|---|---|---|---|---|---|
DE | 22 | 11 | 34 | 8 | 67 (47, 100) | 81 (65, 100) | 0.48 | 8 |
SP3 | 29 | 4 | 39 | 3 | 88 (78, 100) | 93 (85, 100) | 0.81 | 3 |
ERT | 30 | 3 | 41 | 1 | 91 (83, 100) | 98 (85, 100) | 0.88 | 5 |
Model | Name of Optimal Features |
---|---|
DE | F01:ST:a, F04:JT:a, F34:SV:a, F16:VS:a, F03:SV:s, F04:VS:s, F05:VS:s, F04:VT:s |
SP3 | F01:SV:a, F02:ST:a, F26:VT:a |
ERT | F01:UV:a, F02:SV:a, F05:SV:a, F02:ST:a, F08:JT:s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.H.; Montejo, L.; Hielscher, A. Diagnostic Evaluation of Rheumatoid Arthritis (RA) in Finger Joints Based on the Third-Order Simplified Spherical Harmonics (SP3) Light Propagation Model. Appl. Sci. 2022, 12, 6418. https://doi.org/10.3390/app12136418
Kim SH, Montejo L, Hielscher A. Diagnostic Evaluation of Rheumatoid Arthritis (RA) in Finger Joints Based on the Third-Order Simplified Spherical Harmonics (SP3) Light Propagation Model. Applied Sciences. 2022; 12(13):6418. https://doi.org/10.3390/app12136418
Chicago/Turabian StyleKim, Stephen Hyunkeol, Ludguier Montejo, and Andreas Hielscher. 2022. "Diagnostic Evaluation of Rheumatoid Arthritis (RA) in Finger Joints Based on the Third-Order Simplified Spherical Harmonics (SP3) Light Propagation Model" Applied Sciences 12, no. 13: 6418. https://doi.org/10.3390/app12136418
APA StyleKim, S. H., Montejo, L., & Hielscher, A. (2022). Diagnostic Evaluation of Rheumatoid Arthritis (RA) in Finger Joints Based on the Third-Order Simplified Spherical Harmonics (SP3) Light Propagation Model. Applied Sciences, 12(13), 6418. https://doi.org/10.3390/app12136418