Application and Theory of Multimedia Signal Processing Using Machine Learning or Advanced Methods
1. Introduction
2. Published Papers
3. Future Research Directions
Funding
Acknowledgments
Conflicts of Interest
References
- Kim, C.; Shin, D.; Yang, C.; Leng, L. Hybrid Data Hiding Based on AMBTC Using Enhanced Hamming Code. Appl. Sci. 2020, 10, 5336. [Google Scholar] [CrossRef]
- Tseng, Y.; Liu, Z.; Tso, R. Practical Inner Product Encryption with Constant Private Key. Appl. Sci. 2020, 10, 8669. [Google Scholar] [CrossRef]
- Kim, C.; Yang, C. Self-Embedding Fragile Watermarking Scheme to Detect Image Tampering Using AMBTC and OPAP Approaches. Appl. Sci. 2021, 11, 1146. [Google Scholar] [CrossRef]
- Bi, X.; Leng, L.; Kim, C.; Liu, X.; Du, Y.; Liu, F. Constrained Backtracking Matching Pursuit Algorithm for Image Reconstruction in Compressed Sensing. Appl. Sci. 2021, 11, 1435. [Google Scholar] [CrossRef]
- Kim, J.; Ha, J. Foreground Objects Detection by U-Net with Multiple Difference Images. Appl. Sci. 2021, 11, 1807. [Google Scholar] [CrossRef]
- Xiang, Z.; Seeling, P.; Fitzek, F. You Only Look Once, But Compute Twice: Service Function Chaining for Low-Latency Object Detection in Softwarized Networks. Appl. Sci. 2021, 11, 2177. [Google Scholar] [CrossRef]
- Gu, Y.; Huang, B.; Wu, Z. Power Allocation for Secrecy-Capacity-Optimization-Artificial-Noise Secure MIMO Precoding Systems under Perfect and Imperfect Channel State Information. Appl. Sci. 2021, 11, 4558. [Google Scholar] [CrossRef]
- Copiaco, A.; Ritz, C.; Abdulaziz, N.; Fasciani, S. A Study of Features and Deep Neural Network Architectures and Hyper-Parameters for Domestic Audio Classification. Appl. Sci. 2021, 11, 4880. [Google Scholar] [CrossRef]
- Zhang, C.; Wei, X.; Kim, S. Empirical Evaluation on Utilizing CNN-Features for Seismic Patch Classification. Appl. Sci. 2022, 12, 197. [Google Scholar] [CrossRef]
- Tan, Y.; Connie, T.; Goh, M.; Teoh, A. A Pipeline Approach to Context-Aware Handwritten Text Recognition. Appl. Sci. 2022, 12, 1870. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, C. Application and Theory of Multimedia Signal Processing Using Machine Learning or Advanced Methods. Appl. Sci. 2022, 12, 6426. https://doi.org/10.3390/app12136426
Kim C. Application and Theory of Multimedia Signal Processing Using Machine Learning or Advanced Methods. Applied Sciences. 2022; 12(13):6426. https://doi.org/10.3390/app12136426
Chicago/Turabian StyleKim, Cheonshik. 2022. "Application and Theory of Multimedia Signal Processing Using Machine Learning or Advanced Methods" Applied Sciences 12, no. 13: 6426. https://doi.org/10.3390/app12136426
APA StyleKim, C. (2022). Application and Theory of Multimedia Signal Processing Using Machine Learning or Advanced Methods. Applied Sciences, 12(13), 6426. https://doi.org/10.3390/app12136426