Requirements and Hardware Limitations of High-Frame-Rate 3-D Ultrasound Imaging Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Flow
2.2. Requirement Examples for 2-D and 3-D Imaging
- (1)
- in 2-D LL 128, a significantly higher amount of raw data (22.5 MB vs. 0.23 MB) per frame is involved although the frame rate turns out to be very limited (R ≈ 10 Hz);
- (2)
- the bandwidth Bwr is the same for both 2-D LL 128 and 2-D PW 128 while BBF, MAC/s, and BIQ are much higher for 2-D PW 128.
2.3. Case Study: ULA-OP 256 towards 3-D High Frame Rate Imaging
2.3.1. The ULA-OP 256
2.3.2. Identification of Bottlenecks
2.3.3. New Ring Topology
3. Experiments
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Szabo, T.L. Diagnostic Ultrasound Imaging: Inside Out, 2nd ed.; Academic Press: Amsterdam, The Netherland; Boston, MA, USA, 2013; ISBN 978-0-12-396487-8. [Google Scholar]
- Hoskins, P.R.; Martin, K.; Thrush, A. Diagnostic Ultrasound: Physics and Equipment, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2019; ISBN 978-0-367-19041-5. [Google Scholar]
- Manes, G.; Tortoli, P.; Andreuccetti, F.; Avitabile, G.; Atzeni, C. Synchronous dynamic focusing for ultrasound imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1988, 35, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Pye, S.D.; Wild, S.R.; McDicken, W.N. Adaptive time gain compensation for ultrasonic imaging. Ultrasound Med. Biol. 1992, 18, 205–212. [Google Scholar] [CrossRef]
- Burger, W.; Burge, M.J. Principles of Digital Image Processing: Core Algorithms; Springer: London, UK, 2009; ISBN 978-1-84800-194-7. [Google Scholar]
- Montaldo, G.; Tanter, M.; Bercoff, J.; Benech, N.; Fink, M. Coherent plane-wave compounding for very high frame rate ultrasonography and transient elastography. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2009, 56, 489–506. [Google Scholar] [CrossRef] [PubMed]
- Lewandowski, M.; Walczak, M.; Witek, B.; Kulesza, P.; Sielewicz, K. Modular & scalable ultrasound platform with GPU processing. In Proceedings of the 2012 IEEE International Ultrasonics Symposium, Dresden, Germany, 7–10 October 2012; pp. 1–4. [Google Scholar]
- So, H.; Chen, J.; Yiu, B.; Yu, A. Medical ultrasound imaging: To GPU or not to GPU? IEEE Micro 2011, 31, 54–65. [Google Scholar] [CrossRef] [Green Version]
- Jeong, M.K.; Kwon, S.J.; Park, C.D.; Kim, B.S.; Chang, S.H.; Jang, K.S. Ultrasonic imaging research platform with GPU-based software focusing. In Proceedings of the 2017 IEEE International Ultrasonics Symposium (IUS), Washington, DC, USA, 6–9 September 2017; pp. 1–4. [Google Scholar]
- Jensen, J.A.; Holten-Lund, H.; Nilsson, R.T.; Hansen, M.; Larsen, U.D.; Domsten, R.P.; Tomov, B.G.; Stuart, M.B.; Nikolov, S.I.; Pihl, M.J.; et al. SARUS: A synthetic aperture real-time ultrasound system. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2013, 60, 1838–1852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boni, E.; Bassi, L.; Dallai, A.; Guidi, F.; Meacci, V.; Ramalli, A.; Ricci, S.; Tortoli, P. ULA-OP 256: A 256-Channel open scanner for development and real-time implementation of new ultrasound methods. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2016, 63, 1488–1495. [Google Scholar] [CrossRef]
- Smith, P.R.; Cowell, D.M.J.; Raiton, B.; Ky, C.V.; Freear, S. Ultrasound array transmitter architecture with high timing resolution using embedded phase-locked loops. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2012, 59, 40–49. [Google Scholar] [CrossRef] [Green Version]
- Hasegawa, H.; Kanai, H. High-frame-rate echocardiography using diverging transmit beams and parallel receive beamforming. J. Med. Ultrason. 2011, 38, 129–140. [Google Scholar] [CrossRef]
- Poree, J.; Posada, D.; Hodzic, A.; Tournoux, F.; Cloutier, G.; Garcia, D. High-frame-rate echocardiography using coherent compounding with doppler-based motion-compensation. IEEE Trans. Med. Imaging 2016, 35, 1647–1657. [Google Scholar] [CrossRef]
- Fadnes, S.; Wigen, M.S.; Nyrnes, S.A.; Lovstakken, L. In vivo intracardiac vector flow imaging using phased array transducers for pediatric cardiology. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2017, 64, 1318–1326. [Google Scholar] [CrossRef] [Green Version]
- Mallart, R.; Fink, M. Improved imaging rate through simultaneous transmission of several ultrasound beams. In Proceedings of the SPIE San Diego ’92, San Diego, CA, USA, 19 July 1992; Volume 1733, pp. 120–130. [Google Scholar]
- Tong, L.; Gao, H.; D’hooge, J. Multi-transmit beam forming for fast cardiac imaging-a simulation study. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2013, 60, 1719–1731. [Google Scholar] [CrossRef] [PubMed]
- Tong, L.; Ramalli, A.; Jasaityte, R.; Tortoli, P.; D’hooge, J. Multi-transmit beam forming for fast cardiac imaging: Experimental validation and in vivo application. IEEE Trans. Med. Imaging 2014, 33, 1205–1219. [Google Scholar] [CrossRef] [PubMed]
- Ekroll, I.K.; Swillens, A.; Segers, P.; Dahl, T.; Torp, H.; Lovstakken, L. Simultaneous quantification of flow and tissue velocities based on multi-angle plane wave imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2013, 60, 727–738. [Google Scholar] [CrossRef] [PubMed]
- Yiu, B.Y.S.; Yu, A.C.H. High-frame-rate ultrasound color-encoded speckle imaging of complex flow dynamics. Ultrasound Med. Biol. 2013, 39, 1015–1025. [Google Scholar] [CrossRef] [PubMed]
- Tanter, M.; Fink, M. Ultrafast imaging in biomedical ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2014, 61, 102–119. [Google Scholar] [CrossRef]
- Jensen, J.A.; Nikolov, S.I.; Yu, A.C.H.; Garcia, D. Ultrasound vector flow imaging—Part II: Parallel systems. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2016, 63, 1722–1732. [Google Scholar] [CrossRef] [Green Version]
- Posada, D.; Porée, J.; Pellissier, A.; Chayer, B.; Tournoux, F.; Cloutier, G.; Garcia, D. Staggered multiple-prf ultrafast color doppler. IEEE Trans. Med. Imaging 2016, 35, 1510–1521. [Google Scholar] [CrossRef]
- Faurie, J.; Baudet, M.; Assi, K.C.; Auger, D.; Gilbert, G.; Tournoux, F.; Garcia, D. Intracardiac vortex dynamics by high-frame-rate doppler vortography—In vivo comparison with vector flow mapping and 4-D Flow MRI. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2017, 64, 424–432. [Google Scholar] [CrossRef]
- Ricci, S.; Ramalli, A.; Bassi, L.; Boni, E.; Tortoli, P. Real-time blood velocity vector measurement over a 2-D region. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2018, 65, 201–209. [Google Scholar] [CrossRef]
- Toulemonde, M.; Li, Y.; Lin, S.; Cordonnier, F.; Butler, M.; Duncan, W.C.; Eckersley, R.J.; Sboros, V.; Tang, M.-X. High-frame-rate contrast echocardiography using diverging waves: Initial in vitro and in vivo evaluation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2018, 65, 2212–2221. [Google Scholar] [CrossRef] [Green Version]
- Guidi, F.; Tortoli, P. Real-time high frame rate color flow mapping system. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2021, 68, 2193–2201. [Google Scholar] [CrossRef] [PubMed]
- Orlowska, M.; Bézy, S.; Ramalli, A.; Voigt, J.-U.; D’hooge, J. High-Frame-Rate Speckle Tracking For Echocardiographic Stress Testing. Ultrasound Med. Biol. 2022. [Google Scholar] [CrossRef]
- Provost, J.; Papadacci, C.; Demene, C.; Gennisson, J.L.; Tanter, M.; Pernot, M. 3-D ultrafast doppler imaging applied to the noninvasive mapping of blood vessels in Vivo. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2015, 62, 1467–1472. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Wahyulaksana, G.; Meijlink, B.; Ramalli, A.; Noothout, E.; Verweij, M.D.; Boni, E.; Kooiman, K.; van der Steen, A.F.W.; Tortoli, P.; et al. High frame rate volumetric imaging of microbubbles using a sparse array and spatial coherence beamforming. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2021, 68, 3069–3081. [Google Scholar] [CrossRef]
- Ramalli, A.; Harput, S.; Bezy, S.; Boni, E.; Eckersley, R.J.; Tortoli, P.; D’Hooge, J. High-frame-rate tri-plane echocardiography with spiral arrays: From simulation to real-time implementation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2020, 67, 57–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harput, S.; Christensen-Jeffries, K.; Ramalli, A.; Brown, J.; Zhu, J.; Zhang, G.; Leow, C.H.; Toulemonde, M.; Boni, E.; Tortoli, P.; et al. 3-D super-resolution ultrasound imaging with a 2-D sparse array. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2020, 67, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Savord, B.; Solomon, R. Fully sampled matrix transducer for real time 3D ultrasonic imaging. In Proceedings of the 2003 IEEE Ultrasonics Symposium (IUS), Honolulu, HI, USA, 5–8 October 2003; Volume 1, pp. 945–953. [Google Scholar]
- Blaak, S.; Yu, Z.; Meijer, G.C.M.; Prins, C.; Lancée, C.T.; Bosch, J.G.; de Jong, N. Design of a micro-beamformer for a 2D piezoelectric ultrasound transducer. In Proceedings of the 2009 IEEE International Ultrasonics Symposium, Roma, Italy, 20–23 September 2009; pp. 1338–1341. [Google Scholar]
- Matrone, G.; Savoia, A.S.; Terenzi, M.; Caliano, G.; Quaglia, F.; Magenes, G. A volumetric CMUT-based ultrasound imaging system simulator with integrated reception and μ-beamforming electronics models. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2014, 61, 792–804. [Google Scholar] [CrossRef]
- Chen, C.; Chen, Z.; Bera, D.; Raghunathan, S.B.; Shabanimotlagh, M.; Noothout, E.; Chang, Z.-Y.; Ponte, J.; Prins, C.; Vos, H.J.; et al. A front-end ASIC with receive sub-array beamforming integrated with a PZT matrix transducer for 3-D transesophageal echocardiography. IEEE J. Solid-State Circuits 2017, 52, 994–1006. [Google Scholar] [CrossRef] [Green Version]
- Janjic, J.; Tan, M.; Daeichin, V.; Noothout, E.; Chen, C.; Chen, Z.; Chang, Z.-Y.; Beurskens, R.H.S.H.; van Soest, G.; van der Steen, A.F.W.; et al. A 2-D ultrasound transducer with front-end ASIC and low cable count for 3-D forward-looking intravascular imaging: Performance and characterization. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2018, 65, 1832–1844. [Google Scholar] [CrossRef]
- Giangrossi, C.; Meacci, V.; Ricci, S.; Matera, R.; Boni, E.; Dallai, A.; Tortoli, P. Virtual real-time for high PRF multiline vector doppler on ULA-OP 256. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2021, 68, 624–631. [Google Scholar] [CrossRef]
- Perrot, V.; Polichetti, M.; Varray, F.; Garcia, D. So you think you can DAS? A viewpoint on delay-and-sum beamforming. Ultrasonics 2021, 111, 106309. [Google Scholar] [CrossRef] [PubMed]
- Boni, E.; Bassi, L.; Dallai, A.; Meacci, V.; Ramalli, A.; Scaringella, M.; Guidi, F.; Ricci, S.; Tortoli, P. Architecture of an ultrasound system for continuous real-time high frame rate imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2017, 64, 1276–1284. [Google Scholar] [CrossRef] [PubMed]
- Ramalli, A.; Boni, E.; Savoia, A.S.; Tortoli, P. Density-tapered spiral arrays for ultrasound 3-D imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2015, 62, 1580–1588. [Google Scholar] [CrossRef] [PubMed]
- Roux, E.; Ramalli, A.; Liebgott, H.; Cachard, C.; Robini, M.C.; Tortoli, P. Wideband 2-D array design optimization with fabrication constraints for 3-D US imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2017, 64, 108–125. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Zhang, Q.; Zhou, L.; Quan, Z.; Wang, S.; Liu, Z.; Fang, X.; Wu, Y.; Yang, Q.; Yin, H.; et al. Design and implementation of a modular and scalable research platform for ultrasound computed tomography. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2022, 69, 62–72. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.Q.; Prager, R.W. A spatial coherence approach to minimum variance beamforming for plane-wave compounding. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2018, 65, 522–534. [Google Scholar] [CrossRef] [Green Version]
- Matrone, G.; Ramalli, A.; D’hooge, J.; Tortoli, P.; Magenes, G. A comparison of coherence-based beamforming techniques in high-frame-rate ultrasound imaging with multi-line transmission. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2020, 67, 329–340. [Google Scholar] [CrossRef]
- Wiacek, A.; González, E.; Bell, M.A.L. CohereNet: A deep learning architecture for ultrasound spatial correlation estimation and coherence-based beamforming. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2020, 67, 2574–2583. [Google Scholar] [CrossRef]
- Ibrahim, A.; Hager, P.A.; Bartolini, A.; Angiolini, F.; Arditi, M.; Thiran, J.-P.; Benini, L.; De Micheli, G. Efficient sample delay calculation for 2-d and 3-d ultrasound imaging. IEEE Trans. Biomed. Circuits Syst. 2017, 11, 815–831. [Google Scholar] [CrossRef] [Green Version]
- Gedalyahu, K.; Tur, R.; Eldar, Y.C. Multichannel sampling of pulse streams at the rate of innovation. IEEE Trans. Signal Process. 2011, 59, 1491–1504. [Google Scholar] [CrossRef] [Green Version]
- Burshtein, A.; Birk, M.; Chernyakova, T.; Eilam, A.; Kempinski, A.; Eldar, Y.C. Sub-Nyquist sampling and fourier domain beamforming in volumetric ultrasound imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2016, 63, 703–716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huijben, I.A.M.; Veeling, B.S.; Janse, K.; Mischi, M.; van Sloun, R.J.G. Learning sub-sampling and signal recovery with applications in ultrasound imaging. IEEE Trans. Med. Imaging 2020, 39, 3955–3966. [Google Scholar] [CrossRef] [PubMed]
- Luijten, B.; Cohen, R.; de Bruijn, F.J.; Schmeitz, H.A.W.; Mischi, M.; Eldar, Y.C.; van Sloun, R.J.G. Adaptive ultrasound beamforming using deep learning. IEEE Trans. Med. Imaging 2020, 39, 3967–3978. [Google Scholar] [CrossRef] [PubMed]
- Wagner, N.; Eldar, Y.C.; Friedman, Z. Compressed beamforming in ultrasound imaging. IEEE Trans. Signal Process. 2012, 60, 4643–4657. [Google Scholar] [CrossRef] [Green Version]
Digital Device Requirements | |||||||
---|---|---|---|---|---|---|---|
Imaging Mode | NCH | NL × NG | RD [MB] | R [Hz] | Bwr [MB/s] | MAC/s | BBF, BIQ [MB/s] |
2-D LL 128 | 128 | 123 k | 22.5 | 10.4 | 234.4 | 1.6 × 108 | 4.9 |
2-D PW 128 | 128 | 123 k | 0.23 | 1000 | 234.4 | 1.6 × 1010 | 468.8 |
3-D LL 256 | 256 | 1.3 M | 480 | 0.98 | 468.8 | 3.2 × 108 | 4.9 |
3-D PW 256 | 256 | 1.3 M | 0.47 | 1000 | 468.8 | 3.3 × 1011 | 5000 |
3-D PW 1024 | 1024 | 1.3 M | 1.88 | 1000 | 1875 | 1.3 × 1012 | 5000 |
Experiment I | Experiment II | Experiment III | Experiment IV | Experiment V | |
---|---|---|---|---|---|
Mode | DW1 DW3 DW5 | DW1 DW3 DW5 | DW1 DW5 | DW1 DW5 | DW1 DW5 |
Fs [MHz] | 39.06 | 26.04 | |||
NCH | 128 | 256 | |||
Ndepths | 1280 | 896 | |||
NL | 96 | 96 × 2 | 32 × 30 |
Exp. I | Exp. II | Exp. III | Exp. IV | Exp. V | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NL × Ndepths NCH | 96 × 1280 128 | 96 × 1280 256 | (96 × 2) × 1280 256 | (96 × 2) × 896 256 | (32 × 30) × 896 256 | ||||||||
Mode | DW1 | DW3 | DW5 | DW1 | DW3 | DW5 | DW1 | DW5 | DW1 | DW5 | DW1 | DW5 | |
STAR | FRMAX [Hz] | 1500 | 1500 | 1000 | 750 | 733 | 740 | 360 | 370 | 360 | 370 | 75 | 74 |
BBF [MSPS] | 184 | 553 | 614 | 92 | 270 | 455 | 88 | 455 | 65 | 318 | 65 | 318 | |
BMC [GB/s] | 1.77 | 1.77 | 1.18 | 1.77 | 1.73 | 1.75 | 1.70 | 1.75 | 1.77 | 1.75 | 1.77 | 1.75 | |
RING | FRMAX [Hz] | 4200 | 1700 | 1020 | 4400 | 1667 | 1000 | 2200 | 500 | 2700 | 650 | 510 | 140 |
BBF [MSPS] | 516 | 627 | 627 | 541 | 614 | 614 | 541 | 614 | 464 | 568 | 439 | 602 | |
BMC [GB/s] | 1.24 | 0.50 | 0.30 | 1.30 | 0.49 | 0.29 | 1.30 | 0.29 | 1.59 | 0.39 | 1.50 | 0.41 | |
FRMAX incr. | +180% | +13% | +2% | +487% | +127% | +35% | +529% | +35% | +620% | +78% | +580% | +89% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giangrossi, C.; Ramalli, A.; Dallai, A.; Mazierli, D.; Meacci, V.; Boni, E.; Tortoli, P. Requirements and Hardware Limitations of High-Frame-Rate 3-D Ultrasound Imaging Systems. Appl. Sci. 2022, 12, 6562. https://doi.org/10.3390/app12136562
Giangrossi C, Ramalli A, Dallai A, Mazierli D, Meacci V, Boni E, Tortoli P. Requirements and Hardware Limitations of High-Frame-Rate 3-D Ultrasound Imaging Systems. Applied Sciences. 2022; 12(13):6562. https://doi.org/10.3390/app12136562
Chicago/Turabian StyleGiangrossi, Claudio, Alessandro Ramalli, Alessandro Dallai, Daniele Mazierli, Valentino Meacci, Enrico Boni, and Piero Tortoli. 2022. "Requirements and Hardware Limitations of High-Frame-Rate 3-D Ultrasound Imaging Systems" Applied Sciences 12, no. 13: 6562. https://doi.org/10.3390/app12136562
APA StyleGiangrossi, C., Ramalli, A., Dallai, A., Mazierli, D., Meacci, V., Boni, E., & Tortoli, P. (2022). Requirements and Hardware Limitations of High-Frame-Rate 3-D Ultrasound Imaging Systems. Applied Sciences, 12(13), 6562. https://doi.org/10.3390/app12136562