An Improved Dictionary-Based Method for Gas Identification with Electronic Nose
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Methods of Data Sample Prepossessing
2.3. Pattern Recognition Based on SRC
2.4. Pattern Recognition Based on K-SVD
2.5. Improved Dictionary Learning Algorithm
2.6. A Proposed Classification Model
2.7. The Analysis of Time Complexity
2.8. The Analysis of Incoherence and Sparsity
3. Results and Discussion
3.1. Feasibility Analysis
3.2. Analysis of Parameters
3.3. Characteristic Analysis of Improved Algorithm
3.4. The Comparison of the Improved Method with Other Methods
4. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ekmekçioğlu, A.; Ünlügençoğlu, K.; Çelebi, U.B. Container ship emission estimation model for the concept of green port in Turkey. Proc. Inst. Mech. Eng. Part M: J. Eng. Marit. Environ. 2022, 236, 504–518. [Google Scholar] [CrossRef]
- Taştan, M.; Gökozan, H. Real-Time Monitoring of Indoor Air Quality with Internet of Things-Based E-Nose. Appl. Sci. 2019, 9, 3435. [Google Scholar] [CrossRef]
- Basu, M.; Bunke, H.; Del Bimbo, A. Guest editors’ introduction to the special section on syntactic and structural pattern recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 1009–1012. [Google Scholar] [CrossRef] [PubMed]
- Ho, T.K.; Baird, H.S. Large-scale simulation studies in image pattern recognition. IEEE Trans. Pattern Anal. Mach. Intell. 1997, 19, 1067–1079. [Google Scholar] [CrossRef]
- Keysers, D.; Macherey, W.; Ney, H.; Dahmen, J. Adaptation in statistical pattern recognition using tangent vectors. IEEE Trans. Pattern Anal. Mach. Intell. 2004, 26, 269–274. [Google Scholar] [CrossRef]
- Yue, Y.; Yang, T.; Zeng, X. Seismic denoising with CEEMD and KSVD dictionary combined training. Oil Geophys. Prospect. 2019, 54, 729–736. [Google Scholar] [CrossRef]
- Zhang, S.; Xia, X.; Xie, C.; Cai, S.; Li, H.; Zeng, D. A method of feature extraction on recovery curves for fast recognition application with metal oxide gas sensor array. IEEE Sens. J. 2009, 9, 1705–1710. [Google Scholar] [CrossRef]
- Di Natale, C.; Macagnano, A.; Martinelli, E.; Falconi, C.; Galassi, E.; Paolesse, R.; D’Amico, A. Application of an Electronic Nose to the Monitoring of a Bio-technological Process for Contaminated Limes Clean. In Electronic Noses and Olfaction 2000, Proceedings of the 7th International Symposium on Olfaction and Electronic Noses, Brighton, UK, 10 July 2000; CRC Press: Brighton, UK, 2001. [Google Scholar]
- Bezdek, J.C. Pattern Recognition with Fuzzy Objective Function Algorithms; Plenum Press: New York, NY, USA, 1981. [Google Scholar] [CrossRef]
- Ozinsky, A.; Underhill, D.M.; Fontenot, J.D.; Hajjar, A.M.; Smith, K.D.; Wilson, C.B.; Aderem, A. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc. Natl. Acad. Sci. 2000, 97, 13766–13771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pardo, M.; Sberveglieri, G. Classification of electronic nose data with support vector machines. Sens. Actuators B Chem. 2005, 107, 730–737. [Google Scholar] [CrossRef]
- Hierlemann, A.; Weimar, U.; Kraus, G.; Schweizer-Berberich, M.; Göpel, W. Polymer-based sensor arrays and multicomponent analysis for the detection of hazardous oragnic vapours in the environment. Sens. Actuators B Chem. 1995, 26, 126–134. [Google Scholar] [CrossRef]
- He, X.; Yan, S.; Hu, Y.; Niyogi, P.; Zhang, H.J. Face recognition using laplacianfaces. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 328–340. [Google Scholar] [CrossRef]
- Weng, X.; Kong, C.; Jin, H.; Chen, D.; Li, C.; Li, Y.; Ren, L.; Xiao, Y.; Chang, Z. Detection of Volatile Organic Compounds (VOCs) in Livestock Houses Based on Electronic Nose. Appl. Sci. 2021, 11, 2337. [Google Scholar] [CrossRef]
- Han, X.; Lü, E.; Lu, H.; Zeng, F.; Qiu, G.; Yu, Q.; Zhang, M. Detection of Spray-Dried Porcine Plasma (SDPP) based on Electronic Nose and Near-Infrared Spectroscopy Data. Appl. Sci. 2020, 10, 2967. [Google Scholar] [CrossRef]
- Edelman, B.; VALEntin, D.; Abdi, H. Sex classification of face areas: How well can a linear neural network predict human performance? J. Biol. Syst. 2011, 6, 241–263. [Google Scholar] [CrossRef] [Green Version]
- Boiman, O.; Shechtman, E.; Irani, M. In defense of nearest-neighbor based image classification. In Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA, 23–28 June 2008. [Google Scholar] [CrossRef]
- Chapelle, O.; Haffner, P. SVMs for Histogram-Based Image Classification. IEEE Trans. Neural Netw. 1999, 10, 1055–1064. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; He, F.; Chen, X. Real-time object tracking via compressive feature selection. Front. Comput. Sci. 2016, 10, 689–701. [Google Scholar] [CrossRef]
- Yang, X.; Wang, M.; Zhang, L.; Sun, F.; Hong, R.; Qi, M. An efficient tracking system by orthogonalized templates. IEEE Trans. Ind. Electron. 2016, 63, 3187–3197. [Google Scholar] [CrossRef]
- Jin, C.; Park, S.; Kim, H.; Lee, C. Enhanced H2S gas-sensing properties of Pt-functionalized In2Ge2O7 nanowires. Appl. Phys. A 2014, 114, 591–595. [Google Scholar] [CrossRef]
- Guo, D.; Zhang, D.; Zhang, L. Sparse representation-based classification for breath sample identification. Sens. Actuators B Chem. 2011, 158, 43–53. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, Z.; Lu, G.; Yang, J. Approximately symmetrical face images for image preprocessing in face recognition and sparse representation based classification. Pattern Recognit. 2016, 54, 68–82. [Google Scholar] [CrossRef]
- Gao, Y.; Liao, S.; Shen, D. Prostate segmentation by sparse representation based classification. Med. Phys. 2012, 39, 6372–6387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Min, R.; Dugelay, J.L. Improved combination of LBP and sparse representation based classification (SRC) for face recognition. In Proceedings of the 2011 IEEE International Conference on Multimedia and Expo, Barcelona, Spain, 11–15 July 2011. [Google Scholar] [CrossRef]
- Schnass, K. On the identifiability of overcomplete dictionaries via the minimisation principle underlying K-SVD. Appl. Comput. Harmon. Anal. 2014, 37, 464–491. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.; Lin, Z.; Davis, L.S. Label consistent K-SVD: Learning a discriminative dictionary for recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 2651–2664. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Xi, J.; Zhao, L.; Zou, C. Sparse presentation of underdetermined blind source separation based on compressed sensing and K-SVD. Journal of Southeast University. Nat. Sci. Ed. 2011, 41, 1127–1131. [Google Scholar] [CrossRef]
- Zhai, X.; Zhu, W.; Kang, B. Compressed sensing of images combining KSVD and classified sparse representation. Comput. Eng. Appl. 2015, 51, 193–198. [Google Scholar]
- Vila, J.P.; Schniter, P. Expectation-maximization Gaussian-mixture approximate message passing. IEEE Trans. Signal Process. 2013, 61, 4658–4672. [Google Scholar] [CrossRef] [Green Version]
- Bellili, F.; Sohrabi, F.; Yu, W. Generalized approximate message passing for massive MIMO mmWave channel estimation with Laplacian prior. IEEE Trans. Commun. 2019, 67, 3205–3219. [Google Scholar] [CrossRef]
- Zhu, T. New over-relaxed monotone fast iterative shrinkage-thresholding algorithm for linear inverse problems. IET Image Process. 2019, 13, 2888–2896. [Google Scholar] [CrossRef]
- Khoramian, S. An iterative thresholding algorithm for linear inverse problems with multi- constraints and its applications. Appl. Comput. Harmon. Anal. 2012, 32, 109–130. [Google Scholar] [CrossRef] [Green Version]
- Chang, X.; Xu, S.; Liu, S.; Wang, N.; Zhu, Y. Highly sensitive acetone sensor based on wo3 nanosheets derived from ws2 nanoparticles with inorganic fullerene-like structures. Sens. Actuat. B Chem. 2021, 343, 130135. [Google Scholar] [CrossRef]
- Sun, S.; Wang, M.; Chang, X.; Jiang, Y.; Zhang, D.; Wang, D.; Zhang, Y.; Lei, Y. W18O49/Ti3C2Tx Mxene nanocomposites for highly sensitive acetone gas sensor with low detection limit. Sens. Actuat. B Chem. 2020, 304, 127274. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, X.; Chang, X.; Li, J.; Pan, L.; Jiang, Y.; Sun, S. Metal-organic framework-derived porous SnO2 nanosheets with grain sizes comparable to Debye length for formaldehyde detection with high response and low detection limit. Sens. Actuat. B Chem. 2021, 347, 130599. [Google Scholar] [CrossRef]
- Sun, S.; Xiong, X.; Han, J.; Chang, X.; Wang, N.; Wang, M.; Zhu, Y. 2D/2D Graphene Nanoplatelet–Tungsten Trioxide Hydrate Nanocomposites for Sensing Acetone. ACS Appl. Nano Mater. 2019, 2, 1313–1324. [Google Scholar] [CrossRef]
- Sajan, R.I.; Christopher, V.B.; Kavitha, M.J.; Akhila, T.S. An energy aware secure three-level weighted trust evaluation and grey wolf optimization based routing in wireless ad hoc sensor network. Wirel. Netw. 2022, 28, 1439–1455. [Google Scholar] [CrossRef]
- Yin, J.; Liu, Z.; Zhong, J.; Yang, W. Kernel sparse representation based classification. Neurocomputing 2012, 77, 120–128. [Google Scholar] [CrossRef]
- Qu, S.; Liu, X.; Liang, S. Multi-Scale Superpixels Dimension Reduction Hyperspectral Image Classification Algorithm Based on Low Rank Sparse Representation Joint Hierarchical Recursive Filtering. Sensors 2021, 21, 3846. [Google Scholar] [CrossRef]
- Yuan, X.T.; Liu, X.; Yan, S. Visual classification with multitask joint sparse representation. IEEE Trans. Image Process. 2012, 21, 4349–4360. [Google Scholar] [CrossRef]
- Aharon, M.; Elad, M.; Bruckstein, A. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 2006, 54, 4311–4322. [Google Scholar] [CrossRef]
- Zermi, N.; Khaldi, A.; Kafi, M.R.; Kahlessenane, F.; Euschi, S. Robust SVD-based schemes for medical image watermarking. Microprocess. Microsy 2021, 84, 104134. [Google Scholar] [CrossRef]
- Bruckstein, A.M.; Donoho, D.L.; Elad, M. From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev. 2009, 51, 34–81. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.Y.; Lavaei, J. Sparse semidefinite programs with guaranteed near-linear time complexity via dualized clique tree conversion. Math. Program. 2021, 188, 351–393. [Google Scholar] [CrossRef]
- Baraniuk, R.G. Compressive Sensing [Lecture Notes]. IEEE Signal. Process. Mag. 2007, 24, 118–121. [Google Scholar] [CrossRef]
- Gu, X.; Zhang, C.; Ni, T. A Hierarchical Discriminative Sparse Representation Classifier for EEG Signal Detection. IEEE/ACM Trans. Comput. Biol. Bioinform. 2021, 18, 1679–1687. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Makur, A. Replacing K-SVD with SGK: Dictionary training for sparse representation of images. In Proceedings of the 2015 IEEE International Conference on Digital Signal Processing (DSP), Singapore, 21–24 July 2015; pp. 614–617. [Google Scholar] [CrossRef]
- He, A.; Wei, G.; Yu, J.; Tang, Z.; Lin, Z.; Wang, P. A novel dictionary learning method for gas identification with a gas sensor array. IEEE Trans. Indust. Electron. 2017, 64, 9709–9715. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, L.; Mammadov, M. Learning semi-lazy Bayesian network classifier under the c.i.i.d assumption. Knowl.-Based Syst. 2020, 208, 422. [Google Scholar] [CrossRef]
Label | Analyte | Concentration (ppm) | Number |
---|---|---|---|
1 | Xylene | 100, 200, 300, 400, 500 | 300 |
2 | Acetone | 100, 200, 300, 400, 500 | 300 |
3 | Formaldehyde | 100, 200, 300, 400, 500 | 300 |
Total | 900 |
Category | 1 | 2 | 3 |
---|---|---|---|
Coherence | 0.78 | 0.73 | 0.41 |
Algorithm | LC-KSVD | KSVD-DL | Proposed Algorithm |
Proposed Algorithm |
Proposed Algorithm |
---|---|---|---|---|---|
Average recognition accuracy | 82.8 | 88.8 | 95.3 | 94.6 | 83.3 |
Algorithm | SVM | Decision Tree | KSVD-DL |
---|---|---|---|
p | 0.001 | 0.036 | 0.372 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, J.; Jin, H.; Gao, C.; Sun, S. An Improved Dictionary-Based Method for Gas Identification with Electronic Nose. Appl. Sci. 2022, 12, 6650. https://doi.org/10.3390/app12136650
Han J, Jin H, Gao C, Sun S. An Improved Dictionary-Based Method for Gas Identification with Electronic Nose. Applied Sciences. 2022; 12(13):6650. https://doi.org/10.3390/app12136650
Chicago/Turabian StyleHan, Jingang, Heqing Jin, Chenyang Gao, and Shibin Sun. 2022. "An Improved Dictionary-Based Method for Gas Identification with Electronic Nose" Applied Sciences 12, no. 13: 6650. https://doi.org/10.3390/app12136650
APA StyleHan, J., Jin, H., Gao, C., & Sun, S. (2022). An Improved Dictionary-Based Method for Gas Identification with Electronic Nose. Applied Sciences, 12(13), 6650. https://doi.org/10.3390/app12136650