Non-Linear 3D Satellite Gravity Inversion for Depth to the Basement Estimation in a Mexican Semi-Arid Agricultural Region
Abstract
:1. Introduction
2. Geology and Previous Studies
3. Methodology
Algorithm 1 CGLS algorithm to iteratively solve the problem |
Require: (Starting model), G (Augmented kernel), (Data Vector), n (Iterations). |
Ensure: |
1: |
2: |
3: |
4: |
5: while or stop criteria is satisfied do |
6: |
7: |
8: |
9: |
10: |
11: |
12: |
13: |
14: end while |
15: return (Final model) |
4. Results
4.1. Synthetic Case: Bishop Model
4.2. Depth to the Basement Estimation for Real Gravity Data
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- CONAGUA. Estadísticas del Agua en México; Sistema Nacional de Información del Agua; Diario Oficial de la Federación, Government of Mexico: Mexico City, Mexico, 2019.
- CONAGUA. Actualización de la Disponibilidad Media Anual de Agua en el acuíFero Aguanaval Estado de Zacatecas; Techreport 3214; Subdirección General Técnica, Gerencia de Aguas Subterráneas; Diario Oficial de la Federación, Government of Mexico: Mexico City, Mexico, 2020.
- Bredehoeft, J.D.; Alley, W.M. Mining groundwater for sustained yield. Bridge 2014, 44, 33–41. [Google Scholar]
- Konikow, L.F.; Reilly, T.E.; Barlow, P.M.; Voss, C.I. Groundwater modeling. In The Handbook of Groundwater Engineering; CRC Press: New York, NY, USA, 2006; pp. 815–866. [Google Scholar]
- Carrillo-Rivera, J.J. Lack of a conceptual system view of groundwater resources in Mexico. Hydrogeol. J. 2003, 11, 519–520. [Google Scholar] [CrossRef]
- Gleeson, T.; Cardiff, M. The return of groundwater quantity: A mega-scale and interdisciplinary “future of hydrogeology”? Hydrogeol. J. 2013, 21, 1169–1171. [Google Scholar] [CrossRef]
- Hildenbrand, T.G.; Langenheim, V.E.; Mankinen, E.A.; McKee, E.H. Inversion of Gravity Data to Define the Pre-Tertiary Surface and Regional Structures Possibly Influencing Groundwater Flow in the Pahute Mesa–Oasis Valley Region, Nye County, Nevada; US Geological Survey Open-File Report; US Geological Survey: Reston, VA, USA, 1999; pp. 99–149.
- Bredehoeft, J.D. The water budget myth revisited: Why hydrogeologists model. Groundwater 2002, 40, 340–345. [Google Scholar] [CrossRef] [PubMed]
- Voss, C.I. Editor’s message: Groundwater modeling fantasies—Part 1, adrift in the details. Hydrogeol. J. 2011, 19, 1281–1284. [Google Scholar] [CrossRef] [Green Version]
- Bandini, F.; Lopez-Tamayo, A.; Merediz-Alonso, G.; Olesen, D.; Jakobsen, J.; Wang, S.; Garcia, M.; Bauer-Gottwein, P. Unmanned aerial vehicle observations of water surface elevation and bathymetry in the cenotes and lagoons of the Yucatan Peninsula, Mexico. Hydrogeol. J. 2018, 26, 2213–2228. [Google Scholar] [CrossRef] [Green Version]
- Dabrowski, P.S.; Specht, C.; Specht, M.; Burdziakowski, P.; Makar, A.; Lewicka, O. Integration of multi-source geospatial data from GNSS receivers, terrestrial laser scanners, and unmanned aerial vehicles. Can. J. Remote Sens. 2021, 47, 621–634. [Google Scholar] [CrossRef]
- Alevizos, E.; Oikonomou, D.; Argyriou, A.V.; Alexakis, D.D. Fusion of Drone-Based RGB and Multi-Spectral Imagery for Shallow Water Bathymetry Inversion. Remote Sens. 2022, 14, 1127. [Google Scholar] [CrossRef]
- Wang, D.; Xing, S.; He, Y.; Yu, J.; Xu, Q.; Li, P. Evaluation of a New Lightweight UAV-Borne Topo-Bathymetric LiDAR for Shallow Water Bathymetry and Object Detection. Sensors 2022, 22, 1379. [Google Scholar] [CrossRef]
- Specht, M.; Specht, C.; Lewicka, O.; Makar, A.; Burdziakowski, P.; Dabrowski, P. Study on the Coastline Evolution in Sopot (2008–2018) Based on Landsat Satellite Imagery. J. Mar. Sci. Eng. 2020, 8, 464. [Google Scholar] [CrossRef]
- Last, B.J.; Kubik, K. Compact gravity inversion. Geophysics 1983, 48, 713–721. [Google Scholar] [CrossRef]
- Barbosa, V.C.F.; Silva, J.B.C. Generalized compact gravity inversion. Geophysics 1994, 59, 57–68. [Google Scholar] [CrossRef]
- Li, Y.; Oldenburg, D.W. 3-D inversion of gravity data. Geophysics 1998, 63, 109–119. [Google Scholar] [CrossRef]
- Boulanger, O.; Chouteau, M. Constraints in 3D gravity inversion. Geophys. Prospect. 2001, 49, 265–280. [Google Scholar] [CrossRef]
- Oldenburg, D.W. The inversion and interpretation of gravity anomalies. Geophysics 1974, 39, 526–536. [Google Scholar] [CrossRef]
- Barbosa, V.C.F.; Silva, J.B.C.; Medeiros, W.E. Gravity inversion of basement relief using approximate equality constraints on depths. Geophysics 1997, 62, 1745–1757. [Google Scholar] [CrossRef] [Green Version]
- Cordell, L. Gravity analysis using an exponential density-depth function—San Jacinto Graben, California. Geophysics 1973, 38, 684–690. [Google Scholar] [CrossRef]
- Gallardo-Delgado, L.A.; Pérez-Flores, M.A.; Gómez-Treviño, E. A versatile algorithm for joint 3D inversion of gravity and magnetic data. Geophysics 2003, 68, 949–959. [Google Scholar] [CrossRef]
- García-Abdeslem, J. The gravitational attraction of a right rectangular prism with density varying with depth following a cubic polynomial. Geophysics 2005, 70, J39–J42. [Google Scholar] [CrossRef]
- Silva, J.B.; Costa, D.C.; Barbosa, V.C. Gravity inversion of basement relief and estimation of density contrast variation with depth. Geophysics 2006, 71, J51–J58. [Google Scholar] [CrossRef]
- Campa, M.F.; Coney, P.J. Tectono-stratigraphic terranes and mineral resource distributions in Mexico. Can. J. Earth Sci. 1983, 20, 1040–1051. [Google Scholar] [CrossRef]
- Centeno-Garcia, E. Tectonic Evolution of the Guerrero Terrane, Western Mexico. Ph.D. Thesis, The University of Arizona, Tucson, AZ, USA, 1994. [Google Scholar]
- Centeno-Garcia, E.; Silva-Romo, G. Petrogenesis and tectonic evolution of central Mexico during Triassic-Jurassic time. Rev. Mex. Cienc. Geol. 1997, 14, 13. [Google Scholar]
- De Cserna, Z. Geology of the Fresnillo area, Zacatecas, Mexico. Geol. Soc. Am. Bull. 1976, 87, 1191–1199. [Google Scholar] [CrossRef]
- Júnez-Ferreira, H.E.; Dávila, F.M.; Bautista-Capetillo, C.; Steiner, J.; Ávila Carrasco, J.R. Quantitative and qualitative analysis of groundwater in aguanaval and chupaderos aquifers (Mexico). J. Earth Sci. Eng. 2013, 3, 425–436. [Google Scholar]
- Wendt, C.J. The Geology and Exploration Potential of the Juanicipio Property, Fresnillo District, Zacatecas; Mexico Technical Report; A Division of Hart Crowser: Lakewood, CO, USA, 2002. [Google Scholar]
- Krienen, L.; Cardona Benavides, A.; Lopez Loera, H.; Rüde, T.R. Understanding Deep Groundwater Flow Systems to Contribute to a Sustainable Use of the Water Resource in the Mexican Altiplano; Technical Report, Lehr-und Forschungsgebiet Hydrogeologie; RWTH Aachen University: Aachen, Germany, 2019. [Google Scholar]
- Nagy, D. The gravitational attraction of a right rectangular prism. Geophysics 1966, 31, 362–371. [Google Scholar] [CrossRef]
- Bhattacharyya, B.K.; Leu, L.-K. Spectral analysis of gravity and magnetic anomalies due to rectangular prismatic bodies. Geophysics 1977, 42, 41–50. [Google Scholar] [CrossRef]
- Nocedal, J.; Wright, S.J. Numerical Optimization; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes in Fortran 90: Numerical Recipes in Fortran 77V. 2. Numerical Recipes in Fortran 90; Cambridge University Press: Cambridge, MA, USA, 1996. [Google Scholar]
- Williams, S.; Fairhead, J.D.; Flanagan, G. Realistic models of basement topography for depth to magnetic basement testing. In SEG Technical Program Expanded Abstracts 2002; Society of Exploration Geophysicists: Houston, TX, USA, 2002; pp. 814–817. [Google Scholar]
- Fairhead, J.D.; Williams, S.E.; Flanagan, G. Testing magnetic local wavenumber depth estimation methods using a complex 3D test model. In SEG Technical Program Expanded Abstracts 2004; Society of Exploration Geophysicists: Houston, TX, USA, 2004; pp. 742–745. [Google Scholar]
- Barnes, G.; Lumley, J. Processing gravity gradient data. Geophysics 2011, 76, I33–I47. [Google Scholar] [CrossRef]
- Salem, A.; Green, C.; Cheyney, S.; Fairhead, J.D.; Aboud, E.; Campbell, S. Mapping the depth to magnetic basement using inversion of pseudogravity: Application to the Bishop model and the Stord Basin, northern North Sea. Interpretation 2014, 2, T69–T78. [Google Scholar] [CrossRef] [Green Version]
- Portniaguine, O.; Zhdanov, M.S. Focusing geophysical inversion images. Geophysics 1999, 64, 874–887. [Google Scholar] [CrossRef] [Green Version]
- Barlier, F.; Lefebvre, M. A new look at planet Earth: Satellite geodesy and geosciences. In The Century of Space Science; Springer: Berlin/Heidelberg, Germany, 2001; pp. 1623–1651. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva-Ávalos, R.U.; Júnez-Ferreira, H.E.; González-Trinidad, J.; Bautista-Capetillo, C. Non-Linear 3D Satellite Gravity Inversion for Depth to the Basement Estimation in a Mexican Semi-Arid Agricultural Region. Appl. Sci. 2022, 12, 7252. https://doi.org/10.3390/app12147252
Silva-Ávalos RU, Júnez-Ferreira HE, González-Trinidad J, Bautista-Capetillo C. Non-Linear 3D Satellite Gravity Inversion for Depth to the Basement Estimation in a Mexican Semi-Arid Agricultural Region. Applied Sciences. 2022; 12(14):7252. https://doi.org/10.3390/app12147252
Chicago/Turabian StyleSilva-Ávalos, Raúl Ulices, Hugo Enrique Júnez-Ferreira, Julián González-Trinidad, and Carlos Bautista-Capetillo. 2022. "Non-Linear 3D Satellite Gravity Inversion for Depth to the Basement Estimation in a Mexican Semi-Arid Agricultural Region" Applied Sciences 12, no. 14: 7252. https://doi.org/10.3390/app12147252
APA StyleSilva-Ávalos, R. U., Júnez-Ferreira, H. E., González-Trinidad, J., & Bautista-Capetillo, C. (2022). Non-Linear 3D Satellite Gravity Inversion for Depth to the Basement Estimation in a Mexican Semi-Arid Agricultural Region. Applied Sciences, 12(14), 7252. https://doi.org/10.3390/app12147252